一 激光基本性质

合集下载

浅谈普通光源与激光

浅谈普通光源与激光

浅谈普通光源与激光摘要:本文主要概括了普通光源与激光的产生差别,激光的原理和发展历程。

以及性质的不同而在运用中的不同,从而更深刻的让我们对这两个东西产生认识的兴趣以及加深对它们的了解。

关键词:本质性质发展运用总的来说“光”就是一种频率极高的电磁波,具备一定的能量和动量;但是,它具备通常电波所不具备的特殊性,比如它的产生和检测,以及与其他物质相互作用等过程中显露出粒子性的特征,①.接下来我们就来说一说道‘普通光源与激光’一、什么是光源,普通光源的分类。

闪烁物体叫作光源,光源与普通光源与激光光源之分后。

激光光源由特定的闪烁物质及特定的结构部件所共同组成,而普通光源则随处可见。

根据光源中基本发光单元激发方式的不同,普通光源大体可以分为以下几类:1)化学发光。

闪烁过程中辐射体内部出现化学变化,靠消耗自身化学能量而闪烁。

例如燃烧、放烟火等。

2)热致发光。

温度低的物体可以收到红外线。

例如白炽灯、太阳光等。

3)电致发光。

依靠电场能量的激发而发光。

如闪电、电弧灯、火花放电、辉光放电等。

4)光致发光。

用外来光激发所引起的发光现象。

如日光灯、夜光表急某些交通指示牌上的磷光物质的闪烁都属光致发光。

上面的各种闪烁方式的相同,但总的来说普通光源的原理就是自发性地原子和光子的光子。

上述各种闪烁过程,其差别就是唤起的方式相同,而闪烁的微观机制确就是共同的。

即为在外界条件的鞭策下,光源中的原子、分子稀释能量而处在一种不稳定的激发态。

在没任何外界促进作用的情况下,它能够自发性地光子回低激发态或基态,并升空出来一定频率的电磁波。

②二、激光是怎么发现的,以及在激光发现后历程。

总的来说激光就是一种人工的光,它的大多数去至于人工制作,并且只要是因为激光器的产生大大的大力推进了激光事业的发展,堪称就是一个划时代的措施。

迄今为止,光学已经有两千余年的历史,但在激光产生之前,人们使用的光源主要是炽热物体的热辐射和气体放电管,机理是自发发射,这是一个随机过程,相干性不好,两个光源甚至同一个光源的两点发出的光也不能形成干涉条纹。

