分数的基本性质
分数的基本性质ppt课件

百分数可以通过乘以100来转换为分数,而分数也可以通过除以100来转换为百分数。这种转换关系使得我们可 以利用百分数或分数进行计算和比较。
分数的四则运算及混合运算
加法
分数的加法运算需要先将两个分数的分母统一,然后将分 子相加。例如:1/2+2/3=3/6+4/6=7/6。
减法
分数的减法运算同样需要先将两个分数的分母统一,然后 将分子相减。例如:1/2-1/3=3/6-2/6=1/6。
由整数和真分数组成的分 数,如2又3/4。
02
分数的性质
分数的基本性质
分数相等
如果两个分数的分子与分母分别 相等,那么这两个分数相等。
分数不等
如果两个分数的分子与分母不全 相等,那么这两个分数不等。
分数的唯一性
对于任何一个分数,只有一个分 数与之相等。
分数的大小比较
分子相同
如果两个分数的分子相同,那么分母越大的分数越小。
在数学中的应用
代数
在代数中,分数是重要的基础概念之一 。分数的运算性质在代数方程的求解和 化简中有着广泛的应用。
VS
几何
在几何学中,分数经常用来描述图形的比 例和面积。例如,一个矩形被分割成若干 个小的矩形,每个小矩形的面积占总面积 的比例可以用分数来表示。
在科学中的应用
要点一
化学
在化学中,分数被广泛应用于表示化学反应的平衡常数和 化学式中元素的原子个数比例。例如,水的化学式是H2O ,其中氢和氧原子的个数比例是2:1。
乘法
分数的乘法运算需要将分子与分子相乘,分母与分母相乘 。例如:(1/2)x(3/4)=1x3/(2x4)=3/8。
除法
分数的除法运算需要将除数的分子与被除数的分母相乘, 除数的分母与被除数的分子相乘。例如: (1/2)/(3/4)=1x4/(2x3)=4/6=2/3。
《分数的基本性质》的说课稿

《分数的基本性质》的说课稿分数的基本性质说课稿分数基本性质说课稿《分数的基本性质》说课稿《分数的基本性质》的说课稿1尊敬的各位评委,各位老师:大家好!我说课的内容是《分数的基本性质》。
这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。
它是进一步学习约分、通分的基础。
根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、(认知目标)理解和掌握分数的基本性质。
3、(能力、情感目标)培养学生观察、分析、推理的能力。
教学重点:理解和掌握分数的基本性质。
教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。
创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。
我设计的具体教学过程如下:第一环节:激趣引入,凸显信息技术的趣味性。
“成功的一半取决于良好的开始”,本课采用了学生感兴趣的电脑游戏和卡通人物作为引子,巧妙地唤起了学生的好奇心和求知欲。
在比较三个分数大小的过程中,学生们各抒己见,坚持自己的观点不动摇,形成了不同观点的矛盾冲突,激发了学生们的思考和探究欲望。
这种矛盾的存在为后续的规律发现打下了基础。
小学数学《分数的基本性质》教学设计(精选3篇)

小学数学《分数的基本性质》教学设计(精选3篇)小学数学《分数的基本性质》教学设计(精选3篇)作为一名无私奉献的老师,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。
我们应该怎么写教学设计呢?以下是小编精心整理的小学数学《分数的基本性质》教学设计(精选3篇),希望能够帮助到大家。
《分数的基本性质》教学设计1教学目标:1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:理解和掌握分数的基本性质。
教学难点:能熟练、灵活地运用分数的基本性质。
教学过程:一、创设情景师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。
同学们认真观察,你们能提出什么问题?师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授师:同学们想了很多好的方法,哪个小组愿意汇报一下?生1:我们组是用画图的方法来验证的。
