数字电路的应用

合集下载

简述数字电路在计算机中的应用

简述数字电路在计算机中的应用

简述数字电路在计算机中的应用
数字电路是一种用于处理数字信号的电子电路,它在计算机中扮演着重要的角色。

以下是数字电路在计算机中的一些主要应用:
1. 处理器:计算机的中央处理器(CPU)是数字电路的核心。

CPU 包含了大量的逻辑门、寄存器和算术逻辑单元(ALU),用于执行指令和进行数据处理。

数字电路的高速性能和精确控制使得 CPU 能够快速地执行计算和逻辑操作。

2. 内存:计算机中的内存使用数字电路来存储数据和程序。

内存芯片由许多存储单元组成,每个单元可以存储一个二进制数。

数字电路用于控制内存的读写操作,以及在内存中进行数据的存储和检索。

3. 输入/输出设备:计算机的输入设备(如键盘、鼠标)和输出设备(如显示器、打印机)也使用数字电路。

数字电路用于将输入的模拟信号转换为数字信号,以及将数字信号转换为模拟信号输出。

4. 数据通信:计算机通过网络进行数据通信时,数字电路用于处理和传输数字信号。

网络接口卡(NIC)、路由器和交换机等设备都包含数字电路,用于实现数据的发送、接收和转发。

5. 时钟和定时器:计算机中的时钟和定时器电路使用数字电路来产生精确的时间信号。

这些电路用于控制系统的时序、定时操作和中断处理。

总之,数字电路在计算机中应用广泛,它是计算机能够处理和存储数字信息的基础。

数字电路的高速、精确和可靠性能使得计算机在各个领域都发挥着重要的作用。

数字电路国内外发展现状

数字电路国内外发展现状

数字电路国内外发展现状
数字电路是现代电子技术中的重要分支之一,其应用范围广泛,涉及到通讯、计算机、控制等领域。

以下是数字电路在国内外的发展现状:
1. 国外数字电路发展现状
在国外,数字电路已经广泛应用于通信、计算机、嵌入式系统等领域。

在数字电路设计中,常见的设计工具有Verilog、VHDL等。

除此之外,计算机辅助设计工具(CAD)也得到广泛应用。

众多国际企业如Intel、AMD、NVIDIA、Qualcomm 等在数字电路设计和制造上都取得了很高的成就。

2. 国内数字电路发展现状
在国内,数字电路的发展比较晚,但近年来逐步迎头赶上,相关技术正在不断成熟。

国内的数字电路设计软件也得到了很大的发展,如EDA(Electronic Design Automation)的相关软件AD、Altium Designer等。

在数字电路的制造方面,国内生产和研究的芯片质量和性能也在逐年提高,基本实现了国产化。

3. 发展趋势
未来数字电路的发展趋势主要有以下几个方面:一方面,数字电路将会越来越小、越来越快,由于数字电路的尺寸越
来越小,将会更加注重对其功耗和可靠性的控制。

