水泥生产工艺及水泥熟料的形成

合集下载

水泥的生产工艺流程

水泥的生产工艺流程

水泥的生产工艺流程水泥是一种重要的建筑材料,广泛应用于建筑、道路、桥梁等工程中。

其生产工艺流程一般包括以下几个主要步骤:1. 石灰石的采矿和贮存:首先,需要从矿山中开采出主要成分为石灰石的矿石。

然后,将矿石进行粉碎和研磨,使其成为适合使用的矿石粉末。

接下来,将矿石粉末储存到仓库中,以备后续使用。

2. 石灰石的预处理:将石灰石粉末进行预处理,去除其中的杂质和有害元素。

这一步骤一般包括石灰石的煅烧和煅破过程。

石灰石煅烧时,会发生石灰石的石化反应,将石灰石中的碳酸钙转化为生石灰。

石灰石煅破时,将煅烧后的石灰石进行破碎和筛分,得到适合生产水泥的石灰石颗粒。

3. 黏土的预处理:同时,还需要将黏土进行预处理。

黏土经过破碎和筛分,去除其中的杂质,得到黏土颗粒。

4. 生料的混合:将经过预处理的石灰石和黏土按一定的比例进行混合。

混合比例的确定需要考虑到所生产水泥的性能要求。

混合后的生料称为熟料。

5. 熟料的煅烧:将混合后的熟料进入旋转窑中进行煅烧处理。

这一步骤主要是通过高温下的化学反应,将熟料中的物质转化为水泥熟料。

煅烧温度一般在1400℃左右。

煅烧过程中,熟料逐渐转化为熟料球。

6. 煤磨和水泥辅料制备:在煅烧过程中,需要使用煤作为主要燃料。

首先,将煤矿从矿井中采出,并进行破碎和粉磨,得到煤粉。

同时,将焚烧废渣等其他材料进行破碎和粉磨,得到适合制备水泥辅料的颗粒。

7. 水泥的制备:煅烧后的熟料球经过冷却和筛分,得到水泥熟料。

然后,将水泥熟料与煤粉、水泥辅料等进行混合和研磨,得到最终的水泥产品。

这个步骤一般通过水泥磨机进行完成。

8. 包装和储存:最后,将制备好的水泥产品进行包装,以便运输和储存。

包装一般采用纸袋或者增塑塑料袋。

包装好的水泥袋使用机器进行堆放和码垛,方便地存放在仓库中。

综上所述,水泥的生产工艺流程主要包括石灰石的采矿和处理、黏土的预处理、生料的混合、熟料的煅烧、煤磨和水泥辅料制备、水泥的制备、包装和储存等步骤。

水泥熟料生产工艺流程(一)

水泥熟料生产工艺流程(一)

水泥熟料生产工艺流程(一)水泥熟料生产工艺1. 概述水泥熟料是生产水泥的主要原料,其生产工艺包括多个流程,涉及到破碎、混合、配料、烧结、冷却等多个环节。

2. 破碎破碎是将原料破碎成小颗粒,以便于后续的工艺处理。

这个环节主要包括以下步骤:•原石进厂•破碎机破碎•破碎后再过筛3. 混合不同种类的原料需要混合在一起,生成符合要求的熟料配料。

混合的步骤包括:•须按一定比例配料•混合机搅拌,使混合均匀•将混合完的配料送至烧结炉4. 配料配料是指按照熟料成分要求将各种配料分别称量并混合在一起,常用的配料有石灰石、黏土、铁矿石等,其步骤包括:•确定熟料成分要求•仓库里先把需要的原料装进坡底下的斗•电子秤称重•直接美穗机料仓添加各组分原料•变频机调节5. 烧结烧结是指将配合均匀的生料进入烧结炉,按一定的烧成温度和时间进行物理变化,使其变为操作性能稳定、化学成份和物理性能达到工艺要求的熟料。