我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。
通过比较我们发现,涂色部分的大小是相等的,所以生2:我们组是用折纸的方法来验证的。
我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。
通过折纸我们组也发现(学生在小组中讨论、验证)师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?(学生认真讨论)师:同学们汇报一下你们的讨论结果。
三、自主练习巩固提高课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。
师巡视指导。
《分数的基本性质》教学设计2教学目的:理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
分数的基本性质

学科:数学教学内容:分数的基本性质呈现目标【知识要点归纳】 1.分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(1)根据分数与除法的关系,也可以用整数除法中商不变的性质说明分数的基本性质。
即:分数的分子和分母同时扩大或缩小相同的倍数(零除外),分数的大小不变。
(2)在分数的性质里,零除外的原因是:如果分数的分子、分母都乘以0,则分数成为00,分数的分母不能为0,所以分数、分母不能同时乘以0;又因为在除法里零不能作除数,所以,分数的分子、分母也不能同时除以0。
2.分数的基本性质的初步应用应用分数的基本性质可以把一个分数化成分母不同而大小不变的分数。
如:把21和2410化成分母是12而大小不变的分数。
21=6261⨯⨯=126 2410=224210÷÷=125名师点拨【典型范例剖析】例1 (1)一个分数,分母比分子大25,约简后是得94,原分数是多少?(2)一个分数约简后等于132,原来分子与分母的和是60。
原来的这个分数是多少?分析:(1)一个分数约简后得94,分母比分子大5,但约简前的分母比分子大25,所以把94的分子和分母同时扩大 5倍,就可以求出原分数。
(2)一个分数约简后得132,分子与分母的和是15,但约简前分子与分母的和是60,因为15×4=60,所以,把约简的分数的分子、分母同时扩大4倍,就可以求出原来的分数。
解:(1)94=5954⨯⨯=4520(2)132=41342⨯⨯=528答:(1)原分数为4520,(2)原分数为528。
例2 一个分数是2016,如果将它的分子减少12,要使这个分数的大小不变,分母应该减少多少?分析:将分数2016的分子16减少12后变成了4,分子就缩小了4倍。
根据分数的基本性质,分母也要缩小4倍,分母是20÷4=5。
原分母 20变成了5,减少了20-5=15。
解:16÷(16-12)=420÷4=5 20-5=15答:分母应该减去15,这个分数的大小才不变。
分数的基本性质、约分与通分(适用于小学六年级数学)

分数的基本性质、约分与通分知识梳理1、 分数的分类及基本性质(1) 分数的分类:真分数与假分数真分数:分子比分母小的分数称为真分数;例如:45 等。
假分数:分子大于或等于分母的分式称为假分数;例如:54,等。
带分数:带分数是假分数的另外一种表现形式;它由整数和真分数相加得到。
例:1+45 =145 。
(2)分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的大小不变。
2、约分(1)约分的概念:把一个分数的分子和分母同时除以它们的公因数,分数的值(大小)不变,这样的过程叫约分。
约分的依据为分数的基本性质。
如:2430 =45(2)最简分数的概念:分子、分母的公因数只有1的分数称为最简分数。
(3)最大公因数的求法 ①列举法例如:求12和18的最大公因数;12的因数有:1、2、3、4、6、12;18的因数有:1、2、3、6、12、18;12和18的公因数有:1、2、3、6;所以12和18的最大公因数是:6.② 短除法例如:求12和18的最大公因数(如下图所示):12和18的最大公因数为:2×3=6 ③分解质因数法如:12=2x2x3,18=2x3x3,公有的质因数是2,3,所以12和18的最大公因数是2x3=6(4)实际应用当所求量分别与两个(或几个)已知量的因数有关时,可以用公因数或最大公因数的知识解决。
