Zr-MOFs基复合光催化剂的电荷转移及其光解水制氢性能研究
光催化水分解制氢技术的研究进展

光催化水分解制氢技术的研究进展随着全球能源需求的不断增长以及环境问题的日益突显,清洁能源的开发和利用成为了人类关注的焦点。
氢能作为一种清洁、高能量密度的能源媒介,备受研究者的关注。
然而,有效、经济地制备氢气仍然是一个具有挑战性的问题。
光催化水分解制氢技术作为一种可持续、环保的制氢方法,正在获得越来越多的关注和研究。
光催化水分解制氢是利用光催化材料吸收太阳能,并将其转化为化学能的过程。
实现光催化水分解制氢主要涉及两个关键步骤:水溶液中的光生载流子的产生和将光生载流子转化为氢气和氧气的催化反应。
在这个过程中,催化剂起到了至关重要的作用。
当前,以半导体材料为基础的催化剂是光催化水分解制氢技术的主要研究方向之一。
例如,二氧化钛(TiO2)是广泛研究的光催化剂之一。
然而,纯二氧化钛表现出较大的能带间隙,仅能吸收紫外光,限制了其在可见光范围内的应用。
为了拓宽光吸收范围,研究人员进行了多种改性。
例如,通过离子掺杂或负载适量的金属纳米颗粒等方法,改善材料的光催化性能。
此外,一些新型的材料催化剂也受到了广泛研究。
例如,铁基或钼基催化剂在光催化制氢研究中显示出良好的催化活性和稳定性。
这些新型催化剂不仅能够有效地利用可见光,而且其优异的光电催化性能在提高效率和抑制光生电子-空穴对的复合方面具有优势。
除了光催化剂的研究外,反应条件的优化也是光催化水分解制氢领域的重要研究方向之一。
反应的温度、光照强度、溶液酸碱度等都对催化剂的性能和氢气生成速率有着重要影响。
因此,通过合理调控这些反应条件,可以提高光催化水分解制氢的效率。
光催化水分解制氢技术的研究进展不仅依赖于催化剂的设计和合成,还需要对光催化机理进行深入研究。
实验和计算相结合的方法被广泛应用于光催化机理的研究。
通过实验手段,研究人员可以发现反应中的中间体和活性物种,并理解光催化反应过程中的能量传递。
同时,计算手段可以对催化剂的结构和性质进行模拟和预测,为催化剂的设计提供指导。
《2024年MOFs衍生CuO-ZnO催化剂的制备及其光催化性能的研究》范文

《MOFs衍生CuO-ZnO催化剂的制备及其光催化性能的研究》篇一MOFs衍生CuO-ZnO催化剂的制备及其光催化性能的研究一、引言光催化技术已成为当今环保科学领域内的热点,它以高效、环保、节能等优势,在废水处理、光解水制氢、CO2还原等方面具有广泛的应用前景。
在众多光催化剂中,金属有机框架(MOFs)衍生材料因其独特的结构特点和良好的光催化性能而备受关注。
本文以CuO/ZnO为研究对象,通过MOFs衍生法制备该催化剂,并对其光催化性能进行研究。
二、MOFs衍生CuO/ZnO催化剂的制备1. 材料与方法本实验采用MOFs衍生法制备CuO/ZnO催化剂。
首先,通过溶剂热法合成Cu-Zn基MOFs前驱体,然后通过高温煅烧处理得到CuO/ZnO催化剂。
在制备过程中,可通过调整煅烧温度、时间等参数,控制催化剂的组成和结构。
2. 制备过程(1)合成MOFs前驱体:将铜盐和锌盐按一定比例溶解在有机溶剂中,加入适当的配体,在溶剂热条件下反应,得到Cu-Zn 基MOFs前驱体。
(2)煅烧处理:将MOFs前驱体置于马弗炉中,在一定的温度下进行煅烧处理,使MOFs分解并生成CuO/ZnO催化剂。
三、催化剂的光催化性能研究1. 光催化实验装置与方法光催化实验在自制的封闭式光反应器中进行。
以紫外光为光源,催化剂悬浮于溶液中,进行光催化反应。
通过测定反应前后溶液中目标产物的浓度变化,评价催化剂的光催化性能。
2. 实验结果与分析(1)催化剂的表征:通过XRD、SEM、TEM等手段对制备的CuO/ZnO催化剂进行表征,分析其晶体结构、形貌和微观结构。
(2)光催化性能评价:在相同条件下,分别以纯水、不同浓度的催化剂悬浮液为研究对象,进行光催化实验。
通过测定反应前后溶液中目标产物的浓度变化,评价催化剂的光催化性能。
结果表明,CuO/ZnO催化剂具有优异的光催化性能,能够有效地降解有机污染物、光解水制氢等。
四、结论本文采用MOFs衍生法制备了CuO/ZnO催化剂,并通过一系列表征手段对其结构进行了分析。