常用激光介绍范文

常用激光介绍范文

常用激光介绍范文激光(Laser)是一种特殊的光,它具有高度的单色性、高亮度和高直行性。

激光的产生和特性使其在众多领域有重要的应用,例如科学研究、医疗、通信、材料加工等。

激光的产生是通过激发原子、分子或离子的能级跃迁来实现的。

当这些粒子在受到外界能量激发后返回基态时,会释放出光的能量。

与其他光源相比,激光具有高度的单色性,即发出的光具有非常狭窄的频率范围。

这使得激光在科学实验中可以精确测量光谱学特性,例如分析化学物质的成分和结构。

激光还具有高亮度,即单位面积光强非常高。

这使得激光在医疗领域有广泛的应用,例如激光手术和激光疗法。

激光手术通过将激光束聚焦在患者体内的目标组织上,实现非接触式精确切割。

激光疗法则利用激光的光热效应,将激光能量转化为组织热能,用于治疗癌症、皮肤病等疾病。

激光还被广泛应用于通信领域。

激光通过光纤传输可以实现大量信息的高速传输。

这种技术在现代通信系统中得到了广泛应用,无论是互联网、移动通信还是电视、电台等广播媒体,都离不开激光的应用。

激光通信具有高速传输、抗干扰能力强、信号损耗小等优点,已成为现代通信领域的重要技术。

另外,激光在材料加工中也有重要的应用。

激光切割、激光打标和激光焊接等技术,可以实现对各种材料的高精度加工。

激光切割利用激光束的高能量密度将材料切割成所需形状,广泛应用于金属、塑料、玻璃等材料的切割加工。

激光打标则通过刻蚀或氧化材料表面,实现对产品的标记和标识。

而激光焊接则可以实现对材料的高精度连接,广泛应用于制造业的焊接工艺。

总之,激光作为一种特殊的光源,具有高度的单色性、高亮度和高直行性,被广泛应用于科学研究、医疗、通信、材料加工等领域。

激光的应用不断推动各个领域的发展和进步,为人类带来更多的便利和创新。

随着激光技术的不断发展,相信激光在更多领域将会有更深入的应用和突破。

激光基本概述范文

激光基本概述范文

激光基本概述范文激光是一种特殊的光辐射,具有单色性、相干性和方向性等特点。

激光器是一种能产生激光的装置,通常由激发源、增益介质和光腔三部分组成。

激光由于其特殊的性质,在科研、医疗、通信、材料加工等多个领域有着广泛的应用。

激光的单色性是指激光具有极窄的频率谱线,一般能够达到很高的频率稳定性。

这是由于激光的产生依赖于特定的能级跃迁,因此能够产生具有固定频率的光波。

与其他光源相比,激光的单色性使得其具有更强的穿透力和辨识能力。

激光的相干性是指激光光束中的光波具有非常好的相位关系。

这种相位关系使得激光光束能够形成明亮、锐利、高对比度的干涉条纹。

相干性使得激光在干涉、衍射和散射等方面有着独特的应用,例如激光干涉测量和激光全息术等。

激光的方向性是指激光光束能够在相当长的距离上保持较小的光束发散角度。

这是由于激光的光波具有在空间上高度一致的波前形状,能够通过适当设计的光学系统将光束聚焦成较小的点。

激光的方向性使得其在光通信、激光雷达等领域有着广泛的应用。

激光器是产生激光的装置,根据辐射介质的不同,可分为气体激光器、固体激光器和半导体激光器等。

气体激光器利用气体放电产生激发能级,再通过受激辐射过程产生激光。

常见的气体激光器包括氦氖激光器、二氧化碳激光器等。

固体激光器利用固体增益介质,通过光泵浦方式产生激发能级,再进行受激辐射过程得到激光。

常见的固体激光器有Nd:YAG激光器、激光二极管等。

半导体激光器是利用半导体材料的特殊性质产生激光,这类激光器尺寸小、功耗低,广泛应用于光通信和激光打印等领域。

激光的应用十分广泛,其中激光切割是一种主要的激光材料加工方法,广泛应用于金属、塑料、木材等材料的切割和雕刻领域。

激光打印技术利用激光的单色性和方向性,可以高速、高质量地实现文件和图像的打印。

此外,激光还在医疗领域有着广泛的应用,例如激光治疗和激光手术等。

总之,激光作为一种特殊的光辐射,具有单色性、相干性和方向性等特点。

激光器是产生激光的装置,根据辐射介质的不同有气体激光器、固体激光器和半导体激光器等。

激光特性

激光特性

激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。

1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。

而激光发射的各个光子频率相同,因此激光是最好的单色光源。

由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。

此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。

2 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。