3、通分(1)通分的概念:把分母不相同的分数化成和原来分数大小相等且分母相同的分数,这个过程叫通分。
通分的依据是分数的基本性质。
(2)最小公倍数的求法:①列举法例如:求6和8的最小公倍数。
6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。
②短除法例:用短除法求16和24的最小公倍数;用短除法求6、8、12的最小公倍数。
16和24的最小公倍数是:6、8和12的最小公倍数是:2×2×2×2×3=48;2×3×2×2=24③分解质因数法例如:求6和15的最小公倍数。
分数的基本性质教案(优秀9篇)

分数的基本性质教案(优秀9篇)《分数的基本性质》教学设计篇一第一课时课题:分数的基本性质教学目标:1、知识与技能1、能说出分数的基本性质。
2、能说出分数基本性质与商不变性质的关系2、过程与方法3、会通过操作发现分数的分子分母扩大缩小的规律,并推导出基本性质。
4、会运用分数的基本性质解决数学问题。
3、情感态度与价值观5、培养学生自主探究、合作学习、创新思维的能力。
6、让学生在学习过程中养成互相帮助,团结协作的良好品德。
7、通过知识间的内在联系,渗透辩证唯物学情分析从学生思维角度看,分数的基本性质,在日常生活中应用广泛,是以分数大小相等为基础的。
两个分数大小相等,学生容易联想到分数的分子、分母分别相等。
为此,就需要课件先通过直观动画使学生了解、两个分数的分子、分母虽然不同,但是分数大小是相等的。
接着研究分数的分子、分母是按照什么规律变化的,要学生一下子说明道理比较困难,就需要一步一步分析,最终让学生自己归纳出分数的基本性质。
重点难点:学习重点:熟悉掌握分数的基本性质及基关键词同时、同数、不为0学习难点:分数的基本性质在具体解题环境中的具体应用教具学具:多媒体课件,学具袋(内含正方形纸,线段,直尺)教法学法:讲授法,活动探究法,任务驱动法。
活动设计:通过正方形和线段的平分探究和的大小关系。
教学课时:一课时教学过程:一、精彩导入同学们,今天刘老师能在这里和在大家一起研究数学问题,感到非常的开心。
你们想看老师的魔术表演吗?(想),好,那老师就在在座的各位面前献丑了(表演)还想看吗?(想)那我就给大家表演一个数学的魔术吧!出示课件:56 =1012 =壹五18 =2024师:我能写无限多个与56相等的除法算式来,这个魔术你们会吗?那我有一个除法算式45,请你写出与它相等的除法算式(点名)教师板书:45师:哇,你真厉害!那你能给大家介绍一下,你是把被除数和除数怎么变化了,但商还是不变了?生:(引导说出)被除数和除数同时扩大或缩小相同的倍数(0除外),商不变师:是的,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
分数基本性质及练习答案讲解

2月22日畅言晓学练习答案讲解一.分数的基本性质分析:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这就是分数的基本性质。
1.性质的由来。
分数的基本性质是根据分数与除法的关系,将除法的基本性质应用到分数的必然结果。
对比:被除数和除数同时乘或除以相同的数(0除外),商的大小不变。
这就是出发的的基本性质。
b a =a÷b=(a×c)÷(b×c)=c b c a ⨯⨯c≠0。
基本性质,同时乘以不为0的数。
b a =a÷b=(a÷c)÷(b÷c)=cb c a ÷÷c≠0。
基本性质,同时除以不为0的数。
2.成立条件:分子分母同时进行同样的乘除变化,分数的大小才不变。
反之也说明同时进行同样的加减变化,会改变分数的大小。
3.结论:分数的大小不变。
但分数的单位“1”会改变,从而分数单位“1”会改变。
例如:21=3231⨯⨯=63,所以21与63大小相等是同一个数。
但两者的单位“1”不同。
21分母是2,所以单位“1”被平均分成了2份;63分母是6,所以单位“1”被平均分成了6份。
从而导致两者的分数单位一个为21,一个为61。
