第二章光学谐振腔理论 共134页

合集下载

第二章 光学谐振腔基本理论

第二章   光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。

光线在两镜间来回不断反射的腔叫光学谐振腔。

由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。

光学谐振腔的分类方式很多。

按照工作物质的状态可分为有源腔和无源腔。

虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。

2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。

若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。

在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。

与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。

非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。

这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。

2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。

3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。

第二章 光学谐振腔

第二章 光学谐振腔

2009
湖北工大理学院
14
激光谐振腔内低阶纵模分布示意图
2009
湖北工大理学院
15
激光纵模分布示意图
2009
湖北工大理学院
16
横模-横向X-Y面内的稳定场分布
激光的模式用符号: TEMmnq
q为纵模的序数(纵向驻波波节数),m,n (p,l)为横模的序数。 对于方形镜,M表示X方向的节线数, N表示Y方向的节线数; 对于圆形镜, p 表示径向节线数,即暗环数,l表示角向节线数,即暗直径数
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 后来又广泛采用了由两块具 有公共轴线的球面镜构成的 谐振腔。从理论上分析这些 腔时,通常认为侧面没有光 学边界,因此将这类谐振腔 称为开放式光学谐振腔,简 称开腔
闭腔
固体激光器的工作物质通 常具有比较高的折射率, 因此在侧壁上将发生大量 的全反射。如果腔的反射 镜紧贴激光棒的两端,则 在理论上分析这类腔时, 应作为介质腔来处理。半 导体激光器是一种真正的 介质波导腔。这类光学谐 振腔称为闭腔 2009
示波器的锯齿波扫描电压,对激光允许通过的频率作周期性的扫描
光电探测器:接收扫描到的激光频率
双凸薄透镜:待测的激光光束变换为无源腔的高斯光束。使待测激 光束的全部能量耦合到无源腔的基模中去。
偏振器和1/4波片组成光学隔离器,防止光重新回到待测激光器中去
2009 湖北工大理学院 27
小结:光学谐振腔的构成、分类、作用和模式
C q阶纵模频率可以表达为: q q 2L C 基纵模的频率可以表达为: 1 2L
谐振腔内q阶纵模的频率为基纵模频率的整数倍(q倍) 纵模的频率间隔:
2009
q q 1 q

光学谐振腔的模式

光学谐振腔的模式

氦氖激光器 0.6328 m 谱线宽度为 总 =1.3×109 HZ
因此,在总区间中,可以存在的纵模个数为 1.3 109 N 8 8 q 1.5 10
2.光学谐振腔的横模:电磁场在腔内横向存在多个模式(横模),它们 是经过一次往返传输能够再现的稳定电磁场 分布。一般的人们愿意使用具有最高对称性 的模(基模),标记为TEM00。其他模式TEMmn 可以使用窄的激光介质,反射镜尺寸等来抑 制。TEM00模的截面是对称的,强度是高斯分 布的。
..
在谐振腔中,光信号能多次反复地沿着 腔轴的方向通过工作物质,不断获得光放 大,信号越来越强,达到饱和, 形成激光输 出。
2.改善激光方向性。
凡是传播方向偏离腔轴方向的光子,很快逸 出腔外被淘汰,只有沿着腔轴方向传播的光子才 能在管中不断地往返运行而得到光放大,所以输 出激光具有很好的方向性。 3.改善激光单色性。 激光在谐振腔中来回反射,相干叠加,形 成以反射镜为波节的驻波。
二、光学谐振腔的模式:
光学谐振腔的几何尺寸远大于光的波长,因此 必须研究光的电磁场在谐振腔内的分布问题, 即所谓谐振腔的模式问题。 激光电磁场空间分布情况(模式)与腔结 构之间的关系,光场稳定的纵向分布称纵模, 横向分布称横模。
所谓模的基本特征,主要指的是: (1)每一个模的电磁场分布,特别是在腔的横 截面内的分布; (2)每一个模在腔内往返一次经受的相对功率 损耗; (3)与每一个模相对应的激光束的发散角。
2π Δ 2nL q 2 λ0
c q q 2nL
0
L q
n q 2 2
q
q =1,2,...
式中的n是谐振腔内介质折射率。
通常把由q值所表示的腔内的纵向场分布称为谐振腔 的纵模,不同的q值相应于不同的纵模。从式中可看 出,q值决定纵模的谐振腔频率。