烧结步骤主要包括以下几个过程:1.送进烧结炉2.炉内高温烧结3.熟料的成型4.把烧后的熟料送到冷却系统6. 冷却烧结完的熟料需要进行冷却,以保证熟料质量。

熟料冷却步骤主要包括以下几个过程:•熟料经回转窑进入烟气冷却器冷却•熟料在冷却器中加水淬火•熟料冷却后送入仓库存放针对水泥熟料生产工艺,以上就是主要的流程。

随着技术的不断发展,可能会有所变化,但总体上仍然会遵循这些步骤进行生产。

7. 最终品质检验水泥熟料生产完毕后,需要进行最终品质检验,以确保其符合工业标准和客户需求。

最终品质检验主要包括以下几个方面:•成分分析:检测熟料的主要成分,如CaO、SiO2、Al2O3、Fe2O3、SO3、MgO等;•物理性能测试:对熟料的物理性能进行测试,如熟料比表面积、压缩强度、细度等;•着色指标检测:检测熟料着色指标,确保其颜色符合要求;•水泥标号检测:检测熟料中的硅酸盐含量,以确定其水泥标号。

8. 结束语水泥熟料生产工艺是一个复杂而重要的过程。

水泥熟料生产工艺流程解析

水泥熟料生产工艺流程解析

水泥熟料生产工艺流程解析水泥熟料生产工艺流程解析1. 引言水泥是建筑工程中不可或缺的材料,而水泥熟料是水泥的主要原料。

水泥熟料生产工艺流程是指将原料经过一系列反应和处理,最终得到水泥熟料的过程。

本文将深入探讨水泥熟料生产工艺的各个环节,从而更好地理解水泥熟料的生产过程。

2. 原料的选取与预处理2.1 原料的选取水泥熟料的主要原料通常包括石灰石、粘土、铁矿石等。

这些原料需要具备一定的化学成分和物理性质,以确保最终生产出的水泥熟料具有良好的性能。

2.2 原料的预处理在进入生产线之前,原料需要经过一系列的预处理步骤。

如石灰石需要进行破碎、磨矿、筛分等处理,以获得合适的粒度,方便后续的反应和处理。

3. 原料的烧成原料的烧成是整个水泥熟料生产过程中最关键的步骤之一。

该步骤主要包括干法烧成和湿法烧成两种方法。

3.1 干法烧成干法烧成是指将原料直接送入旋转窑进行烧成的方法。

在旋转窑中,原料与高温燃烧气体进行交互作用,发生一系列的物理和化学反应,最终形成水泥熟料。

这种方法具有工艺简单、设备投资少的特点,但能耗较高。

3.2 湿法烧成湿法烧成是指将原料中的水分先进行脱除,然后再进行烧成的方法。

该方法能耗低,但工艺复杂、设备投资较大。

湿法烧成通常采用沟窑或滚筒窑进行。

4. 熟料的磨矿熟料的磨矿是将熟料进行细磨,以提高其活性和适应性的过程。

该步骤主要通过水泥磨来实现。

4.1 磨矿工艺磨矿工艺是指将熟料放入水泥磨中进行细磨的过程。

水泥磨通常采用滚筒式或滚压式磨机,通过磨碎和混合的作用,使熟料达到所需的细度要求。

4.2 磨矿过程中的辅助材料为了调整熟料的性能,磨矿过程中还可添加适量的矿渣、石膏等辅助材料,以改善水泥的性能和品质。

5. 总结与回顾通过对水泥熟料生产工艺流程的解析,我们可以看出,水泥熟料的生产过程经过了多个环节的处理和反应。

从原料的选取与预处理,到熟料的烧成和磨矿,每个环节都起到了关键的作用。

水泥熟料生产工艺流程的复杂性和多样性使得水泥的生产成为一门综合性较强的科学。

水泥工艺

水泥工艺

水泥工艺一、硅酸盐水泥熟料水泥定义:1.熟料定义硅酸盐水泥熟料按中国标准的定义为:“以适当成分的生料烧至部分熔融,所得以硅酸钙为主要成分的产物”。

按欧洲试行标准的定义为:“波特兰水泥熟料是一种水硬性材料,以重量计至少2/3是由硅酸钙(C3S和C2S)组成,其余为氧化铝(Al203),氧化铁(FC2O3)和其它氧化物。

CaO/SiO。

重量比应不小于2.0。

氧化镁(MgO)以重量计不应超过5%。

波特兰水泥熟料是由精确配定的混合原料(生料粉,料泥或生料浆)经至少煅烧至烧结而制成的,混合原料含有CaO,SiO2,Al2O3和少量其它物质。

生料粉,料泥或生料浆必须细磨,充分混合,因而是均匀的”。

由以上的定义中可以看出欧洲标准规定的比较明确,对熟料的矿物组成(如硅酸盐矿物)和化学组成(如CaO/SiO重量比)都给予数量上的限定,对生料的制备质量也提出了细磨和混合均匀的要求。