另一方面,数字电路将会更加智能化,包括机器学习、人工智能等领域的应用。

同时,数字电路将会在安全和保密方面得到更好的保障。

随着现代电子科技的不断进步和应用需求的不断增加,数字电路的发展前景非常广阔,国内外的研究也在不断深入推进。

未来数字电路的应用范围将会更加广泛,同时也将进一步向更高的效率、更小的尺寸、更强的智能化方向发展。

数电应用实例及原理

数电应用实例及原理

数电应用实例及原理数电(数字电子)是指利用数字信号进行电子信息处理的一门学科。

它的应用非常广泛,几乎涵盖了现代电子设备的方方面面。

下面我将介绍一些数电的应用实例以及它们的原理。

1. 逻辑门电路逻辑门电路是数电中最基础的电路之一,用于实现逻辑运算。

其中最为常见的有与门、或门和非门。

与门电路的输入中只有所有输入都为高电平时,输出才会为高电平;或门电路在任意一个输入为高电平时,输出就会为高电平;非门电路将输入的电平进行取反。

逻辑门电路广泛应用于计算机的内部电路,逻辑电路的原理是根据输入信号的不同,通过开关的对应位置的导通与否而输出高电平或低电平。

2. 数字时钟数字时钟由数码管和时钟电路组成。

数码管是一种显示元件,可以通过控制不同的段亮或不亮来显示不同的数字。

时钟电路可以通过计时器、分频器等组成,利用时钟信号来驱动数码管的显示。

时钟电路通过计算时间信号,将时间数字转化为数字信号并显示在数码管上。

3. 计算机内存计算机内存是一种存储设备,用于存储和读取数据。

现代计算机内存主要分为随机存储器(RAM)和只读存储器(ROM)。

其中RAM主要用于存储中间结果和临时数据,ROM主要用于存储固定的程序和数据。

内存的原理是利用数电电路实现对数据的存取和驱动。

4. 电子计算机电子计算机是利用数电电路实现的高级计算设备。

它能够进行快速的算术运算、逻辑判断、存储和读取数据等操作。

电子计算机的核心是中央处理器(CPU),它由运算器、控制器和寄存器等部件组成。

中央处理器通过运算器对数据进行处理,通过控制器对程序进行控制,通过寄存器存储运算过程中的中间结果。

电子计算机采用二进制编码,利用数电原理来实现数据的存储和计算。

5. 数字音频设备数字音频设备是利用数电技术实现音频数据的录制、播放和处理。

如数字音频编解码器(CODEC)、数字音频处理器(DSP)等。

数字音频设备通过模数转换器将模拟音频信号转化为数字信号,再通过数模转换器将数字信号转化为模拟音频信号。

数字电路应用举例

数字电路应用举例

举 例
返回
1.2 制动灯故障检测器







制动灯故障检测器
XD1、XD2—汽车尾部制动信号灯;

LED1、LED2—驾驶室内的工作指示灯,其工作状况和尾部信号灯相对应;
K—制动开关
1.3 汽车电子燃油喷射系统

发动机电子燃油喷射系统中,通过传感

器将发动机运行的各个信息,如进气流量传 感器信号、温度传感器信号、进气温度信号、

节气门开度信号、曲轴位置传感器信号和爆

震信号等送入ECU,经过模数转换(A/D转 换)变成动调整校正燃油喷射量

和点火时刻,使发动机混合比最佳,点火更 准确,燃烧更完全,达到输出功率大、油耗

低、排污少的目的。

谢谢观看!
数字电路应用举例
数字集成电路在各行各业都得到广泛的应用,从工业、科研、
军事、国防、民用领域到处可见,特别是在现代汽车上的作用, 更是发挥的淋漓尽致。由数字电路构成的微处理技术(ECU)

在汽车上的应用,将汽车工业推向了一个新的高度。

1.1 A/D、D/A转换器

如果在一些应用电路中取得的信号是模拟信号,就必须把它

应 转换成相应的数字信号才能进入数字系统,能将模拟信号转换成
相应数字信号的电路称为模/数转换器或 A/D 转换器。有时还
用 需要将处理后得到的数字信号再转换成相应的模拟信号作为最后
的输出,这就需要应用数/模转换器即 D/A 转换器。
A/D 转换器和 D/A 转换器的电路原理在这里不作介绍, 在实际应用中都有相应的集成电路器件可供选用。

数字电路第一章

数字电路第一章

绪论一、数字电路特点1、什么是数字电路电子电路按信号分成二类模拟电路数字电路模拟电路:信号连续分布 举例模拟电路—线性电路 0IV K V = 一次线性方程 线性 非线性数字电路:信号不连续—脉冲数字电路也称脉冲电路数字电路主要应用矩形波正逻辑高电平 1低电平 0“”“”二元码2、数字电路工作状态数字信号0、1表示二个相反的状态,因此原则上凡是能够代表二个相反的状态的任何方法都可以表示为数字信号,典型机械开关 导通“1 断开“0→→所以数字电路也称开关电路3、数字电路抗干扰性强二、数字电路的应用1、数字通讯2、数控装置 计算机控制操作设备3、数字计算机(最广泛、最杰出的应用)算盘1857年,Hill计数器1890年人口普查使用的制表机第二代1951年,IBM开始决定开发商用电脑,聘请冯·诺依曼担任公司的科学顾问,1952年12月研制出IBM第一台存储程序计算机,也是通常意义上的电脑,这是IT历史上一个重要的里程碑。

它叫IBM 701。

第一代1946年启动“埃尼阿克”(ENIAC)计算机1958年8月16日第一个集成电路第三代1964年4月7日,IBM主席Tom Watson,System 360。