MOFs在光催化降解废水中有机污染物方面的研究进展

MOFs在光催化降解废水中有机污染物方面的研究进展刘兴燕;熊成;徐永港;谭雨薇;冯欢;程亚玲;陈盛明;汪松【摘要】综述了近年来金属-有机骨架材料(MOFs)及其复合材料在光催化降解废水中的罗丹明B、亚甲基蓝等有机污染物方面的研究进展情况.指出了该材料在设计、合成等方面的相关策略,同时在光催化降解有机污染物方面表现出了优异的性能.最后提出了MOFs及其复合材料在光催化降解有机污染物方面的挑战和未来展望.%The progress of the research on photocatalytic decontamination of wastewater containing organic pollutants such as Rhodamine B, methylene blue based on the metal-organic frameworks (MOFs) and their derivatives was reviewed in recent years.It was pointed out that the related strategies in design and synthesis, and the excellent properties in photocatalytic degradation of organic pollutants.Finally, the challenges and outlooks for organic pollutants decomposition by MOFs and their derivatives were suggested.【期刊名称】《应用化工》【年(卷),期】2019(048)001【总页数】5页(P226-230)【关键词】金属-有机骨架材料;有机污染物;光催化降解;进展【作者】刘兴燕;熊成;徐永港;谭雨薇;冯欢;程亚玲;陈盛明;汪松【作者单位】重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室,重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067;重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室, 重庆 400067【正文语种】中文【中图分类】TQ09人类生产生活产生的废水中通常含有有机染料、重金属、卤苯等对生物有害的物质,往往导致十分严重的环境问题[1]。
基于MOFs材料光催化分解水制氢的研究进展

受新冠肺炎疫情等影响,全球传统化石能源供应日趋紧张,绿色清洁新型能源的转型发展也越来越紧迫,氢能作为目前最具潜力的清洁能源,在交通、储能、建筑和分布式发电等领域都有着广阔的应用前景,是助力中国“双碳”目标和全球能源生产消费革命、构建低碳高效能源体系的重要抓手。
太阳能是全球分布最广泛均匀的清洁能源,利用太阳能分解水制氢可从源头阻断碳排放,这种绿色环保的技术将会在未来的氢能生产中占据主力位置,是解决能源危机和改善环境的最佳选择之一。
太阳能分解水制氢技术目前研究较多的主要有光催化法制氢、光热分解法制氢和光电化学法制氢,其中,光催化法制氢体系简单、催化剂来源广泛、成本较低,可有效捕获、转换和储存太阳能,被认为是现阶段最具应用发展前景的太阳能制氢技术之一。
光催化剂是光催化分解水制氢体系的核心,通过太阳光激发光催化剂价带(VB)上的电子并跃迁至导带(CB),产生光生电子及空穴,光生电子空穴对分离并迅速转移至光催化剂表面,电子与H+发生还原反应生成H2,空穴则氧化水产生O2。
然而,传统的光催化剂中的电子可能会与空穴发生表面或体相复合,导致光催化反应效率降低,且存在太阳光利用率不高等问题。
若要保证光生电子与空穴的分离效率以及光利用率,使反应尽可能地向生成H2的方向进行,寻找新型高效的光催化剂材料显得尤为重要。
其中,设计制备金属有机框架(MOFs)光催化材料催化分解水制氢是近年热门研究方向之一。