激光为我们提供了最好的相干光源。

正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。

3 方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。

而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。

激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。

另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。

4 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。

激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。

利用激光的高能量还可使激光应用于激光加工工业及国防事业等。

切换到宽屏19362超声波探伤编辑超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。

激光与物质相互作用

激光与物质相互作用

激光与物质相互作用是一个极其广泛的研究领域,涉及到光学、物理、化学、医学等多个学科。

本文将从激光的基本性质、激光与物质的相互作用、激光应用等方面进行探讨。

一、激光的基本性质激光是一种特殊的光,与一般光有很大的不同。

它是指在一个封闭的光学腔中产生的光,具有高度的单色性、方向性和相位激发性。

这种特殊的光源可以通过控制光的频率、功率、径向模式和纵向模式等特性,产生不同的光束。

激光通常由三个基本部分组成:激光受体(激光介质)、激发体(激光泵浦源)和光腔。

激光受体是一种特殊的物质,通常是晶体或气体,可以在泵浦源的激发下产生光。

激发体则是提供能量的源头,常见的泵浦源包括闪光灯、电子束、激光二极管等。

光腔是一个空腔,它包含了激光受体和激发体,并用来引导光束,保证激光稳定输出。

二、激光与物质的相互作用激光与物质的相互作用是指激光辐射与物质发生的相互作用。

具体来说,激光辐射会引发物质内部的原子、分子、离子等进行相应的反应,从而改变物质的性质和行为。

一般来说,激光与物质的相互作用主要包括两种形式:线性光学和非线性光学。

线性光学是指激光在物质中传播时,遵循麦克斯韦方程组的规律,不会改变激光本身的性质。

而非线性光学则是指激光辐射与物质相互作用时,会引发一些非线性效应,例如激光飞秒脉冲、倍频、和频、差频、自聚焦等。

激光与物质的相互作用在实际应用中有很广泛的应用。

例如,激光切割、激光打标、激光焊接等都是利用激光与物质的相互作用产生的物理效应,实现材料加工和标记等目的。

此外,激光还可以应用于化学、医学等领域,例如激光手术、激光疗法等都是利用激光与生物组织的相互作用,达到治疗和诊断的效果。

三、激光的应用激光在现代科技中应用广泛,不仅有创造性的科学研究价值,而且已成为许多高技术产业的核心元器件,涉及到航空、航天、军事、医疗、工业制造等领域。

以下是一些典型的激光应用举例:1.激光材料加工由于激光具有高能量、高单色性等特点,因此它在材料加工领域中得到了广泛应用。

激光基本特征

激光基本特征

激光基本特征激光是指一束高度聚焦、具有单色性、相干性和高亮度等特征的光束。

激光是由处于激发态的原子或分子释放出来的光子所组成的。

激光的基本特征是指激光独特的性质和行为,下面将从以下几个方面详细介绍激光的基本特征。

1. 单色性激光的单色性指激光所产生的光是单一频率的。

激光的单色性由于激发态原子或分子之间的能级结构和产生激光的物质的特性所决定。

激光所具有的单色性使其在科学研究、医学、通信等领域具有广泛的应用。

2. 相干性激光的相干性是指激光光波中光子的相位关系保持一致的特性。

激光光束的相干性使其具有干涉、衍射等特性。

激光的相干性能够保持光束的集中性,使得激光在远距离传输时损失较小,有助于激光的聚焦和精确测量。

3. 高亮度激光的高亮度是指激光的亮度远远高于其他光源。

激光的高亮度是由于激光所具有的高度聚焦特性和聚光能力优秀的光学系统所决定的。

高亮度的激光在医学、材料加工和军事等领域有着广泛的应用。

4. 窄束性激光的窄束性是指激光光束的直径非常小。

与其他光源相比,激光光束的直径可以达到亚微米甚至更小的级别。

激光的窄束性使得激光光束能够在远距离传输时保持高度集中,从而实现高精度的光学操作。

5. 高能量激光所具有的高能量使得其在科学研究、医学治疗和军事应用等领域展现出巨大的潜力。

激光的高能量是由于激发态原子或分子释放出的光子具有高能量特性所决定的。