Jr.亲自发布System 360。

超级计算机IBM蓝色基因落户德日计算相当于1.5万台PC( 2006年)第一章逻辑代数基础前面二进制数表示方法不讲,其它学科介绍,本书不用这些概念。

二进制逢二进一1101,110 ++右面给出常用的四位二进制逐一递增的8.4.2.1码。

§1.1 基本概念公式和定理1.1.1 基本和常用逻辑运算一、三种基本逻辑运算1、 与逻辑(与运算、逻辑乘)与逻辑—全部条件具备,事件发生。

下图用机械开关来表示与逻辑运算。

功能表开、关,亮、灭是一个二元状态,可以用0、1码表示 ②真值表 ①赋值合,亮断10,灭→→③与逻辑式 YA B =⋅④逻辑图(符号)多端输入(多个开关) Y ABC =上述逻辑运算的器件称“门” 对应与逻辑称“与门”2、 或逻辑(逻辑加)或逻辑— 一个或一个以上条件具备,事件发生。

数字电路的应用

数字电路的应用

数字电路的应用范围
计算机硬件
通信系统
数字电路是计算机硬件的重要组成部分, 包括CPU、内存、硬盘等都离不开数字电 路。
数字电路在通信系统中发挥着重要作用, 如光纤通信、移动通信、卫星通信等都需 要数字电路进行信号处理和传输。
控制设备
数字信号处理
数字电路在各种控制设备中也有广泛应用 ,如智能仪表、工业自动化设备等都离不 开数字电路的支持。
寄存器
移位寄存器
可以存储二进制数据,并可以将数据向左或向右移动。
计数器
用于计数输入脉冲的个数,常用于定时器和分频器。
译码器
二进制译码器
有n个输入端和2^n个输出端,每个输出端对应一个输入的二进制码组合。
显示译码器
用于将二进制数转换为七段数码管显示的数字。
03
数字电路的应用实例
计算机硬件
中央处理器(CPU)
数字电路在数字信号处理领域也有广泛应 用,如音频、图像、视频等信号的处理都 离不开数字电路。
02
数字电路的基本组成
逻D门
实现逻辑与操作,当所有输入 都为高电平时,输出为高电平

OR门
实现逻辑或操作,当至少一个 输入为高电平时,输出为高电
平。
NOT门
实现逻辑非操作,对输入信号 进行反转。
04
数字电路的发展趋势
集成电路的发展
01
集成电路是数字电路发展的基础 ,随着微电子技术的不断进步, 集成电路的集成度越来越高,功 能越来越强大。
02
集成电路的发展推动了数字电路 的微型化和高效化,使得数字电 路在便携式设备、智能家居等领 域得到广泛应用。
高速数字电路的发展
随着数据传输速率的不断提高,高速 数字电路在通信、计算机等领域的应 用越来越广泛。