这正如小数的基本性质:小数的末尾填上0,或去掉0,小数的大小不变。
但小数的计数单位会改变。
如2的计数单位是1,但2.0的计数单位是0.1。
分数的分数单位是一个类似与小数或整数的计数单位的概念。
4.意义:如图:如果以一行为1份,则红色部分占整个图形的52;如果以一个四角星为1份,则红色部分是10份,整个图是25份。
此时红色部分占整个图的分数就是2510,这恰恰是52的分子和分母同时乘以5的结果。
分子、分母同时乘以5,就相当于把原来的一行再平均分成5份的结果。
所以当我们用不同大小的一份,来平均分时,得到的分数形式就不相同。
再比如5厘米占10厘米的几分之几?如果我们以1厘米作为一份,显然相关量5厘米就是5份,单位“1”10厘米,就是10份。
分数的基本性质

分数的基本性质
分数的基本性质:分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
扩展资料:
分数代表整体的一部分,或更一般地,任何数量相等的部分。
当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。
分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。
把单位“1”平均分成若干份,表示这样的一份或几份的数
叫分数。
分子在上,分母在下。
最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。
埃及人使用埃及分数c。
1000bc。
大约4000年前,埃及人用分数略有不同的方法分开。
他们使用最小公倍数与单位分数。
他们的方法给出了与现代方法相同的答案。
埃及人对于Akhmim木片
和二代数学纸莎草的问题也有不同的表示法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分数基本性质》教学设计
漫水乡中心小学向春艳
一、教材分析
《分数基本性质》是北师大版小学数学第九册第4 3至4 4页。
在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习和掌握分数基本性质,(即分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变,)为后续学习约分、通分、分数比大小,分数与小数互化、分数乘除法四则混合运算打基础。
二、学情分析
学生是在已经认识真假分数,掌握了分数与除数的关系及商不变性质的基础上,再来学习分数基本性质。
教学中引导学生通过动手折, 用眼看,用嘴说等全方位的感官调动思维,结合新旧知识的联系掌握分数基本性质这一规律性知识。
当分数的分子分母变了,分数的大小却不变,学生自主在这种“变”与“不变”中发现规律,掌握并运用。
根据教材分析和学生情况,制定如下教学目标
三、教学目标:
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历猜想、验证和实践等学习活动,体验数学学习的乐趣。
教学重点:经历主动探索过程并发现和归纳分数的基本性质。
教学难点:理解分数的基本性质。
教法与学法:
教法一讲授教学法、探究教学法、情境教学法
学法一自主探究法、小组合作法、讨论法
教具与学具:
相同大小长方形纸片若干个、多媒体课件
教学过程:
一、创设情境,故事激趣
有位老爷爷决定把一块地分给三个儿子。
这天,他对三个儿子说:“老大拿这块地的1 /3,老二拿这块地的2/6。
老三就拿这块地的
3/9。
”老大、老二听完,觉得自己很吃亏,于是三人就大吵起来。
刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗他对三兄弟讲了哪些话
(设计意图:多媒体故事引入,减轻学生上课前的压力,舒缓心情, 増加数学课堂的趣味;设置悬念,使学生急于想弄明白谁多谁少,想弄清楚阿凡提对三兄弟说了什么,激发学生的求知欲望,唤起学生主动学习的动机。
)
二、探究新知
1、折纸写分数,动手探究
(1)、请学生四人一组,每人用长方形的纸,折一折,涂上颜色,分别表示出长方形纸的1 /2、2/4、4/8、8/1 6。
(2)、折完后小组互相说一说,自己是怎样表示的,小组中观
