结构动力学习题解答.docx

合集下载

结构动力学习题解析

结构动力学习题解析

结构动力学习题2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。

题2.1图2.2 建立题2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。

题2.2图2.3 试建立题2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。

题2.3图2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。

一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,见题 2.4图。

设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。

弹簧k2的自由长度为b。

题2.4图2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。

题2.5图2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。

计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。

3.1单自由度建筑物的重量为900kN,在位移为3.1cm时(t=0)突然释放,使建筑产生自由振动。

如果往复振动的最大位移为2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。

3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。

结构动力学题解(2)

结构动力学题解(2)

1−ξ −1
−1 1 ξ2 = 2 = 0 解得 ξ1 = 3 − 2ξ 2
1 k1ξ1 k1 k1ξ1 2k1 ω 2 m1 把 ξ1 = 代入 ξ = 可得: ω 1= 同理 ω 2 = = = k1 2 m1 2m1 m1 m1
把计算的自振频率结果代入 K − ω 2 M φ = 0
(
)
1 T − 1 φ 1 − 1 T 11 2 = 0 ,令 φ11 = 1 解得 φ1 = 1 同理可求得 φ2 = (1 − 1) 1 φ12 2 −1 3 − 2 × 2
3、习题 2 中的结构,如果对顶层加一水平简谐力 F1 (t ) = F1 sin ω t ,试确定每层稳态振动幅 值的表达式。 解:
2 根据 K − ω M φ = F
(
)
1 − 1 1 0 y1 F1 2 k1 − ω m 1 0 = y 0 2 −1 3 2
(2)求自振频率 根据: δM −
1 I =0 ω2 1 m 0 1 1 0 EI 32 − 2 = 0 ,令 λ = 2 3 ,则行列式化为: 1 0 m ω 0 1 ω l 48
1 l3 8 EI − 1 32 1 m−λ 8 1 − m 32
第三章 多自由度系统的振动
1、计算题 3-1 图所示结构的自振频率和对应的振型并验证振型的正交性,设 EI 等于常数及 EA 等于常数。 (a) 解: (1) 用图乘法求各柔度系数:
δ11 = δ 22 =
1 1 l l 2 l 1 l 2 l l3 + l = EI 2 2 2 3 2 2 2 3 2 8EI

结构动力学课后习题答案

结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。

它涉及到结构的振动、冲击响应、疲劳分析等方面。

课后习题是帮助学生巩固课堂知识、深化理解的重要手段。

以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。

系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。

习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。

特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。

习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。

结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。

冲击响应分析的结果可以用来评估结构的耐冲击性能。

习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构动力学习题解答

结构动力学习题解答
̇̇ = hδ ( t ) ; θ 0
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+

0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+

再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+

0

0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。

3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。

2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。

3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。

4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。

5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。

试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。

3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。

2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。

常用的计算方法有有限元法、拉普拉斯变换法等。

3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。

4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。

5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。

试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。

3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。

结构动力学题解(1)

&&(t ) + 运动方程: m lY 3 4 1 & (t ) + kY (t ) = 3 lq (t ) (c1 + c2 )Y 4 4
FN 力所作的虚功:
Y (t ) F δY = N Y δY = kG * Y δY 2l 2l 3 广义质量 m* = m l 4 广义劲度 k * = k 1 广义阻尼 c* = (c1 + c2 ) 4 3 广义载荷 F * (t ) = lq(t ) 4 F 广义几何劲度 kG * = N 2l F * 组合广义劲度 k * = k * − kG = k − N ,欧拉临界力 FNcr = 2lk 2l δWn = FN
代入 y1 ,经整理得:
广义质量 m* =
m 3
广义劲度 k * =
广义阻尼 c* = c
广义载荷 F * (t ) =
5、试列出图(a)与(b)所示系统的运动方程,并计算各系数(不考虑阻尼的影响) (a)
F(t)
m
m
EI 常数
l
[解] 取质体的水平位移为 Y ,水平虚位移为 δY 质体上的惯性力
h
答图
(c) 解:单位力单独作用下的位移
δ1 =
l3 3EI =δ
题图
由质体 m 的竖向位移关系可知:
(1 − Fs0 )δ1 = Fs0
k
由上式解出:
Fs 0 =
kδ1 1 + kδ1
δ=
δ1 l3 = 1 + kδ1 3EI + kl 3
答图
其自振频率:
ω=
1 3EI + kl 3 = mδ ml 3
k1
Fs1
EI = ∞