光学谐振腔理论

光学谐振腔理论
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组
腔的边界条件
4
模的基本特征主要包括: 1、每一个模的电磁场分布 E(x,y,z),腔的横截面内的场分布 (横模)和纵向场分布(纵模); 2、每一个模在腔内往返一次经受的相对功率损耗 ; 3、每一个模的激光束发散角 。 腔的参数唯一确定模的基本特征。
19

f2
薄透镜与球面反射镜等效
f1
r0 , 0
1
f2
2
f1
3 r1 , 1
f2
f1
f2
f1
L 往返周期 单位
R1 f1 2
R2 f2 2
r0 r1 11 0 1 L 11 0 1 L r0 A B r0 C D T 1 0 1 1 0 1 f2 0 0 1 f1 0

开腔 傍轴 传播模式的纵模特征 傍轴光线 :光传播方向与腔轴线夹角 非常小,此时可认为 sin tan
5
开腔 傍轴 传播模式的纵模频率间隔(F-P腔,平面波)
E0 E1 E2
E0-
:光波在腔内往返一次的相位 滞后 2kL :光波在腔内往返一次的电场变 化率(=12)
第二章 光学谐振腔理论
第一节 光腔理论的一般问题
一、光学谐振腔 最简单的光学谐振腔:激活物质+反射镜片 平行平面腔:法布里-珀罗干涉仪(F-P腔) 共轴球面腔:具有公共轴线的球面镜组成 i.开放式光学谐振腔(开腔) :在理论处理时,可以认为没有 侧面边界 (气体激光器)

第2章 光学谐振腔理论

第2章 光学谐振腔理论

/

I (z) I I1 I
0
0
e
z
e
2 l
吸 l
2.2.2、光子在腔内的平均寿命 • 光在腔内通过单位距离后光强衰减的百分数
dI Idz I1 I 0 I0 2L
/


L
/
• 在谐振腔内
dI Idt
dz c dt
/


c
L
/
c
L
/

⑵衍射损耗
a
2
L
取决于腔的菲涅耳数、腔的几何参数和横模阶次
⑶输出腔镜的透射损耗
取决于输出镜的透过率
⑷非激活吸收、散射等其他损耗
描述 单程损耗因子 • 定义:光在腔内单程渡越时光强的平均衰减百分数
2 I 0 I1 I0

I 0 I1 2I0
指数定义形式
I1 I 0e

0
I 1 I 0 r1 r2

/

1 2
ln
I
0
I1
r
1 2
ln r1 r2
当 r 1=1,T <<1(r2= r ≈1)
r
1 2 ln r 1 2 (1 r ) T 2
四、吸收损耗
介质对光的吸收作用
通过单位长度介质后光强衰减的百分数
dI
I I dI Idz
2
D D
2L 1 2m

L
2D
二、衍射损耗
平腔内的往返传播,等效孔阑传输线中的单向传播 当光波穿过第一个圆孔向第2个圆孔传播时,由于衍 射的作用一部分光将偏离原来的传播方向,射到第2 个圆孔之外,造成光能的损失 假设中央亮斑内的光强是均匀的 孔外面积与中央亮斑总面积的比

2 光学谐振腔理论

2 光学谐振腔理论

光线能在腔内往返无限多次而不会从侧面横向逸出。
• 反之,若φ值不是实数,由于有虚部,必然导致An、
Bn、Cn、Dn以及rn+1与θn+1的值都随n增大而增大。这
样一来,傍轴光线在腔内往返有限次后便可逸出腔外。
• 由上述分析可知,φ值为实数且不等于0或π时,
谐振腔为稳定腔。φ值有虚部时,谐振腔为非稳 腔。φ等于0或π时,谐振腔是临界腔。由φ的计 算公式(2.2.4)不难得出上述结论的数学描述:
I1 I 0r1r2e
因此:
2a
I 0e
2
(2.2.12)
(2.2.13)
1 当r11,r2 1时有: a 2 1 r1 1 r2
1 a ln r1r2 2
2. 腔内光子平均寿命 R
I (t ) I 0e
t R
N (t )hv
D sin n sinn 1
B sin n
n次往返后的光 线坐标有
1 arccos A D 2
(2.2.4)
rn1 An r1 Bn1
n1 Cn r1 Dn1
(2.2.2)
2 .2.2 光学谐振腔的 稳定性条件
• 如果光线在共轴球面谐振腔内能够往返任意次而
(2.2.1)
• 如果光线在球面谐振腔内往返n次,则它的光学变 换短阵就应该是往返矩阵T的n次方,按照矩阵理 论 • n次往返矩阵
An Tn Cn
Bn Dn
(2.2.3)
1 A sin n sinn 1 C sin n sin
1 I0 i r d t ln 2 I1