数字电路应用举例

数字电路应用举例

数字电路应用举例数字电路是电子技术中的一种重要应用,广泛应用于计算机、通信设备、嵌入式系统等领域。

下面列举了十个数字电路的应用举例,以帮助读者更好地理解数字电路的实际应用。

1. 门禁系统:门禁系统是数字电路的一个典型应用。

通过数字电路中的逻辑门和触发器等元件,可以实现对门禁系统的控制和管理。

例如,当输入正确的密码或刷卡信息时,门禁系统可以打开门禁,允许进入;反之,如果输入错误的密码或刷卡信息,门禁系统则保持关闭状态。

2. 家庭安防系统:家庭安防系统利用数字电路中的传感器、比较器和控制器等元件,实现对家庭的安全监控和报警。

例如,当家庭安防系统检测到入侵者时,传感器会将信号传递给比较器,比较器通过数字电路的逻辑运算判断是否触发报警器,从而实现家庭的安全保护。

3. 数字计数器:数字计数器是一种常见的数字电路应用。

通过数字电路中的计数器元件,可以实现对输入信号的计数和显示。

例如,电子计算器中的计数器模块可以实现对用户输入的数字进行计数,并在显示屏上显示计数结果。

4. 时钟电路:时钟电路是数字电路中的一个重要应用。

通过数字电路中的振荡器、分频器和计数器等元件,可以实现对时钟信号的生成和分配。

例如,计算机中的时钟电路可以提供稳定的时钟信号,用于同步计算机内各个元件的工作。

5. 数字编码器:数字编码器是数字电路的一种应用。

通过数字电路中的编码器元件,可以将输入的模拟信号或数字信号转换为对应的数字编码输出。

例如,音频编码器可以将模拟音频信号转换为数字编码输出,用于数字音频的传输和处理。

6. 数据选择器:数据选择器是数字电路中常见的应用之一。

通过数字电路中的选择器元件,可以实现对多个输入信号中的某个信号进行选择输出。

例如,多路数据选择器可以根据控制信号的不同,选择不同的输入信号输出到目标设备。

7. 信号转换器:信号转换器是数字电路的一种常见应用。

通过数字电路中的转换器元件,可以实现不同类型信号之间的转换。

例如,模数转换器可以将模拟信号转换为数字信号,用于数字信号的处理和传输。

模拟电路和数字电路的应用

模拟电路和数字电路的应用

模拟电路和数字电路的应用随着科技的不断进步,电路技术也在不断发展,其中最基本的电路可以分成两类,分别是模拟电路和数字电路,这两种电路都有着广泛的应用。

一、模拟电路的应用模拟电路是指具有连续性信号的电路。

模拟电路广泛应用于模拟信号的处理、转换、传输、放大、滤波、调节等方面。

以下是模拟电路的一些应用:1.放大器放大器是模拟电路中常见的一种电路。

它的基本作用是将输入信号的强度放大到需要的程度,以便能够将信号送往下一级电路。

例如,在音频和视频电路中,放大器用于将微弱的声音信号或图像信号放大到更高的电平,以实现更好的声音效果或图像效果。

2.滤波器滤波器是模拟电路中用于处理信号的一种电路。

它能够从输入信号中选择所需要的频率范围,滤掉其它频率的信号。

例如,在收音机中,滤波器用于选择所需要的无线电台,滤掉其它无用的无线信号。

二、数字电路的应用数字电路是指具有离散信号的电路,最基本的元件就是二极管和晶体管。

数字电路广泛应用于数字信号的处理和转换,例如计算、编码、解码等。

以下是数字电路的一些应用:1.计算机计算机是数字电路应用最广泛的领域之一。

计算机内部的处理器、内存等组件都是由数字电路构建的。

数码管也是数字电路中的一种重要组件,用于显示数字信息。

2.编码器和解码器编码器和解码器是数字电路中用于数据转换的一种电路。

例如,数字音频中的压缩格式,就是利用编码器将音频信号转换成压缩格式,然后利用解码器将压缩格式转换回音频信号。

总结:综上所述,模拟电路和数字电路在各自的领域内有着广泛的应用,它们不仅有着相互的联系,而且可以互相结合,例如模数转换器和数模转换器,可以将模拟信号和数字信号相互转换。

在今后的科技发展中,模拟电路和数字电路的应用范围会愈来愈广,我们每个人在日常生活中所接触到的电子产品,都是数字电路和模拟电路相互结合的产物,电路技术的发展也是人类社会发展的重要标志之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字电路的应用用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。

由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。

现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。

逻辑门是数字逻辑电路的基本单元。

存储器是用来存储二进制数据的数字电路。

从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。

数字电路是以二值数字逻辑为基础的,其工作信号是离散的数字信号。

电路中的电子晶体管工作于开关状态,时而导通,时而截止。

数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。

但其发展比模拟电路发展的更快。

从60年代开始,数字集成器件以双极型工艺制成了小规模逻辑器件。

随后发展到中规模逻辑器件;70年代末,微处理器的出现,使数字集成电路的性能产生质的飞跃。

数字集成器件所用的材料以硅材料为主,在高速电路中,也使用化合物半导体材料,例如砷化镓等。

逻辑门是数字电路中一种重要的逻辑单元电路。

TTL 逻辑门电路问世较早,其工艺经过不断改进,至今仍为主要的基本逻辑器件之一。

随着CMOS工艺的发展,TTL的主导地位受到了动摇,有被CMOS器件所取代的趋势。

近几年来,可编程逻辑器件PLD特别是现场可编程门阵列FPGA的飞速进步,使数字电子技术开创了新局面,不仅规模大,而且将硬件与软件相结合,使器件的功能更加完善,使用更灵活。