这些对新品种开发和提高水泥及混凝土质量是很重要的。

2.熟料矿物组成硅酸盐水泥熟料主要由4种结晶矿物组成,即阿利特,贝利特,铝酸盐和铁铝酸盐,它们紧密地交织在一起,另外还有少量游离石灰,方镁石,玻璃体和孔隙。

阿利特(Alite) 主要由硅酸三钙组成,分子式为3CaO·SiO2,简写C3S。

因为熟料中不存在纯的C3S,其中都固溶有MgO,Al2O3,Fe2O3,TiO2以及V12O,Na2O等金属氧化物,所以在准确叫法称为阿利特矿物,简称A矿,C3S水化速度快,早期强度和后期强度都高,是硅酸盐水泥熟料尤其高活性熟料的主要矿物,含量一般在40%~80%,我国最高在67%左右,国外可达85%。

贝利特(Belite) 主要由硅酸二钙组成,分子式为2CaO·SiO2,简写为C2S。

因为熟料中不可能有纯的C2S,其中多固溶有Al2O3,Fe2O3,MgO,V12O,Na2O,TiO2,P2O5等杂质,所以称为贝利特矿物,简称B矿。

C2S水化速度慢、早期强度低,长期强度能达到与C3S 相同的水平。

水泥制造工艺(3篇)

水泥制造工艺(3篇)