MOFs主要代表类型有:以Zn、Co等过渡金属与咪唑类有机物配位而成的ZIF系列、以Fe、Cr等过渡金属或镧系金属与芳香羧酸类配体配位而成的MIL系列,以及主要以Zr金属与对苯二甲酸配位而成的UiO系列等。
这些MOFs材料在光催化分解水制氢的相关应用研究正逐年上升,但单一MOFs光催化材料仍存在光生电子空穴对分离率较低、稳定性较差等问题,在一定程度上降低了其制氢效率的进一步提升。
美国能源科学部认为太阳能转换氢能效率达到10%以上,太阳能光催化分解水制氢才能实现初步工业化,而MOFs光催化活性离该目标还有一定差距。
光催化水分解产氢机理的研究与优化

光催化水分解产氢机理的研究与优化随着能源需求的不断增加,氢燃料作为一种新型、清洁、高效、可再生的能源逐渐引起了人们的关注。
而氢气的主要制备方法为化石燃料煤、油、气的加氢或蒸气重整。
这些方法虽然可以大规模生产氢气,但是随之产生的污染物对环境造成了极大的危害。
因此,寻找一种新型的、经济、环保、高效的氢气制备技术势在必行。
光催化水分解产氢技术作为一种新兴的氢能技术,其能够将太阳能转化为化学能,从水中直接产生氢气,具有很好的前景。
本文将探讨光催化水分解产氢机理的研究与优化。
一、光催化水分解产氢机理光催化水分解产氢机理简单来说就是通过光催化材料吸收阳光能量,高效地催化水分子分解,同时产生氧气和氢气。
在此过程中,催化材料起着重要的作用。
催化材料分为三类:基于金属氧化物的催化剂、基于半导体的催化剂和基于复杂金属体系的催化剂。
其中基于半导体的催化剂是目前研究最为广泛的一种。
基于半导体的光催化材料一般包括锐钛矿型吸光物、氧化物、混合氧化物、多元复合材料等。
这些材料的光响应区域涵盖了紫外-可见-近红外波段,其中狄克斯特(TiO2)和β-Ga2O3两种材料具有较高的光催化活性。
这是由于在激光器照射下,材料表面形成了带正电荷和带负电荷的电子空穴对,进而使得水分子发生光解反应,生成氧气和氢气。
二、光催化水分解产氢机理的优化尽管光催化水分解产氢技术具有很好的前景,但是在实际应用中,其产氢量十分有限,甚至达不到商业应用水平。
因此,对于光催化水分解产氢过程的优化和增效研究十分重要。
主要从以下几个方面来进行优化:1. 催化剂的改良催化剂的优良特性需要满足多种因素,包括光吸收性、光得%,高电导、易被还原、反应物的吸附能力等。
同时,催化剂的表面积、结构、晶体形态、比表面积等也对其光催化反应活性影响巨大。
因此,如何设计和合成出理想的催化剂材料是当前亟待解决的问题。
2. 增加可见光吸收区域目前,阳光中大部分光线是可见光,在太阳能使用和研究中具有极高的利用价值。
MOFs材料光催化降解性能及改进研究进展

可见光光催化降解技术由于可以利用太阳能资源,而被认为是一种绿色安全的环境治理方法。
金属有机骨架(MOF)材料作为一种半导体光催化剂,因其有序的多孔结构、大的比表面积、可调控的物理化学性能,而在光催化领域被广泛应用[1-3]。
以MOFs材料作为光催化剂,通过光催化降解技术,利用产生的光生电子和空穴与废水中的污染物分子发生氧化还原反应,产生具有强氧化性的羟基自由基(·OH)活性物种,可将污染物分子氧化成无毒无害的水和二氧化碳。
可见光下的光催化反应条件温和,对有机污染物降解效率高,能有效避免添加化学试剂导致的二次污染,具有良好的应用前景。
金属有机骨架材料由金属离子/团簇和具有中等强配位键的有机配体构成[4-5]。
由于有机配体孤电子对已占据的分子轨道(HOMO)和金属离子空轨道的未占据分子轨道(LUMO)分别对应于无机半导体中的价带和导带,因此一些MOFs材料在光照条件下能表现出与半导体相似的性质[6],从而应用于光催化领域。
由于有机配体的结构和金属离子的电子构象不同,导致部分金属有机骨架材料具有较高的带隙值和快速的电荷复合,从而使得部分金属有机骨架材料存在光捕获能力弱、反应活性位点少、电子空穴难分离等问题[7-9]。
因此,需要采取一些方法改进其光催化活性。
如通过改变金属有机骨架材料的结构组成调控其带隙值,从而提高对可见光的利用率,或者与一些导电性良好的材料复合形成异质结构,以避免光生载流子的快速复合。
本文将从改变MOFs材料的组成、金属离子掺杂、与其他材料复合及MOFs材料缺陷优化等方面,总结提高金属有机骨架材料光催化活性的方法。