数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。

与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。

数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。

一个数字系统一般由控制部件和运算部件组成,在时脉的驱动下,控制部件控制运算部件完成所要执行的动作。

通过模拟数字转换器、数字模拟转换器,数字电路可以和模拟电路互相连接。

分类按功能来分:1、组合逻辑电路简称组合电路,它由最基本的逻辑门电路组合而成。

特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。

电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。

2、时序逻辑电路简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。

时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。

它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件。

按电路有无集成元器件来分,可分为分立元件数字电路和集成数字电路。

按集成电路的集成度进行分类,可分为小规模集成数字电路(SSI)、中规模集成数字电路(MSI)、大规模集成数字电路(LSI)和超大规模集成数字电路(VLSI)。

按构成电路的半导体器件来分类,可分为双极型数字电路和单极型数字电路。

特点1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。

2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。

电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。

3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。

电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。

电路的设计组成只需采用一些标准的集成电路块单元连接而成。

对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。

应用数字电路与数字电子技术广泛的应用于电视、雷达、通信、电子计算机、自动控制、航天等科学技术领域。

数字电路的分类:包括数字脉冲电路和数字逻辑电路。

前者研究脉冲的产生、变换和测量;后者对数字信号进行算术运算和逻辑运算。

数字电路的划分:1.按功能分为组合逻辑电路和时序逻辑电路两大类。

前者在任何时刻的输出,仅取决于电路此刻的输入状态,而与电路过去的状态无关,它们不具有记忆功能。

常用的组合逻辑器件有加法器、译码器、数据选择器等。

后者在任何时候的输出,不仅取决于电路此刻的输入状态,而且与电路过去的状态有关,它们具有记忆功能。

2.按结构分为分立元件电路和集成电路。

前者是将独立的晶体管、电阻等元器件用导线连接起来的电路。

后者将元器件及导线制作在半导体硅片上,封装在一个壳体内,并焊出引线的电路。

集成电路的集成度是不同的分析方法数字电路主要研究对象是电路的输出与输入之间的逻辑关系,因而在数字电路中不能采用模拟电路的分析方法,例如,小信号模型分析法。

由于数字电路中的器件主要工作在开关状态,因而采用的分析工具主要是逻辑代数,用功能表、真值表、逻辑表达式、波形图等来表达电路的主要功能。

随着计算技术的发展,为了分析、仿真与设计数字电路或数字系统,还可以采用硬件描述语言,使用如ABEL语言等软件,借助计算机来分析、仿真与设计数字系统。

测试技术数字电路在正确设计和安装后须经严格的测试方可使用。

事实上,在逻辑设计阶段就应该考虑到数字电路的测试。

如果对电路的测试目的只是为了检查电路是否发生了故障,则称这种测试为数字电路的故障检测;对电路的逻辑功能的测试称为功能测试或静态测试;对电气特性或时间特性的测试称为动态测试;如果测试的目的不仅是为了检查电路是否有故障,而且还要确定发生故障的部位,则称这种测试为故障定位。

电路研究数字电路中研究的主要问题是输出信号的状态(“0”或“1”)和输入信号(“0”或“1”)之间的逻辑关系,即电路的逻辑功能。

数字电路的研究方法是逻辑分析和逻辑设计,所需要的工具是逻辑代数。

(在正逻辑下,“0”是低电平,“1”是高电平,高低电平没有明确的界限)优点电子设备从以模拟方式处理信息,转到以数字方式处理信息的原因,主要在以下几个方面:稳定性好:数字电路不像模拟电路那样易受噪声的干扰。

可靠性高:数字电路中只需分辨出信号的有与无,故电路的组件参数,可以允许有较大的变化(漂移)范围。

可长期存储:数字信息可以利用某种媒介,如磁带、磁盘、光盘等进行长时期的存储。

便于计算机处理:数字信号的输出除了具有直观、准确的优点外,最主要的还是便于利用电子计算机来进行信息的处理。

便于高度集成化:由于数字电路中基本单元电路的结构比较简单,而且又允许组件有较大的分散性,这就使我们不仅可把众多的基本单元做在同一块硅片上,同时又能达到大批量生产所需要的良率。