一、引言水泥是建筑材料中不可或缺的一种,广泛应用于建筑、道路、桥梁等领域。

水泥制造工艺是水泥生产过程中的核心技术,对水泥的质量和性能有着重要影响。

本文将从水泥制造工艺的原料准备、配料、烧制、粉磨等方面进行详细介绍。

二、原料准备1.石灰石:石灰石是水泥制造的主要原料,其化学成分主要为碳酸钙(CaCO3)。

石灰石经过高温煅烧后,生成氧化钙(CaO),是水泥熟料的主要成分。

2.粘土:粘土是水泥制造的重要原料之一,其主要成分是硅酸盐。

粘土与石灰石混合后,经过高温煅烧,生成硅酸钙(C2S)和铝酸钙(C3A)等熟料成分。

3.铁矿石:铁矿石是水泥制造过程中用来调节熟料成分的原料,其主要成分是氧化铁(Fe2O3)。

铁矿石的加入可以提高水泥的强度和耐久性。

4.石膏:石膏是水泥制造过程中用来调节水泥凝结速度的原料,其主要成分是硫酸钙(CaSO4·2H2O)。

石膏的加入可以使水泥凝结速度适中,有利于施工。

三、配料水泥制造过程中,原料的配比对水泥的质量和性能至关重要。

配料过程主要包括以下步骤:1.原料称量:根据水泥配方要求,准确称量石灰石、粘土、铁矿石和石膏等原料。

2.混合均匀:将称量好的原料进行充分混合,确保各原料均匀分布。

3.配料计算:根据水泥配方要求,计算各原料的配比,确保水泥熟料成分的稳定性。

四、烧制水泥烧制是水泥制造工艺中的关键环节,主要包括以下步骤:1.原料输送:将配料好的原料送入窑内,进行高温煅烧。

2.煅烧过程:在高温(约1450℃-1600℃)条件下,石灰石和粘土等原料发生化学反应,生成水泥熟料。

3.熟料冷却:将煅烧好的熟料进行冷却,使其温度降至室温。

水泥粉磨是将熟料磨成细粉的过程,主要包括以下步骤:1.熟料输送:将冷却后的熟料送入磨机。

2.粉磨过程:在磨机内,通过研磨体对熟料进行研磨,使其成为细粉。

3.成品检验:对粉磨后的水泥进行检验,确保其质量符合国家标准。

六、包装水泥制造完成后,需要进行包装,以便储存和运输。

水泥熟料生产工艺及设备

水泥熟料生产工艺及设备
喂料系统
湿法窑
熟料
硅质原料
石灰石
校正原料
破碎
单段锤式破碎机 预均化堆场
配料站 (新型水泥干法生料工艺流程图)
立式生料磨
生料均化库
贮库 干法窑
熟料
二、水泥熟料生产工艺
• 新型干法水泥生产技术,就是以悬浮预热和预分解技术为核心,把现代科学技术和工 原料矿山计算机控制网络化开采,原料预均化,生料均化,挤压粉磨,新型耐热、耐 以及IT技术等广泛应用于水泥干法生产过程,使水泥生产具有高效、优质、节约资源 保护要求和大型化、自动化、科学管理特征的现代化水泥生产方法。
Page 17
三、具体工艺流程-----煤粉磨
• 煤粉磨指从原煤仓、喂料控制、烘干粉磨、收尘到煤粉仓等生产贮存环节。其简要的
• 原煤 破碎机
煤预均化堆场
原煤仓
粉输送
分别到窑和分解炉燃烧器。
喂煤计量控制 煤粉烘干粉Page 18来自18Page 19
19
三、具体工艺流程-----熟料煅烧
• 熟料煅烧过程是指生料出均化库后的预热、煅烧和熟料冷却等环节。其简要生产流程
• 石灰石均化堆场 生料均化库储存。
原料计量配料系统及输送原料磨
空气输送斜槽
提升
Page 12
12
三、具体工艺流程-----生料制备
• 破碎:水泥生产过程中,大部分原料要进行破碎, • 破碎物料的目的在于提高烘干和粉磨的效率,同时亦便于物料的均化、运输和储存。
Page 13
三、具体工艺流程-----生料制备
干燥、预热 分解(85%~95%)
部分分解、固相反应、 烧结反应
熟料的冷却
预分解窑是20世纪70年代发展起来的一种煅烧工艺设备。它是在悬浮预 热器和回转窑之间,增设一个分解炉或利用窑尾烟室管道,在其中加入 30~60%的燃料,使燃料的燃烧放热过程与生料的吸热分解过程同时在悬 浮态或流化态下极其迅速地进行,使生料在入回转窑接受基本上完成碳 酸盐的分解反应,因而窑系统的煅烧效率在幅度提高。这种将碳酸盐分 解过程从窑内移到窑外的煅烧技术称窑外分解技术,这种窑外分解系统 简称预分解窑。