MOFs材料光催化降解性能及改进研究进展摘 要:光催化降解技术由于可以利用太阳能资源而被认为是一种绿色安全的环境治理方法。
金属有机骨架(MOF)材料作为一种半导体光催化剂,因其有序的多孔结构、大的比表面积、可调控的物理化学性能而在光催化领域被广泛应用。
诸多研究表明:可以从MOF材料结构、MOF复合材料和MOF的缺陷三个方面提高其光催化降解性能;具体策略包括改变配体结构组成、金属离子掺杂、与无机半导体材料复合、贵金属颗粒负载、与碳材料复合及结构缺陷优化等。
金属有机框架(MOFs)材料光解水制氢研究进展

金属有机框架(MOFs)材料光解水制氢研究进展
陈斯;钱庆荣;薛珲
【期刊名称】《再生资源与循环经济》
【年(卷),期】2024(17)4
【摘要】随着全球变暖、环境污染和能源短缺等问题的日益严重,发展绿色可再生能源迫在眉睫。
通过光催化分解水制备氢气是实现更高层次可持续性的理想策略。
金属有机框架(MOFs)材料因其结构可控性、高孔隙性和独特的半导体特性,成为该领域的研究热点。
国内外学者对其用于光解水制氢进行了大量的研究,并取得了一定的进展。
系统的总结了基于MOFs材料及其复合材料的光催化剂在分解水制氢方面的应用,分析了其高效产氢的原因及可能的产氢机理,总结了MOFs基光催化剂的优势和局限,望能对开发新型高效的MOFs光催化剂提供参考。
【总页数】6页(P4-9)
【作者】陈斯;钱庆荣;薛珲
【作者单位】福建师范大学环境与资源学院、碳中和现代产业学院
【正文语种】中文
【中图分类】TQ032;F113.3
【相关文献】
1.通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能
2.金属-有机框架物(MOFs)储氢材料研究进展
3.异硫氰酸荧光素后修饰的金属有机三
元环光解水制氢4.金属有机框架(MOFs)材料用于重金属离子检测及吸附的研究进展5.钛基金属有机框架材料光催化分解水制氢的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
新型多结纳米光催化剂的制备及在光解水制氢中的性能研究

新型多结纳米光催化剂的制备及在光解水制氢中的性能研究蔡良骏;严潇枭;任嗣利;刘洪霞
【期刊名称】《石油与天然气化工》
【年(卷),期】2024(53)2
【摘要】目的在纳米光催化制氢反应中,传统单p-n结催化剂受限于禁带宽度,仅能吸收太阳光谱特定区域的光子,对太阳能的利用效率不高。
为提高催化剂对太阳能的利用效率,研究制备了一种高活性的光解纯水催化剂。
方法受多结太阳能电池的启发,采用简单的浸渍法,将禁带宽度不同的半导体材料p-n结按照禁带宽度由低向高的叠加连接,制得一种新型多结纳米光催化剂,并用XRD、XPS、TEM技术对催化剂的结构进行表征。
结果多结纳米光催化剂进行光解纯水制氢反应3 h后,产氢量为15.53μmol,是传统单p-n结催化剂的93倍。
结论该结果为合成更稳定的多结纳米光催化剂,实现高效的太阳能转换提供了新的方向和思路。
【总页数】8页(P55-61)
【作者】蔡良骏;严潇枭;任嗣利;刘洪霞
【作者单位】矿冶环境污染防控江西省重点实验室;江西理工大学资源与环境工程学院;江西省环境工程职业学院
【正文语种】中文
【中图分类】O64
【相关文献】
1.可见光活性的Ru掺杂TiO_2光催化剂的制备及光解水制氢性能研究
2.Cu2(OH)2CO3-Zn0.5Cd0.5S光催化剂的制备及光解水制氢性能研究
3.新型等离子光催化剂纳米金-钛酸锌复合物的制备与光解水制氢性能
4.W18O49/C-TiO2直接Z型光催化剂的制备及光解水制氢性能
5.Ce掺杂六方相WO_3光催化剂的制备及其光解水制氢性能
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zr-MOFs基复合光催化剂的电荷转移及其光解水制氢性能研究金属-有机框架材料(MOFs)具有多孔性、超高的比表面积、不饱和金属位点及可调控的结构与功能等特点,也被称之为“未来窄带系半导体材料”,目前广泛应用于能源转换与环境领域。