高能量的激光在材料切割、焊接、打孔等领域具有重要的应用价值。

总之,激光的基本特征是单色性、相干性、高亮度、窄束性和高能量。

这些特征使得激光在科学研究、医学、工业生产等领域发挥着重要的作用。

随着激光技术的不断发展壮大,激光领域的应用将会更加广泛。

激光原理_第1章_激光的基本理论

激光原理_第1章_激光的基本理论
2.简并度f——同一能级所对应的不同电子运动状态 的数目(单个状态内的平均光子数)。
3.简并态—— 同一能级的各状态称简并态 例:计算1s和2p态的简并度
原子状态 n l
ml ms 简并度
1s
1
00
f1=2
1
2p
21
0
f2=6
-1
18
第一章 激光的基本原理
二、玻耳兹曼分布及粒子数反转
1. 玻耳兹曼分布(热平衡分布)
(19.77eV) 10-6 S
23
四、黑体辐射及其公式 1、描述黑体辐射的典型物理量
①单色能量密度 ,T:单位体积内,频率处于 附近
单位频率间隔内的电磁辐射能量,它是频率和温度的函 数。
注:寻求 的,T 函数形式进而确定单色辐出度的形式是当
时黑体辐射研究者们的一大目标!
②单光位波频模率密间度隔内n的:光腔波内模单式位数体。积中频率处于 附 近
n f e 2
2 (E2 E1 ) / kbT
讨论(设f i= f j) :
n1 f1
(1)如果E2 - E1很小,且满足 △E = E2 - E1<<kbT,则
n2 e (E2 E1 ) / kbT 1
n1
19
第一章 激光的基本原理
n f e 2
2 ( E2 E1 ) / kbT
第一章 激光的基本原理
前言
光具有波粒二象性,在描述光的性质是,可 以从其粒子性和光的波动性两个方面来描述光的 性质,进而引入了光波模式和光子模式来描述;
在激光产生的过程中,受激辐射和自发辐射 是其产生的基本原理,同时分析要实现光的受激 辐射放大需要满足集居数反转(粒子数反转)。
1
第一章 激光的基本原理

yz第一章_激光的基本原理

yz第一章_激光的基本原理

二.光波模式和光子状态(相格)
光波模式:在一个有边界条件限制的空间V内,存在的 一系列具有特定波矢 k 的平面驻波。
1.1
19
相 干 性 的 光 子 描 述
1.从波动性描述光波模式 求体积为V的空腔内模式数目。 设空腔为V=Δ xΔ yΔ z的立方体,则沿三个坐标轴方 向传播的波分别应满足的驻波条件为:
4
1917年以后近四十年内: 量子理论的发展; 粒子数反转的有效实现;电 子学与微波技术的发展
1954:美国汤斯(C.H.Townes)
前苏联巴索夫(N.G.Basov) 与
普洛霍洛夫 (A.M.Prokhorov)
第一次实现氨分子微波量子振荡器(MASER)
由于在量子电子学方面的卓越成就和激光器发展上的 突出贡献,普罗霍罗夫,巴索夫和美国物理学家汤斯一
单位体积内处于两能级的原子数分别用n2和n1表示,如 P10图 (1.2.2)所示。
1.自发辐射
处于高能级E2的一个原子自发地向E1跃迁,并发射 一个能量为 hv 的光子。这种过程称为自发跃迁。由原 子自发跃迁发出的光波称为自发辐射。
光 的 受 激 辐 射 基 本 概 念
1.2
33
自发跃迁过程用自发跃迁几率A21描述。A21定义为: 单位时间内n2个高能态原子中发生自发跃迁的原子数与 n2的比值:
zhangyuscaueducn电子科学与技术教研室光电子学是汇集光子学电子学光子技术与电子技术的一门学科电子学研究电子作为信息和能量载体的科学光子学研究光子作为信息和能量载体的科学光子技术相干光的产生激光原理激光原理48学时相干光的控制调制偏转光频率波长变换相干光的检测及应用光电子技术电子技术光与电是兄弟光是波长更短的电磁波lightamplificationstimulatedemission科学技术发展规律基础理论研究新技术产品开发产业激光是一批科学家集体智慧的发明激光受激辐射光放大改变世界的光二十世纪对世界文明最有影响的发明之一1917
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1954:美国汤斯(C.H.Townes)前苏联巴索夫(N.G.Basov)和普 洛霍洛夫(A.M.Prokhorov)第一次实现氨分子微波量子振荡 器(MASER)
1958: 美国汤斯与肖洛(A.L.Schawlow)提出了利用开放式 光学谐振腔实现光振荡的新思想;布隆伯根(N.Bloembergen) 提出利用光泵浦三能级系统实现粒子数反转分布的新构思
(1)定义
A21
dn 21 dt
sp
1 n2
E1
dn21:dt时间内由E2跃迁到E1的粒子数密度
n2:E2能级的粒子数密度
(2)大小
1 A21 2
2:能级寿命(E2能级上的粒子数 由初始值减至其1/e所用时间)
(3)单位:s-1