水泥生产工艺流程介绍

水泥生产工艺流程介绍

水泥生产工艺流程介绍
《水泥生产工艺流程介绍》
水泥是建筑材料中的重要组成部分,其生产工艺流程复杂,涉及多个环节。

下面将介绍水泥生产的主要工艺流程。

1. 原料处理
水泥的主要原料包括石灰石、粘土、铁矿石和矾石。

这些原料首先需要经过破碎、混合和粉磨等处理,以确保其成分均匀、颗粒细致。

2. 燃料燃烧
在水泥生产过程中,需要大量的能源来燃烧石灰石和粘土,这主要通过燃煤、天然气或燃料油来实现。

燃料的燃烧产生高温,将原料煅烧成熟料。

3. 熟料生产
熟料是水泥的主要原料,其生产过程是将原料在旋转窑或立窑中进行煅烧,使其成为水泥熟料。

4. 水泥生产
水泥生产主要是指将水泥熟料与适量的矿物和燃料添加到水泥磨中进行混合粉磨,然后通过煅烧和水泥磨的工艺过程得到成品水泥。

5. 包装和运输
生产完成的水泥将被包装成袋装水泥或散装水泥,并通过货车、
火车或船运输到销售点或建筑工地。

总的来说,水泥生产工艺流程包括原料处理、燃料燃烧、熟料生产、水泥生产和包装运输等环节。

这个过程需要严格控制各个环节的温度、时间和成分,以确保生产出高质量的水泥产品。

水泥的生产工艺

水泥的生产工艺

水泥的生产工艺
水泥的生产工艺主要分为矿料采矿、原料研磨、原料破碎、原料混合、烧成、粉磨、成品储存等多个环节。

1. 矿料采矿:水泥的主要原料为石灰石、黄土、粉煤灰等,这些原料需要在矿山中采集。

石灰石、黄土等矿石需经过爆破、挖掘、运输等工序,然后进入生产线。

2. 原料研磨:采集回来的矿石原料需要经过研磨处理,才能获得所需的颗粒度和质量。

通过机械设备研磨,将矿石原料粉碎,形成细小的颗粒。

3. 原料破碎:经过研磨处理后的原料需要再次破碎,以满足烧成的需要。

这个过程需要使用破碎机等机械设备对原料进行初步破碎。

4. 原料混合:将破碎好的原料混合在一起,称之为原料混合料,其中混合比例及杂质含量需得到严格的控制。

5. 烧成:将原料通过工艺流程,进入烧成窑中进行烧成处理。

这个过程需要加热原料混合料,使其发生化学反应,形成水泥熟料。

烧成窑的种类很多,例如旋风窑、耐火窑、中心旋转式窑等。

6. 粉磨:经过烧成窑烧制后的熟料需要经过粉磨工艺,将其研磨成细小的水泥颗粒,以达到所需的颗粒度。

7. 成品储存:经过粉磨后的水泥颗粒被存储在仓库中,等待包装及使用。

以上就是水泥的主要生产工艺。

水泥生产所需的工艺流程较为复杂,需要机械设备、熟练的操作技术及良好的管理质量,以确保生产出质量稳定的水泥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥生产工艺及水泥熟料的形成水泥生料经过连续升温,达到相应的温度时,其煅烧会发生一系列物理化学变化,最后形成熟料。

硅酸盐水泥熟料主要由硅酸三钙(C3S)、硅酸盐二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF)等矿物所组成。

硅酸盐水泥生料通常是用石灰石、黏土及少量铁矿石等按适当的比例配制而成。

石灰石的主要组成是碳酸钙(CaCO3)和少量的碳酸镁(MgCO3),黏土的主要矿物是高岭石(2SiO2·Al2O3·2H2O)及蒙脱石(4SiO2·Al2O3·9H2O)等,铁矿石的主要组成是氧化铁(Fe2O3)。

硅酸盐水泥熟料形成的过程,实际上是石灰石、黏土、铁矿石等主要原料经过加热,发生一系列物理化学变化形成C3A、C4AF、C2S和C3S等矿物的过程,不论窑型的变化如何,其过程是不变的。

一、煅烧过程物理化学变化水泥生料在加热煅烧过程中所发生的(一)自由水的蒸发(二)黏土质原料脱水和分解(三)石灰石的分解(四)固相反应(五)熟料烧成(六)熟料的冷却(一)自由水的蒸发无论是干法生产还是湿法生产,入窑生料都带有一定量的自由水分,由于加热,物料温度逐渐升高,物料中的水分首先蒸发,物料逐渐被烘干,其温度逐渐上升,温度升到100~150℃时,生料自由水分全部被排除,这一过程也称为干燥过程。

(二)黏土质原料脱水和分解黏土主要由含水硅酸铝所组成,其中二氧化硅和氧化铝的比例波动于2:1~4:1之间。

当生料烘干后,被继续加热,温度上升较快,当温度升到450℃时,黏土中的主要组成高岭土(Al2O3·2SiO2·2H2O)失去结构水,变为偏高岭石(2SiO2·Al2O3)。

高岭土进行脱水分解反应时,在失去化学结合水的同时,本身结构也受到破坏,变成游离的无定形的三氧化二铝和二氧化硅,其具有较高的化学活性,为下一步与氧化钙反应创造了有利条件。

在900-950℃,由无定形物质转变为晶体,同时放出热量。

(三)石灰石的分解脱水后的物料,温度继续升至600℃以上时,生料中的碳酸盐开始分解,主要是石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解,并放出二氧化碳,其反应式如下:实验表明:碳酸钙和碳酸镁的分解速度随温度升高而加快,在600~700 ℃时碳酸镁已开始分解,加热到750 ℃分解剧烈进行。

碳酸钙分解温度较高,在900 ℃时才快速分解。

碳酸钙(CaCO3)是生料中的主要成分,分解时需要吸收大量的热,其分解过程中消耗的热量约占干法窑热耗的一半以上,其分解时间和分解率都将影响熟料的烧成。

因此,碳酸钙的分解是水泥熟料生产中重要的一环。

碳酸钙的分解具有可逆的性质,如果反应在密闭容器中一定的温度下进行,则随着碳酸钙的分解,气体CO2的总量的增加,其分解速度就要逐渐减慢甚至为零。

因此,在煅烧窑内或分解炉内加强通风,及时将CO2气体排出则是有利于碳酸钙的分解,窑系统内CO2来自碳酸盐的分解和燃料的燃烧,废气中CO2含量每减少2%,约可使分解时间缩短10%。