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。

第二章光学谐振腔

第二章光学谐振腔

实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009
湖北工大理学院
23
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状
纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
1.5803106
q 1.5 10 9 Hz 5 310 8 Hz
2009
湖北工大理学院
28
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长;
解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2L/ 2L
2 • 2L q • 2
光腔中的驻波
驻波条件(光波波长和平行平面腔腔长):
L
q

2
q•
q
2
谐振频率(频率和平行平面腔腔长):
q
q•
C
2L
2009
湖北工大理学院
9
纵模-纵向的稳定场分布
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
3
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
湖北工大理学院
4
R1+R2=L
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1=R2=L
由两块相距09
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 光学谐振腔理论
本章大纲
§2.1 激光振荡条件 了解光波模式的基本概念,掌握激光振荡的增益条件和光学正反馈条件。
§2.2 开放光学球面谐振腔的稳定性 掌握稳定性判别原理和方法。
§2.3 光学谐振腔的损耗 掌握光学谐振腔几种损耗术语与概念。
§2.4 开放谐振腔模式衍射理论 了解衍射积分理论,掌握基模参数的计算公式,熟悉高阶模的特点。
G0 ln(1T)
2l
不需要初始从腔外输入微弱场以触发自激振荡。 腔内初始一个光子的微弱自发辐射即可以使激光器振荡。
2.2 开放光学球面谐振腔的稳定性
2.2 开放光学球面谐振腔的稳定性
1) 光线变换矩阵
r
腔内任一傍轴光线在某一给定的横截面内都可以由矩阵 来表征: r为光线离轴线的距离、 为光线与轴线的夹角。


3

M

1

:
r5


5


1


2
/
R
1
0
1

r4


4


T R1
r4


4

2.2 开放光学球面谐振腔的稳定性
傍轴光线在腔内完成一次往返,总的坐标变换为 1 0 1 0
r5 5 R 2 1 1 1 0L 1 R 2 2 1 1 0L 1 r1 1 C AD B r1 1 T r1 1
考虑损耗: II0e(G 0 )l为 损 耗 系 数
2.1 光学谐振腔概论
I I0e(G0)lI E2 E(l) E0e(G0)l /2ikl
E (n ) E 0 r 1 n r 2 n t1 t2 e ((G 0 )l/2 ik l)(2 n 1 )
§2.5 一般球面稳定腔模式
§2.6 非稳腔 掌握共轭像点的计算方法,了解损耗的计算方法。
激光产生的三个前提条件(激光器的基本结构)
激光工作物质:其激活粒子(原子、分子或离子)有适合于 产生受激辐射的能级结构,能够实现粒子数反转,产生受 激光放大
激励源:能将低能级的粒子不断抽运到高能级,补充受激 辐射减少的高能级上粒子数,使激光上下能级之间产生集 居数反转
1



1

P1
1 r1
P2
2
r2
2.2 开放光学球面谐振腔的稳定性
近轴光线在球面镜上反射的变换矩阵
2 1 2 ; 2 2

1 a r c s i n ( r1 / R ) r1 / R


规定:光线出射方向在腔轴线的上方时, 为正;反之,为负。
当凹面镜向着腔内时,R取正值;
当凸面镜向着腔内时,R取负值。
2.2 开放光学球面谐振腔的稳定性
用一个二阶方阵描述入射光线和出射光线的坐标变换。该 矩阵称为光学系统对光线的变换矩阵T。
r2


