人教版七年级下册一元二次方程练习题
一元二次方程单元测试题含答案

第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。
一元二次方程100道计算题练习附答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程练习题 (含答案)

一元二次方程练习题题号一、填空题二、选择题三、多项选择四、简答题五、计算题总分得分一、填空题(每空5分,共30分)1、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .2、已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.3、已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是4、已知m、n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是5、若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2= .6、一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则= .二、选择题(每空5 分,共35分)7、下列选项中一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0 8、一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=29、将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米 B.2米 C.3米 D.4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=1514、由一元二次方程x2+px+q=0的两个根为p、q,则p、q等于()A.0B.1C.1或-2D.0或1评卷人得分评卷人得分三、多项选择(每空5 分,共5分)15、方程的两根分别为,,且,则的取值范围是.四、简答题(每题10 分,共110 分)16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.评卷人得分评卷人得分(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.25、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?26、已知:平行四边形ABCD的两边AB、BC的长是关于的方程的两个实数根.(1)试说明:无论取何值方程总有两个实数根(2)当为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?五、计算题(每题5分,共35 分)27、用恰当的方法解下列方程:28、解方程:29、x2﹣7x﹣18=0.30、2x2+12x﹣6=031、解方程:.评卷人得分参考答案一、填空题1、﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.2、k<3 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.4、4 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】先根据判别式的意义确定a≤2,再根据根与系数的关系得到m+n=2a,然后利用a的取值范围确定m+n的最大值.【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的判别式.5、16 .【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.6、﹣.【考点】根与系数的关系.【分析】由根与系数的关系可得x1+x2=﹣m,x1•x2=2m,继而求得答案.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8、D【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9、D【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【分析】设每次降价的百分率为x,则第一次降价后的售价为200(1﹣x)元,第二次降价后的售价为200(1﹣x)(1﹣x)元,根据第二降价后的售价为128元建立方程求出其解即可.【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C.【点评】本题考查了列一元二次方程解降低率的问题的运用,一元二次方程的解法的运用,解答时根据降低率的数量关系建立方程是关键,检验根是否符合题意是容易忘记的过程.11、C【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+33x﹣x2=20×33﹣510,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C13、B【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.14、C三、多项选择15、.四、简答题16、解:因式分解得:,………….5分所以或. ………….7分因为,所以,,………….9分因为两根都是正整数,所以,. ………….12分17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m ≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m ≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。
一元二次方程与二次函数测试题