当窑系统内通风不畅时,CO2不能及时被排出,废气中CO2含量的增加,会影响燃料燃烧,使窑温降低,废气中CO2含量的增加和温度降低都要延长碳酸钙的分解时间。

由此可见,窑内通风对碳酸钙的分解起着重要的作用。

(四)固相反应黏土和石灰石分解以后分别形成了CaO、MgO、SiO2、Al2O3等氧化物,这时物料中便出现了性质活泼的游离氧化钙,它与生料中的二氧化硅、三氧化二铁和三氧化二铝等氧化物进行固相反应,其反应速度随温度升高而加快。

水泥熟料中各种矿物并不是经过一级固相反应就形成的,而是经过多级固相反应的结果,反应过程比较复杂,其形成过程大致如下:应该指出,影响上述化学反应的因素很多,它与原料的性质、粉磨的细度及加热条件等因素有关。

如生料磨得愈细,混合得愈均匀,就增加了各组分之间的接触面积,有利于固相反应的进行。

如从原料的物理化学性质来看,黏土中的二氧化硅若是以结晶状态的石英砂存在,就很难与氧化钙反应,若是由高岭土脱水分解而来的无定形二氧化硅,没有一定晶格或晶格有缺陷,则易与氧化钙进行反应。

从以上化学反应的温度不难发现,这些反应温度都小于反应物和生成物的熔点(如CaO、SiO2与2CaO·SiO2的熔点分别为2570℃、1713℃与2130℃),就是说物料在以上这些反应过程中都没有熔融状态物出现,反应是在固体状态下进行的。

因此叫固相反应,又由于以上反应在进行时放出一定的热量,因此,这些反应又统称为“放热反应”。

(五)熟料烧成由于固相反应,生成了水泥熟料中C4AF、C3A、C2S等矿物,但是水泥熟料的主要矿物C3S要在液相中才能大量形成。

当物料温度升高到近1300℃时,会出现液相,形成液相的主要矿物为C3A、C4AF、R2O等熔剂矿物,但此时,大部分C2S和CaO仍为固相,但它们易被高温的熔融液相所溶解,这种溶解于液相中的C2S和CaO很容易起反应,而生成硅酸三钙:2CaO·SiO2+CaO → 3CaO·SiO2(C3S)这个过程也称石灰吸收过程。

当然,C3S也可以通过固相反应来形成,但是煅烧过程需要更高的温度和更长的时间,这种办法在工业上至少在目前还没有什么实用价值。

大量C3S 的生成是在液相出现之后,普通硅酸盐水泥熟料组成一般在1300 ℃左右时就开始出现液相,而C3S形成最低温度约在1350 ℃,在1450 ℃下C3S绝大部分生成,所以熟料烧成温度可写成1350~1450 ℃,它是决定熟料质量好坏的关键,若此温度有保证则生成的C3S较多,熟料质量较好;反之,生成C3S较少,熟料质量较差。

不仅如此,此温度还影响着C3S的生成速度,随着温度的长高,C3S生成的速度也就加快,在1450 ℃时,反应进行非常迅速,此温度称为熟料烧成的最高温度,所以水泥熟料煅烧设备,必须能够使物料达到如此高的温度。

否则,烧成的熟料质量将受影响。

任何反应过程都需要有一定的时间,C3S的形成也一样,它的形成不仅需要有温度的保证,而且需要在该温度下停留一定的时间,使之能反应充分。

煅烧较均匀的回转窑所需时间可短些,时间过长易使C3S生成粗而圆的晶体,使其强度发挥慢而低,一般需要在高温下煅烧20-30min。

C3S是水泥熟料的主要矿物,影响C3S的生成因素如下:1、生料的组分数对液相生成的影响组分数增加,最低共熔点降低,尤其是组分中增加熔点低的物质时,液相出现的温度更要降低。

硅酸盐水泥熟料中一般都有少量镁、碱、硫等其他组分,其最低共熔温度约为1250-1280 ℃,虽然这些次要组分能使液相提早生成,但它们是有害组分,对其含量都有一定的限制。

2、化学成分的影响一般铝酸三钙(C3A)和铁铝酸四钙(C4AF)在1300 ℃左右时,都能熔成液相,所以称C3A和C4AF为熔剂性矿物。

液相量是随着Al2O3和Fe2O3的增加而增加,熟料中MgO、R2O等成分也能增加液相量。

一般硅酸盐水泥熟料成分生成的液相量可近似用下式进行计算:C3A和C4AF都是熔剂性矿物,但它们生成液相的黏度是不同的,C3A形成的液相黏度大,C4AF形成的液相黏度小。