(完整word版)结构动力学历年试题

(完整word版)结构动力学历年试题结构动力学历年试题(简答题)1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请简述每一种荷载的特点。

P22.通过与静力问题的对比,试说明结构动力计算的特点。

P33.动力自由度数目计算类4.什么叫有势力?它有何种性质。

P145.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P166.什么是振型的正交性?它的成立条件是什么?P1057.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P328.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P1329.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在哪里?第五章课件10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确解相比有何特点?造成这种现象的原因何在?P20911.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P112.坐标耦联的产生与什么有关,与什么无关?P9613.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面?P132及其课件14.请给出度哈姆积分的物理意义?P8115.结构地震反应分析的反应谱方法的基本原理是什么?P84总结16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。

17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该如何进行判断?P13218.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型,每种类型请给出一种实例。

P219.请分别给出自振频率与振型的物理意义?P10320.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响可以不考虑,这样处理的物理基础是什么?P11522.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数为25000个,我们如何缩短计算所耗费的机时?P10323.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速),为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。

结构动力学习题答案

解:以 m1 − k 体系静平衡位置作为原点 则 m1 , m2 共同作用的静平衡位置 u st = 碰撞之前 m2 的速度 v2 = m2 2 gh 碰撞之后:动量守恒
3.4
m2 g k
( m1 + m2 ) u (0) = m2 2 gh
即 u (0) =
i
i
m2 2 gh m1 + m2
动力方程: ( m1 + m2 )( u − ust )′′ + K ( u − ust ) = 0
5 .0 1 = u st 2ξ
(1)
当 w wn = 1 时,发生共振有: Rd 1 =
当 w wn = 1 10 时, Rd 1 =
0 .5 = u st
(1 − 0.1 ) + (2ξ × 0.1)
2 2
1
(2)
2
由式(1),(2)可以解得 ξ = 4.95%
3.6 解:
TR =
[1 − (w w ) ] + [2ξ w w ]
ii
ii
ii
ii
ii
δ Wp = −m2 g sin θ i Lδθ
虚 功原理: δ Ws
+ δ WI + δ W D +δ W p = 0 得:
⎡ m1 + m2 ⎢ mL ⎣ 2
2.6 解:
ii ⎫ ⎧i⎫ m2 L ⎤ ⎧ 0 ⎫ ⎪ u ⎪ ⎡C 0 ⎤ ⎪ u ⎪ ⎡ k 0 ⎤ ⎧ u ⎫ ⎧ +⎢ ⎨ i ⎬+ ⎢ ⎨ ⎬=⎨ ⎬ ⎥ ⎥ 2 ⎥ ⎨ ii ⎬ m2 L ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎩θ ⎭ ⎩−m2 g sin θ i L ⎭ ⎩θ ⎭ ⎩θ ⎭

结构动力学1~15

《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。

因此命名为振型叠加法。

8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章单自由度系统总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、牛顿第二定律法适用范围:所有的单自由度系统的振动。

解题步骤:( 1)对系统进行受力分析, 得到系统所受的合力;( 2)利用牛顿第二定律m x F ,得到系统的运动微分方程;( 3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

2、动量距定理法适用范围:绕定轴转动的单自由度系统的振动。

解题步骤:( 1)对系统进行受力分析和动量距分析;( 2)利用动量距定理J M ,得到系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、拉格朗日方程法:适用范围:所有的单自由度系统的振动。

解题步骤:( 1)设系统的广义坐标为,写出系统对于坐标的动能T和势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ;(2)由格朗日方程(L )L =0,得到系统的运动微分方程;dt(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

4、能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。

解题步骤:( 1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能 U 的表达式;进一步写出机械能守恒定理的表达式T+U=Const(2)将能量守恒定理T+U=Const对时间求导得零,即d(T U )0 ,进一步得到系dt统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