数字电路控制实验板是专为数字电路及单片机控制实验而设计的。

该实验板上安装了稳压电源、数码显示器、单脉冲发生器、振荡器和多种驱动电路等实验常用器械,为学习数字控制电路以及研制开发小规模应用电路提供了一个理想的实验环境。

其主要功能及使用分述如下:1、输入电源及接法:① 如果实验只需正电源,则应从实验板右侧上方+V插孔提供9V交流或直流电源。

② 如果实验需要正负双向电源,则应从实验板右侧上方+V插孔和-V插孔分别独立提供9V交流或直流电源,也可以从+V和-V 之间的三芯插座,外接双9伏变压器。

③电机电源输入端:实验板固态继电器和普通双路继电器旁有四个两芯接线柱,从左至右分别是直流电机接线柱,电机(直流电机和步进电机)电源输出端,固态继电器输出端和实验整流电源(约12V)输出端。

如果电机使用实验板整流电源,可用一根导线将整流电源正极端与电机电源正极端连接即可(本实验板成品已连好参考样式),负极端在内部已经连通。

电机电源为60V以内的直流,连接时注意极性。

2、实验板稳压电源的使用:①+5V稳压电源:接口在实验板的插线板右上角,配有红色指示灯和控制开关右上角第三个。

②±V可调节稳压电源:接口在实验板的插线板左边,上方是+V,用红灯指示,下方是-V,用绿灯指示,控制开关为两带锁按钮,在插线板左上方,电压调节为实验板右侧边LM317和LM337处的2K电位器。

3、数码显示器的使用:该显示器是一个6位串行静态显示器。

显示数据由DAT端送入,低电平显示。

在CLK端由用户提供移位脉冲,上跳变移位,接口有两处,一处是实验左侧三芯插座(DAT、CLK、GND)处,另一处在实验板上插线条的中部,DAT和CLK标志处。

4、电平指示器的使用:电平指示器用于指示电路输出端的逻辑电平,高电平点亮。

电平指示器共三组12个灯,输入口在实验板上插线条右侧“红灯”、“绿灯”、和“黄灯”处,输入电压应在0至5V内。

5、驱动器的使用:①晶体三极管驱动:集电极开路型,最大吸入电流200mA,最高电压40伏,可接小电流步进电机。

驱动器分ABCD四路,输入端在实验板上插线条中部,低电平有效。

输出端在实验板上边缘中部红外发射管附近(六脚插针,其中右边两针为电机电源正极)。

②场效应管和继电器组合驱动:最大通过电流5A,可用于直流电机速度及方向控制等。

电机电源电压(限60V)由外部提供,从实验板上边端口输入。

场效应管采用脉宽调制方式控制电机速度,继电器已接成换向器形式,用于改变电机转动方向。

驱动器输入端口在实验板上插线条中部,低电平有效。

③固态继电器(或可控硅)驱动:最大通过电流3A,用于220V以下交流电器开关控制和速度控制,输入低电平有效。

④蜂鸣器驱动:输入低电平时发声,高电平停止。

6、单脉冲、电平发生器的使用:①产生单脉冲及电平跳变:每按键一次(不带锁按钮),产生一对正、负脉冲(接口在实验板下插线左边红灯处),并产生一次电平的跳变(绿灯处)。

左右两路脉冲、电平发生器用法相同,当按下最左边带锁按钮的自动按键时,它们两路组合成一个低频振荡器。

②检测电路是否有振荡:将被测信号引入振荡测试端,有振荡时绿灯闪烁。

7、振荡器的使用:该振荡器可产生大约10HZ至500KHZ的方波信号。

用跳线卡选择波段1、2、3或4,用电位器(100K)进行频率微调。

输出控制端低电平时可关断振荡输出。

8、8位键盘的使用:该键盘分两组,每组有ABCD四个键(不带锁按钮),采用2×4扫描式结构。

如果只用四个键,可将1组或2组端接地,按键时产生低电平。

9、波形观察:通过串行口连接PC机,从电脑上观察低频模拟量或数字量波形,类似于存贮或示波器功能。

10,单片机AT89C2051写入:将电脑中编译好的控制程序写入芯片,AT89C2051插入锁具方向与本实验板AT89C51朝向一致,请仔细观察清楚,不要插反。

相关文档
最新文档