A21
dn 21 dt
sp
1 n2
n2(t)=n2(0)-n21(t)
dn 2 dt
dn 21 dt
A21n 2
dn 2 n2
A21dt
dn n2 (t)
2
n n2 (0) 2
A21
t
dt
0
ln
n2 (t) n2 (0)
A21t
lne A21t
n2 (t) n2 (0)eA21t

n2 (t)
1 e
n2 (0)
A212=1

1 e
n2
(0)
n
2
(0)eA212
4k
2dk
k x k y k z
1 8
4k 2dk 3
k 2dkV
2 2
k 2 2 c
dk 2 d c
dk 2 d c
V
-+d内的模式数:dM
4 2 2
c2
2
c
d
V
2 2
4 2d
c3
V
考虑到每个驻波有两种不同的偏振态,故单色
模密度为
8 2 m c3
4、光波模式的相干性
(m
dM
dVd
)
同一光波模式的光波是相干的
tc t
(2)场频函数E():光场随频率变换的函数关系
(场时函数的付里叶变换) E( ) F[E(t)]
t tc
E(t) E0rect(
2 )ei20t tc
F[E0rect(t)] E0 sin c()
t
F
[
E0
rect( )]
tc t
tc
E0tc
sin
c( tc
)
F[E0rect(
tc 2 )] E0tc sin

Ac
D22 As
0.52 (50001010)2 10 104
6.251011m2
例4 波长为= 4000Å的光子,其单色性参数为 R=10 -5,求此光子的位置不确定量

p h
dp
d
h
2
p
h 2
xp h
x
h p
2
R
4000 1010 105
0.04m
§2 光波模式与光子态 一、光波模式
(2)同一光波模式中的光子为相同光子态 4、光子态的相干性
同一光子态的光子是相干的 5、光子简并度
(1)同一光子态的处的单色模密度