察比较发现什么
(3)、选取一小组作品贴到黑板,并用分数表示出来。
观察,
指名学生说说自己的发现:
四个分数表示的阴影面积相等,所以四个分数大小相等。
(4 )小结:课件展示 1/2 = 2/4 = 4/8 = 8/1 6
o
(设计意图:学生通过动手折,动手画,观察比较发现四个分数虽然分子分母不同,但都表示同样大小的阴影,初步认识到四个分数大小相等,形成表蒙。
在动手,动脑的基础上兼顾学生语言的发展, 让学生在小组中说自己的学习体验,既降低部分学生的学习吃力时来自老师的压力,给他们一个展示自己的平台,也给他们清晰表达出自己探究四个分数之间联系(分数基本性质)这一成果做好铺垫。
)
2、比较归纳,探寻规律
(1 )、引导学生从左到右观察1 /2 = 2/4 = 4/8 = 8/ 1 6四个分数,分子和分母是如何变化的
(2)、指名学生回答,利用课件展示变化过程,引导学生说出
分数的分子和分母都乘同一个数,分数的大小相同。
(3)、学生观察讨论从右到左1 /2、2/4、4/8、8/1 6 四个分数分子和分母是如何变化的
(4)、课件演示变化过程,学生说出分数的分子和分母都除以一个相同的数,分数的大小不变。
(5)、小结不完整的分数性质:分数的分子和分母都乘或除以
相同的数,分数的大小不变。
(设计意图:分数基本性质的揭示安排学生自己发现规律,自己组织语言,从不完整,不科学,不严谨的句子中,归纳总结得出。
学生在这个过程中思维得到很好地锻炼,心理会产生成就感,对以后的数学学习有帮助。
多媒体在这个过程中,帮助学生直观的看到变化的过程,形成深刻的印象,为学习通分和约分打下基础。
)
(6)、读一读这条规律,你想到我们以前学过的那条规律(除法商不变的规律)联系分数与除法的关系,理解0不能做分母,所以 0在上面的新规律中也要除外。
(7)、总结完整的分数的性质:分数的分子或分母都乘或除以相同的数(0除外),分数的大小不变。
课件展示。
(8)、揭示课题:这是刚才我们通过折纸得出的规律,这就是分数的基本性质。
(板书课题:分数的基本性质)
3、齐读分数的基本性质,你认为哪些词语比较重要
预设:相同(为什么必须写相同两个字,举例说明。
)
0除外(为什么强调0除外)
乘或除以(如果同时加上或减去行不行,举例验证)
根据学生的回答在课件上标示。
(设计意图:联系分数与除法的关系,帮助学生理解0除外这一要点,利用了新旧知识的联系,引导学生梳理知识,学习把知识连贯, 发展学生的数学学习能力。
多媒体上不同颜色的重点记号能很好的帮助学生理解并记忆分数的基本性质。
)
4、应用规律
(1)、回过头来说一说,你知道,阿凡提为什么会笑吗他对三
兄弟讲了哪些话请你猜一猜
(2)、把2/3和1 0/24化成分母是1 2而大小不变的分数。
学生思考并说说方法
分组进行改写
指名汇报改写步骤,说明理由。
(设计意图:及时的练习有利于学生知识的内化与巩固,猜阿凡提说的话,呼应了课堂的开始,关注到课堂的完整,也是学生利用分数基本性质解决生活中的问题的能力。
)
三、多层练习,深化应用
1、对数游戏:说出一个与6 / 2 4的大小相同的分数。
¥
2、练一练:判断.(指名回答,并说明理由。
)
(1)、分数的分子、分母都乘以或除以相同的数,分数的大小变。
(2)、3/ 4的分子乘以3,分母除以3,分数的大小不变。
1 O 一1 0^
2 — 1 0x3
(3 )、24 — 24*2 — 24x3
(设计意图:多媒体课件展示练习题,练习题的设计由简单到复杂,由浅入深,这样设计主要是为了共建知识之间的联系,有助于学生灵
活迁移应用,触类旁通。
)
四、小结
回顾本节课学习的过程,说一说你有什么收获
五、板书设计
分数的基本性质
分数的分子和分母同时乘以或除以相同的数(0除外),分数
的大小不变。
反思:这节课设计由浅入深,循序渐进,兼顾趣味性和数学课堂的严谨,数学思维的发展,学习能力的培养。
多媒体直观的展示了分数基本性质中分数的分子分母变了,分数的大小却不变,这种“变” 与“不变”中的变化过程,便于学生用自己的话描述分数的基本性质。
充分相信学生,设计给他们充足的时间,用自己的话说出自己的学习发现,并最终把那些不完整,不严谨的话语归纳、总结出正确的句子。
学生通过这个过程把知识内化,理解,记忆。
为分数的后续学习打好。