一元二次方程与二次函数测试题1一.选择题(共10小题)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.53.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.4.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=15.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠16.函数y=﹣x2+1的图象大致为()A.B.C. D.7.已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣38.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2D.y2<y3<y1 9.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.10.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m二.填空题(共10小题)11.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为.12.2x2﹣x﹣1=0的二次项系数是,一次项系数是,常数项是.13.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.14.一元二次方程x2+3﹣2x=0的解是.15.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=.16.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有(填写序号)18.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.19.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.20.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.三.解答题(共10小题)21.解方程(1)3x(x﹣1)=2﹣2x (2)x2+8x﹣9=0.(3)(x﹣3)2=3﹣x (4)3x2+5(2x+1)=0.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.24.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?25.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.一元二次方程与二次函数测试题1参考答案与试题解析一.选择题(共10小题)1.(2016•新都区模拟)下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.【解答】解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选A.2.(2016春•无锡校级期中)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.5【分析】根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.3.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.4.(2016•夏津县二模)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.5.(2016•邹城市一模)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠1【分析】根据一元二次方程的根的判别式,以及二次项系数不等于0,建立关于k的不等式组,求出k的取值范围.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,方程有两个不相等的实数根.∴△=b2﹣4ac=4+4(1﹣k)=8﹣4k>0∴k<2又∵一元二次方程的二次项系数不为0,即k≠1.∴k<2且k≠1.故选C.6.(2016•当涂县三模)函数y=﹣x2+1的图象大致为()A.B.C.D.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B.7.(2016•滨州一模)已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3【分析】现根据函数解析式,画出草图.A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.【解答】解:∵y=x2﹣4x+a,∴对称轴x=2,此二次函数的草图如图:A、当x<1时,y随x的增大而减小,此说法正确;B、当△=b2﹣4ac=16﹣4a≥0,即a≤4时,二次函数和x轴有交点,此说法正确;C、当a=3时,不等式x2﹣4x+a>0的解集是x<1或x>3,此说法错误;D、y=x2﹣4x+a配方后是y=(x﹣2)2+a﹣4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x+1)2+a﹣3,把(1,﹣2)代入函数解析式,易求a=﹣3,此说法正确.故选C.8.(2016•滨江区模拟)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.9.(2016•东莞市二模)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A. B. C.D.【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选D.10.(2015•佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.二.填空题(共10小题)11.(2016春•惠山区期末)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a 的值.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.12.(2015秋•凤庆县校级期末)2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.13.(2016•高安市一模)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是3.【分析】先求出两根之积与两根之和的值,再将+化简成两根之积与两根之和的形式,然后代入求值.【解答】解:∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根;∴α+β=﹣2m﹣3,α•β=m2;∴+===﹣1;∴m2﹣2m﹣3=0;解得m=3或m=﹣1;∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根;∴△=(2m+3)2﹣4×1×m2=12m+9>0;∴m>﹣;∴m=﹣1不合题意舍去;∴m=3.14.(2015•天水)一元二次方程x2+3﹣2x=0的解是x1=x2=.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.15.(2012•滕州市校级模拟)抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=﹣1.【分析】根据抛物线y=﹣x2﹣2x+m,若其顶点在x轴上可知其顶点纵坐标为0,故可得出关于m的方程,求出m的值即可.【解答】解:∵抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,∴=0,解得m=﹣1.故答案为:﹣1.16.(2008秋•周村区期中)已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是y=﹣x2+5x.【分析】把三点坐标代入函数解析式,即可得到关于a,b,c的方程组,即可求得a,b,c的值,求出函数解析式.【解答】解:把点A(5,0)、B(6,﹣6)、(0.0)代入抛物线y=ax2+bx+c,得:解得:则抛物线的函数关系式是y=﹣x2+5x.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有②③(填写序号)【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出0>y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<2时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2,∴④错误;故答案为:②③.18.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.19.(2015•东光县校级二模)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为y=﹣(x﹣4)2﹣2.【分析】一条抛物线经过平移后与抛物线y=﹣x2+2重合,所以所求抛物线的二次项系数为a=﹣,再根据顶点坐标写出表达式则可.【解答】解:根据题意,可设所求的抛物线的解析式为y=a(x﹣h)2+k;∵此抛物线经过平移后与抛物线y=﹣x2+2重合,∴a=﹣;∵此抛物线的顶点坐标为(4,﹣2),∴其解析式为:y=﹣(x﹣4)2﹣2.20.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64cm2.【分析】设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S 即可表示成x的函数,根据函数的性质即可求解.【解答】解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.三.解答题(共10小题)21.(2014秋•成都期中)解方程(1)3x(x﹣1)=2﹣2x(2)x2+8x﹣9=0.【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣;(2)x2+8x﹣9=0,(x+9)(x﹣1)=0,x+9=0,x﹣1=0,x1=﹣9,x2=1.22.(2013秋•武穴市校级月考)解方程:(3x﹣1)(x﹣1)=(4x+1)(x﹣1).【分析】分析本题容易犯的错误是约去方程两边的(x﹣1),将方程变为3x﹣1=4x+1,所以x=﹣2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.【解答】解:(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.23.(2013秋•嘉峪关校级期中)解方程(1)(x﹣1)(x+3)=12(2)(x﹣3)2=3﹣x(3)3x2+5(2x+1)=0.【分析】(1)方程整理为一般形式后,左边利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(3)方程整理为一般形式后,找出a,b,c的值,代入求根公式即可求出值.【解答】解:(1)方程整理得:x2+2x﹣15=0,分解因式得:(x﹣3)(x+5)=0,解得:x1=3,x2=﹣5;(2)方程变形得:(x﹣3)2+(x﹣3)=0,分解因式得:(x﹣3)(x﹣3+1)=0,解得:x1=3,x2=2;(3)方程整理得:3x2+10x+5=0,这里a=3,b=10,c=5,∵△=100﹣60=40,∴x==.24.(2015秋•永川区校级期中)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.25.(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.【分析】首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.【解答】解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.26.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?【分析】(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴;(2)对称轴是x=﹣1,开口向下,根据对称轴及开口方向确定函数的增减性;(3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值范围.【解答】解:(1)∵y=﹣﹣x+4=﹣(x2+2x﹣8)=﹣[(x+1)2﹣9]=﹣+,∴它的顶点坐标为(﹣1,),对称轴为直线x=﹣1;(2)∵抛物线对称轴是直线x=﹣1,开口向下,∴当x>﹣1时,y随x增大而减小;(3)当y=0时,即﹣+=0解得x1=2,x2=﹣4,而抛物线开口向下,∴当﹣4<x<2时,抛物线在x轴上方.27.(2011•乌鲁木齐)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?【分析】(1)用每台的利润乘以销售量得到每天的利润.(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.【解答】解:(1)y=(x﹣20)(﹣2x+80),=﹣2x2+120x﹣1600;(2)∵y=﹣2x2+120x﹣1600,=﹣2(x﹣30)2+200,∴当x=30元时,最大利润y=200元;(3)由题意,y=150,即:﹣2(x﹣30)2+200=150,解得:x1=25,x2=35,又销售量W=﹣2x+80随单价x的增大而减小,所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出b、c的值即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P即为所求,求出直线BC与x=2的交点即可.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).29.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S=S△ABC+S△BCD=×4×4+×4×2=8+4=12.四边形ABDC30.(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.。
(完整版)一元二次方程全章测试题(基础卷)

一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。
解一元二次方程练习题(配方法公式法)

解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程测试题15

1.下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.(2008山东潍坊)已知反比例函数y ab x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( )A 7或-1B -7或1C 7D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 2 6.方程0134)2(||=++++m x xm m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±2 7.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c=0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根8.下面是某同学在一次数学测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B 若3x 2=6x ,则x=2 C .02=-+k x x 的一个根是1,则k=2 D .若分式()xx x 2- 的值为零,则x=2 9.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D . 不能确定10.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.11.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.12.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是13.(2008江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p 14.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,ac x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 15.若()()06522222=-+-+y x yx ,则=+22y x __________。
初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。