2


A

C
B D
n0
n0
e(G0)l/2ikl E0t1t2 1r1r2e(G0)l2ikl
2.1 光学谐振腔概论
FP腔输出光场:E

E 0 t1 t 2
e (G 0 )l / 2 ikl 1 r1 r2 e (G 0 )l 2 ikl
2.1 光学谐振腔概论
1)光波模式
光学谐振腔内可能存在的电磁波的本征态称为腔的模式
腔的模式也就是腔内可区分的光子的状态。同一模式内 的光子,具有完全相同的状态(如频率、偏振等)。
腔内电磁场的本征态(模式)由麦克斯韦方程组及腔的 边界条件决定。一旦给定了腔的具体结构,则其中振荡 模的特征也就随之确定下来——腔与模的一般联系。

G
0

c 2l

q( 光 学 正 反 馈 条 件 ) ln(r1r2 () 稳 定 振 荡 条 件 )
l
2.1 光学谐振腔概论
光强反射率:R(1) r12; R(2) r22; ri振幅反射率
G0 ln(R(1)R(2))
2l 全反镜R(1) 1; 部分透射R(2) 1T


2

R
1

2 R2
1
2L R1



2L 2L 2L
D



R1
1
R1
1
R2

2.2 开放光学球面谐振腔的稳定性
光线在腔内往返传输n次时





r
n n
1 1


T
n
r1
z方向开放两维矩形谐振腔
n 4 /c2
y方向或x方向限制去掉,一维谐振 腔,F-P结构,模式密度将变为一个 常数——光学谐振腔
2.1 光学谐振腔概论
开零腔的中横的电振磁荡波模,式m、以nT、EMq为mn正q表整征数。,T其E中M表q为示纵纵模向指电数场,为m、
n为横模指数。模的纵向电磁场分布由纵模指数表征,横向 电磁场分布与横模指数有关。
q

q 2cLq

c 2L
2 2L q2L q q
q
2
L'一定的谐振腔只对一定频率的光波才能提供正反馈,使之谐 振; F-P腔的谐振频率是分立的
2.1 光学谐振腔概论
腔光学长度为半波长的整数倍 L l q q (驻波条件)
2)光线在谐振腔中往返一周变换矩阵
由曲率半径为R1和R2的两个球面镜M1和M2组成的共轴球面 腔向M,2腔方长向为行L进,。开始时光线从M1面上出发(以M1为参考 )
2.2 开放光学球面谐振腔的稳定性
M

1


M
2
:
r2


2


1

0
L 1

r1


1
2.1 光学谐振腔概论
麦克斯韦方程的本征解的电场分量
Ex
(
x,
y,
z,
t)

E0
sin

m
a
x

sin

n
b
y

cos

p
l
z

e

i
m
,n
,
p
t
Ey(x,
y,
z,t)

E0
cos

m
a
x

sin
sin

p
l
)l
cos(2kl )

0


2
kl

2
q(q

0,1, 2, 3,L
L
)

k

q l
1
r1 r2 e (G 0 )l

0

G0



ln(r1r2 ) l

q

cq 2l c :介质中的波速 l :腔长

FP腔能形成自激振荡的条件
q







r2 2

r1
1 f
r1 1

r2


2


1

1
f
0
1
r1


1

1
2
r1
r2
P1 P2
2.2 开放光学球面谐振腔的稳定性
2.2 开放光学球面谐振腔的稳定性
2.2 开放光学球面谐振腔的稳定性

2


2 r1 R


1


r2 r1

1
2
r2


2


1

2
R
0
1
r1


1

r1 r2
2.2 开放光学球面谐振腔的稳定性
近轴光线通过焦距为f的薄透镜的变换矩阵
2
2.1 光学谐振腔概论
L l q q
2
达到谐振时,腔的光学长度应为半波长的整数倍。满足此 条件的平面驻波场称为平行平面腔的本征模式
腔内光强沿z轴的分布不是均匀的,而是强弱相间地分布着。 光强最强的明亮区,称为波腹;最弱的黑暗区,称为波节。
将由整数q所表征的腔内纵向光场的分布称为腔的纵模,不 同的q相应于不同的纵模,或相应于驻波场波腹的个数。
r 振幅反射率,t振幅透射率
2.1 光学谐振腔概论
E (n ) E 0 r 1 n r 2 n t1 t2 e ((G 0 )l/2 ik l)(2 n 1 )
出射的光场E1~En振幅叠加:

EE(n)
Er r t t e
nn
(2n1)((G0)l/2ikl)
02 2 12


1





1
r r e (G0 )l 2ikl
12

0
自 激 振 荡 : E / E0


1
相关文档
最新文档