然而,MOFs 相对较差的光吸收能力及高的光生电子-空穴对复合机率限制了其在光催化分解水领域的应用。
因此,设计具有高效光生电子-空穴对分离与转移能力的催化剂,对提高光解水制氢效率具有十分重要的意义。
为此,本论文选择以水稳定性优异及多孔的锆基金属-有机框架材料(UiO-66-NH<sub>2</sub>)为载体,设计合成不同类型的具有高效电荷分离与转移效率的UiO-66-NH<sub>2</sub>基复合光催化剂。
系统表征其结构、形貌与光催化分解水产氢性能,并结合光电化学性能测试、瞬/稳态荧光光谱、电子顺磁共振、第一性原理计算等手段探讨复合光催化剂中光生电子-空穴对的分离和转移机制。
相关研究成果如下:(1)通过一步水热法将
H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>固载在具有多孔性和水稳定型优异的UiO-66-NH<sub>2</sub>中,制备出
PW<sub>12</sub>@UiO-NH<sub>2</sub>复合光催化剂。
旨在利用多金属氧酸盐(POMs)所具有的可调控的氧化还原活性和多电子转移等特性,构筑POMs@MOFs复合材料,以期有效改善单一MOFs光催化过程中光生电子-空穴对易于复合的问题。
光催化分解水产氢和降解RhB性能测试结果表明,与UiO-66-NH<sub>2</sub>相比,RhB的降解和光催化分解水产氢性能均明显提升。
结合光电化学性能测试以及瞬/稳态
荧光光谱测试,结果表明PW<sub>12</sub>可作为良好的电子受体使
光生电子能够有效从UiO-66-NH<sub>2</sub>转移至
PW<sub>12</sub>,从而提高光生载流子的分离效率,优化光催化性能。
(2)采用一步水热法将Ti<sub>3</sub>C<sub>2</sub>纳米片与
UiO-66-NH<sub>2</sub>复合,制备出具有肖特基势垒效应异质结结
构的复合光催化剂(TU)。
旨在利用二维材料MXenes的优异导电性及亲水性,可在金属/催化剂界面构筑肖特基异质结,从而改善其光生电
子-空穴对的分离效率,提高光解水制氢性能。
第一性原理计算结果表明,Ti<sub>3</sub>C<sub>2</sub>纳米片(O-TC)具有更正的费米能级和相对较低的吸附氢原子吉布斯自由能(|Δ
G<sub>H*</sub>|=0.08≈0)。
结合光电化学测试、瞬/稳态荧光光谱
及电子顺磁共振技术分析,证明在Ti<sub>3</sub>C<sub>2</sub>与UiO-66-NH<sub>2</sub>界面处构筑了肖特基势垒,光生电子-空穴对
在空间上有效分离和转移,使光生电子大量富集在
Ti<sub>3</sub>C<sub>2</sub>纳米片表面,从而优化光催化分解水
产氢性能。
(3)将Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes在惰性气氛中退火,得到
Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>复合物,通过一步
水热法,制备出具有多种电荷转移路径的
Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>/UiO-66-NH<sub>2
</sub>复合光催化剂。
旨在利用原位生成的
Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>复合物,进一步促
进载流子的分离与转移。
结合光电化学测试及瞬/稳态荧光光谱分析,结果表明,该材料中存在
Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>/UiO-66-NH<sub>2 </sub>、Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>和
Ti<sub>3</sub>C<sub>2</sub>/UiO-66-NH<sub>2</sub>三种具有肖特基势垒效应的界面,使其在光催化过程中存在多种电荷转移的路径,进一步优化电荷转移方式,有效改善其光催化分解水产氢性能。