因此,当熟料中C3A和Al2O3含量增加,C4AF或Fe2O3含量减少时,即熟料的铝率增加时,生成液相黏度增加,反之则液相黏度减小。

因此,液相量的多少和黏度的大小,对C3S的生成会有很大影响,如果液相量多、黏度小,有利于C3S的生成,因为液相量多时,CaO和C2S在其中的溶解量也多;黏度小时,液相中CaO和C2S分子扩散速度大,相互接触的机会多,故反应进行得充分。

但应注意,如果液相量过多,黏度过小,则会给煅烧操作带来困难,如易结圈、烧流等;同时,因为硅酸盐矿物的减少将会影响熟料质量。

3、煅烧温度的影响提高煅烧温度可降低液相黏度,由式(1-1)、式(1-2)可看出,煅烧温度的提高也使液相的百分含量增多。

但煅烧温度不宜过高,煅烧温度过高了在窑内易结大块、结圈等弊病;而且煅烧温度过高还易使C3S生成大而圆的晶体,这个大而圆的晶体很致密,与水作用速度很慢,使强度发挥慢,故最高烧成温度应控制在1450℃。

(六)熟料的冷却当熟料烧成后,温度开始下降,同时C3S的生成速度也不断减慢,温度降到1300 ℃以下时,液相开始凝固,C3S的生成反应完结。

此时凝固体中含有少量的未化合的CaO,则称为游离氧化钙,温度继续下降便进入熟料的冷却阶段。

熟料烧成后要进行冷却,其目的在于改进熟料质量,提高熟料的易磨性;回收熟料余热,降低热耗,提高热的效率;降低熟料温度,便于熟料的运输、储存和粉磨。

熟料冷却的好坏及冷却速度,对熟料质量影响较大,因为部分熔融的熟料,其液相在冷却时,往往还和固相进行反应。

熟料中矿物的结构取决于冷却速度、固液相中的质点扩散速度、固液相的反应速度等。

如果冷却很慢,使固液相中的离子扩散足以保证固液相间的反应充分进行,就称为平衡冷却。

如果冷却速度中等,使液相能够析出结晶,由于固相中质点扩散很慢,不能保证固液相间反应充分进行,就称为独立结晶。

如果冷却很快,使液相不能析出晶体成为玻璃体,就称为淬冷。

现以C3S-C2S-C3A组成的系统为例来看冷却速度不同,最后所得矿物组成是不同的。

表1 C3S-C2S-C3A系统熟料矿物组成在熟料的冷却过程中,将有一部分熔剂矿物(C3A和C4AF)形成结晶析出,另一部分熔剂矿物则因冷却速度较快来不及析晶而呈玻璃态存在。

C3S在高温下是一种不稳定的化合物,在1250 ℃时,容易分解,所以要求熟悉产自1300℃以下要进行快冷,使C3S来不及分解,越过1250℃以后C3S 就比较稳定了。

对于1000 ℃以下的冷却,也是以快速冷却为好,这是因为熟料中C2S有α’αβγ四种结晶形态,温度及冷却速度对C2S的晶型转化有很大影响,这可以从C2S的多晶转化式中看出来。

将高温下α-C2S缓慢冷却时:由上式看出:在高温熟料中,只存在a-C2S;若冷却速度缓慢,则发生一系列的晶型转化,最后变为γ-C2S,在这一转化过程中由于密度的减小,使体积增大10%左右,从而导致熟料块的体积膨胀,变成粉未状,在生产中叫做“粉化”现象。

γ-C2S与水不起水化作用,几乎没有水硬性,因而会使水泥熟料的强度大为降低。

为了防止这种有害的晶型转化,要求熟料快速冷却。

熟料快速冷却还有下列许多好处:①可防止C3S晶体长大或熟料完全就成晶体。

有关资料表明:晶体粗大的C3S会使熟料强度降低,若熟料中的矿物完全变成晶体,就难于粉磨。

②快冷时,MgO凝结于玻璃体中,或以细小的晶体析出,可以减轻水泥凝结硬化后方镁石晶体缓慢水化出现体积膨胀,使安定性不良。

③快冷时,熟料中的C3A的晶体较少,水泥不会出现快凝现象,并有利于抗硫酸盐性能的提高。

相关文档
最新文档