叙述用衰减法求单自由度系统阻尼比的方法和步骤。

用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。

方法一:衰减曲线法。

求解步骤:( 1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值 A i、 A i 1。

(2)由对数衰减率定义ln( Ai) ,进一步推导有A i12,21因为较小,所以有。

2方法二:共振法求单自由度系统的阻尼比。

( 1)通过实验,绘出系统的幅频曲线,如下图:单自由度系统的幅频曲线( 2)分析以上幅频曲线图,得到:1,2max / 22/ 4 ;于是2(1 2 )2;1n进一步2(1 2 )2;2n最后21 / 2n/ 2n ;叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。

用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。

方法一:幅频(相频)曲线法当单自由度系统在正弦激励F0sin t 作用下其稳态响应为:x A sin(t) ,其中:A F0xst;(1)m224n2212422n0arctan 2/ 12(2)从实验所得的幅频曲线和相频曲线图上查的相关差数,由上述(1),( 2)式求得阻尼比。

方法二:功率法:( 1)单自由度系统在F0 sin t 作用下的振动过程中,在一个周期内,弹性力作功为W c 0、阻尼力做功为W d c A 2、激振力做作功为W f F 0sin;( 2)由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零,即:W c+W d+W f0 ;于是F 0 sin -c A2进一步得: AF 0 sinc ;( 3) 当 n时, sin1,则 Amaxxst2 ,得max1 2,2max。

求图 1-35 中标出参数的系统的固有频率。

( 1)此系统相当于两个弹簧串联,弹簧刚度为k 1、简支梁 m48EI ;k; 有111 刚 度 为k 2等 效 刚 度 为;mL 3kk 1 k 2m1 48EIkL2k148 EI k l 311k 1k 2k 48EIl 348EI 2L48 EI k 1l 3 mk k 13mlL kkk 1l 348EIkk 13EIk 13EIkk 1l33EIm FI1mml 3l 3l 3mml 31 111 12k 1k 1 2 lk12 l2 lk12 l2 mlk 1k 12m2m解:以为广义坐标,则系统的动能为T T 重物T 轮子1 2 1 2A( m )xI 022k1 P21 1 P2 x2P2P2x图 1-34(2g )x(R )x22 2 gR4 g4 gBP x 22g系统的势能能为:x1 kx 2UU 重物U弹簧Px ;2拉格朗日函数为L=T-U ;由拉格朗日方程( L )L0 得dt xxPg则,x kx0kg0=Pkg所以:系统的固有频率为P求图 1-35 所示系统的固有频率。

图中磙子半径为R,质量为 M,作纯滚动。

弹簧刚度为 K 。

解:磙子作平面运动,KR 其动能 T=T平动 +T 转动。

xM图 1-35T平动1&2;2Mx22 &211MR&T转动2I22;R RT 1 Mx2 1 M x23M x2;244而势能U 1Kx 2;2系统机械能T U 3M x 21Kx 2 C ; 42由dT U0 得系统运动微分方程d t3Mx Kx 0 ;2得系统的固有频率n 2 K3M;求图 1-36 所示齿轮系统的固有频率。