c
3108 5000 1010
61014 Hz
m
8 2
c3
83.14 (61014)2 (3108 )3
X射线激光器
激光加工技术
激光雕刻
激光焊接
激光工艺 激光工艺
激光投影
激光通信技术
光导纤维
光信息处理机
激光存储技术
光盘存储
激光载体
激光治疗
治疗近视眼
激光手术 切除染色体致病基因
激光武器
战术激光武器
地炮测距仪 地基战略激光武器
自激光器发明后,由于激光的单色性、方向性、相干性和高亮 度极好,为人类带来了一种崭新的强光源。在46年的发展期间, 满足不同需要的激光器先后研制成功,有固体激光器、半导体激光 器、气体激光器、液体激光器,以及远红外、远紫外激光器、X射 线激光器、量子阱激光器、量子级联激光器、孤子激光器和激光蝴 蝶结激光器等。
(1)定义 某时刻沿光传播方向两个不同地点光场 有相干性的最大空间间隔,即光波列长度
(2)大小
Lc
tcc
c
c:光在真空中的速度
(3)本质 反映光源单色性
2、横向空间相干性——相干面积
(1)定义 某时刻在与光传播方向垂直的平面上使
任意两点光场有相干性的最大空间面积
(2)大小
Ac
D22 As
:光波长,As:光源面积 D:光源与平面距离
二、光子态
1、光子性质
(1)具有三量(能量、动量、质量)
E h hc
P
h
k
2
(P h
c
h)
h=6.6310-34Js:普郎克常数
(2)服从玻色-爱因斯坦分布
同一状态的光子数无限制 (3)具有两种独立的偏振态
2、光子态 无法区分的光子所处状态
m
h
c2
h
c
3、光子态与光波模式的等价关系 (1)同一光子态的光子属于相同的光波模式
单位距离所产生的相移
z
y
x m
2
2 x m
2
x
k x x
m
x
x y
m kx x
ky
n y
q kz z
k x x
k y
y
kz z
每个模式在k空间第一卦限内对应一个点 kz
每个模式在k空间占据体积为
k x k y k z
x
y
z
3 V
kx
k ky
k-k+dk内的模式数:dM
1 8
激光科学技术的发展不仅能导致许多重要的应用,而且还能
带动多种学科的发展。自由电子激光对加速器和同步辐射技术的 带动、X光激光对等离子体物理和原子物理的带动就是极好的例 子。激光的发展还大大推动着非线性光学、光谱学、激光与物质 相互作用的研究以及与激光有关的各种交叉学科的进展。当年, 激光的发现令人兴奋;46年后的今天,激光大范围地改变了科技 、产业和战略面貌,在21世纪,激光这种新型的光,必将更加灿 烂辉煌!
c(
tc
)e
i
2
tc 2
E0tc sin
c(tc )eitc
t tc
F[E0rect(
2 tc
)ei20t ]
E0tc
sin
c[ (
0 )tc ]ei ( 0 )tc
(3)强频函数(光谱):光强随频率变换的函数关系
(场频函数的模平方) I E( ) 2
E( ) E0tc sin c[ ( 0 )tc ]ei ( 0 )tc I (ν) E02tc2 sin c2[ (ν ν0 )tc ] I0 sin c2[ (ν ν0 )tc ]
第三部分:谐振腔原理
第五章 光学谐振腔基本理论 第六章 平行平面腔 第七章 稳定球面腔 第八章 高斯光束
第四部分:巨脉冲技术
第九章 调Q技术 第十章 锁模技术
前言
激光 (Laser), 全名“辐射的受激发射光放大”。
(Light Amplification by Stimulated Emission of Radiation)
激光原理与技术
教师:于文兵
E-mail:yuwhict@ 电话:62894516
总学时:54 理论学时:54
教材:激光原理与激光技术 俞宽新编
主要参考书:激光原理
周炳琨
激光原理及应用 陈家璧
教学内容 第一部分:激光基本知识
第一章 激光基本原理
第二部分:激光发光机理
第二章 辐射场与物质的相互作用 第三章 介质对光的增益 第四章 连续激光器的稳态工作特性
d d
0 0

1
tc
tc
Lc c
0
c 0
R 1 0 c 0 0 0tc c Lc Lc
例1 中心波长为0=0.5 m的某光源单色性参数 为R= 10-5,求此光源的相干长度与相干时间
解 R 0
Lc
Lc
0 R
0.5106 105
0.05m
tc
Lc c
0.05 3108
证 分配到每一个模式上的能量
h
E h
e kT 1
u
dE dVd
EdM dVd
Em
8 2
c3
h
h
e kT 1
8h 3
c3
1
h
e kT 1
二、自发辐射跃迁 (Spontaneous emission)
1、定义 发2一、光个跃粒频迁子率几从为率高(爱能 E因级2 h斯EE2坦1自系发的数跃光)迁子到低能级E1,并发E2射

② s1
2a


s1
s2 s2
2b
O
D
当s2-s1=/2时,O处干涉条纹消失
s1 (1 x)n
D2 (b a)2 D[1 1 nx,(x 0)
(b a)2 D2
1
]2

2a ①

s1 s1
s2 s2
2b
O
(b a)2
(b a)2
D[1 2D2 ] D 2D
D
s2
D2 (b a)2 D (b a)2 2D
5、1960.7:美国休斯公司实验室梅曼(T.H.Maiman) 制成世界上第一台红宝石固态激光器,标志着激光 器诞生。
相关文档
最新文档