已知齿轮 A 的质量为 m A,半径为 r A,齿轮 B 的质量为m B,半径为 r B,杆 AC的扭转刚度为K A, ,杆 BD的扭转刚度为 K B,解:由齿轮转速之间的关系A r A B r B得角速度B r A r AA ;转角B A ;r B r B系统的动能为: T T A T B 1J A A21J B B222C AT1m A r A2A21m B r B2B 21m A m B r A2A2; B D22224图 1-36系统的势能为:U 1212 K A A K B B 22系统的机械能为1 2 2 K A A K B B21r A2A2K A K Br B2;2T U1m A m B r A2 A 241K Br A22C ;K Ar B2A2由dT U 0 得系统运动微分方程 d t1m B2K Ar A20 ;m A r A A K B2A2r B因此系统的固有频率为:2 K Ar A22 K Ar A2 K B2K B2 r B1r Bnm A m B r A2r A m A m B;已知图1-37所示振动系统中,匀质杆长为L,质量为 m,两弹簧刚度皆为K,阻尼系数为 C,求当初始条件00 0 时(1) f (t) F sin t 的稳态解;C f(t)(2) f (t )(t )t的解;L2L LC L22f (t )LKL222r 2mdr mL 2L J K LJ r 2 dm2222L LL1222mL 23CL 26KL 26Lf (t )3C6K 6f (t) f (t ) F sin t f (t) F sin tm m mL3C 6 K6F sin t 3C;26K 6 F2n2h sin tm m2n n; h;n mL m m mLx Asin( t)Ah6Fn 2224n2 2L 6 K m 2 29C 2 22narctg 3Cf (t)(t) f (t)(t)3C6K6arctg(t)n 226K m2m m mL2n3C2 6K6 ;2n2 h ( t )mh ( t );n; hmLnh ( t )mm0 d th ( t)d th( t )d th0 d th ) d t 0mxAen t sind t Ah ;0 ;x Ae ntsind th e n t sind tm dm dmgH1mV 0 2 V 0 2gHV 0 2 gH mx Cx Kx 0 x C x K x 0 ; x2nx n 2 x0 ;2m mx 0n x 0 2x 02gHd x 0xAen t sind tAx 0 2arctgx 0dddn x 0x2 gHsin d t ; my k ( yy 1 ) c( yy 1 ) y y2dCmy cy ky ky 1 cy 1 yh sin(at )my cy ky ach cos(at ) kh sin(at )yA sin( t a) Ak 2 c 222 2 h a acr tan(mc 32 ) 电磁激 振(km 2 ) 2 c k(k m2) c 2力可写为 F (t ) H sin 20 t,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。

解:首先将此激振力按照傅里叶级数展开:F (t )a 0(a i cos(it ) b i sin(it))2i 12T t i t dt ;2T其中:Fa iT( ) cos( )b iT 0 F (t) sin(i t )dt因为 F (t ) H sin 2 ( 0 t) 是偶函数,所以 b i 0 。

于是F (t) HHcos(2 0 t)2 2而H x(t )Asin(2 0 ta / 2) ;2k式中HA2m;(n 242 )16n 20 2a arctan2n;24 2ncn, 2m2 nkm. 若流体的阻尼力可写为F dbx 3, 求其等效粘性阻尼。

解:( 1)流体的阻尼力为 F dbx 3 ;( 2)设位移为 x A cos( t ) ,而 dxxd t ;( 3)流体的阻尼力的元功为dW dF d dx( bx 3xd t) ;( 4)流体的阻尼力在一个振动周期之内所消耗的能量为:WF d dxbx 3dxbx 4dtb[ A cos( t43 b 3A 4a)] dt4( 5)粘性阻尼力在一个振动周期之内所消耗的能量为: 2cA( 6)等效粘性阻尼:取n ,令3 b n3A 4n c eq A 234可得:c eqb n 2A 24第二章 两个自由度系统求如图 2-11 所示系统的固有频率和固有振型,并画出振型。

解:( 1)系统的振动微分方程mx 1kx 1 k( x 1 x 2 ) ;X1X2mx 2k (x 2 x 1 ) kx 2 ;mmkkk即mx 1 2kx 1 kx 2 0 ;mx 2kx 1 2kx 2; ( 1)图 2-11 ( 2)系统的特征方程根据微分方程理论,设方程组( 1)的解为:x 1A 1 sin( t) ; x 2 A 2 sin( t)(2)将表达式(2)代入方程组( 1)得:( m 2 A 12kA 1 kA 2 ) sin( t) 0( m2A 2 kA 12kA 2 ) sin( t)( 3)因为 sin( t) 不可能总为零,所以只有前面的系数为零:(2k m2) AkA0 ;12;2 )AkA(2km20;1即2k m2kA 1 0 ;( 4)k2km2A 2(1) 系统的频率方程若系统振动,则方程有非零解,那么方程组的系数行列式等于零,即:2k m2k0 ;k2km2展开得m 2 44 23 2 0;( 5)mkk系统的固有频率为:1K / m ;23K / m ;( 6)(2) 系统的固有振型将1 ,2 代入系统的特征方程(4)式中的任一式,得系统的固有振型,即各阶振幅比为:1A 1(1)1 ;1A 1( 2)A (1)A 1 ; ( 7)(1)( 2)( 2)22系统各阶振型如图所示:其中(a )是一阶振型, (b )是二阶振型。

相关文档
最新文档