初中数学七年级一元二次方程的四种解法

合集下载

人教版初中数学一元二次方程知识点总结(含答案)

人教版初中数学一元二次方程知识点总结(含答案)

元二次方程一、本章知识结构框图2a二、具体内容(一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式:2.正确识别一元二次方程中的芥项及各项的系数(1)明确只有当二次项系数a^O时,整式方程ax2+bx + c = O才是一元二次方程。

(2)各项的确定(包括各项的系数及各项的未知数).(3)熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解4.列出实际问题的一元二次方程(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程:3.体会不同解法的相互的联系:4.值得注意的几个问题:$(1)开平方法:对于形如x2 = n或(0¥ + /,)2=〃(。

0)的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解-形如/ = 〃的方程的解法: 当〃>0时,X = ±yfn ;当n = 0 时,Xj = %, = 0 ;当«<0时,方程无实数根。

(2)配方法:通过配方的方法把一元二次方程转化为(x + 〃i)2=,?的方程,再运用开平方法求解。

配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;②“系数化1”:根据等式的性质把二次项的系数化为1:③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为(X + 〃?)2=〃的形式:④求解:若77 >0时,方程的解为x = —土丁?,若〃<0时,方程无实数解。

(3)公式法:一元二次方程ax2+bx + c = 0(a^0)的根工=一”±?';耻:2a当b2-4ac>。

自学初中数学资料 一元二次方程的解法

自学初中数学资料 一元二次方程的解法

自学资料一、一元二次方程的解法(直接开平方法)第1页共8页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【知识探索】1.一般地,对于方程,(1)当时,根据平方根的意义,方程有两个不等的实数根:,;(2)当时,方程有两个相等的实数根:;(3)当时,因为对任意实数,都有,所以方程无实根.【错题精练】例1.解一元二次方程的步骤是:(1)把原方程变形为__________ (2)根据平方根意义,①当,且a,c异号时,方程的解是__________ .②当,时,原方程的解是,当,且a,c同号时,原方程__________例2.一元二次方程(x−1)2=2的解是()A. x1=−1−√2,x2=−1+√2;B. x1~=1−√2,x2=1+√2;C. x1~=3,x2~=−1;D. x1=1,x2~=−3.例3.已知,则的值为__________【举一反三】1.关于x的方程能用直接开平方法求解的条件是__________2.若实数a,b满足(a2+b2−3)2=25,则a2+b2的值为()A. 8;B. 8或-2;C. -2;D. 28.3.的根是__________4.用直接开平方法解方程,方程的根为__________第2页共8页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训二、一元二次方程的解法(配方法)【知识探索】1.配方法解方程()的一般步骤是:(1)通过移项、两边同除以二次项的系数,将原方程变形为(、是已知数)的形式;(2)通过方程两边同时加“一次项系数一半的平方”,将的左边配成一个关于的完全平方公式,方程化为;(3)①当时,再利用开平方法解方程;②当时,原方程无实数根.【说明】(1)对于一般的一元二次方程,都可以用配方法来解;(2)由方程(),把移到等式右边,在两边同时除以,得.【错题精练】例1.已知x2−2(n+1)x+4n是一个关于x的完全平方式,则常数n= .例2.用配方法解下列方程:例3.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成()A. (x﹣n+5)2=1B. (x+n)2=1C. (x﹣n+5)2=11D. (x+n)2=11【举一反三】1.把方程13x2−x−5=0,化成(x+m)2=n的形式得()A. (x−32)2=294;第3页共8页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训B. (x−32)2=272;C. (x−32)2=514;D. (x−32)2=694.2.关于x的一元二次方程x2−mx−2=0的一个根为﹣1,则m的值为.3.已知可变为的形式,则__________ 4.用配方法解下列方程:5.用适当的数填空__________ =__________三、一元二次方程的解法(因式分解法)【知识探索】1.通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,再使这两个一次式分别等于0,从而实现降次.像这样解一元二次方程的方法叫做因式分解法.【错题精练】例1.已知2x(x+1)=x+1,则x=.例2.已知实数(x2−x)2−4(x2−x)−12=0,则代数式x2−x+1的值为.第4页共8页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例3.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为__________ .【举一反三】1.解方程:2.已知实数x满足(x2−x)2−3(x2−x)−4=0,则代数式x2−x的值为.3.一个三角形的两边长为3和6,第三边的边长是方程的根,则这个三角形的周长是__________ .4.解下列方程(1)x2−2x=0;(2)3x(x−1)=2−2x.四、一元二次方程的解法(公式法)【知识探索】1.当△0时,方程()的实数根可写为的形式,这个式子叫做一元二次方程()的求根公式.【说明】求根公式表达了用配方法解一般的一元二次方程()的结果.【错题精练】例1.已知x=−b+√b2−4c(b2−4c>0),则x2+bx+c的值为.2例2.若实数a、b满足,则=__________ .第5页共8页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训例3.已知关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=−1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【举一反三】1.一元二次方程x2-2x-m=0可以用公式法解,则m=().A. 0B. 1C. -1D. ±12.若方程的一个根为,则另一根为__________ .3.徐涛同学用配方法推导关于x的一元二次方程的求根公式时,对于的情况,他是这样做的:小明的解法从第__________ 步开始出现错误;这一步的运算依据应是__________ .第6页共8页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训1.用适当方法解下列方程:(1)(2)(3)(4)2.方程化为的形式是__________ 。

一元二次方程的解法_直接开平方法_第1课时

一元二次方程的解法_直接开平方法_第1课时
知识回顾
什么叫做平方根
如果一个数的平方等于a,那么这个数就叫 做a的平方根。用式子表示:
若x2=a,则x叫做a的平方根。
记作x= a
即x= a 或x= 9的平方根是__±__3__

4
25
a
的平方根是___52___
尝试(利用平方根定义)
如何解方程(1)x2=4,(2)x2-2=0呢?
解(1)∵x是4的平方根 ∴x=±2
即此一元二次方程的解(或根)为: x1=2,x2 =-2
(2)移项,得x2=2 ∵ x就是2的平方根
∴x= 2
2 2 即此一元二次方程的解为: x1=
,x2=
典型例题
例1解下列方程
(1)x2-1.21=0
(2)4x2-1=0
解(1)移项,得x2=1.21
∴x=±1.1
即 x1=1.1,x2=-1.1
则m、n必须满足的条件是( B )
A.n=0
B.m、n异号
C.n是m的整数倍 D.m、n同号
练一练
3、解下列方程: (1)(x-1)2 =4 (2)(x+2)2 =3 (3)(x-4)2-25=0 (4)(2x+3)2-5=0 (5)(2x-1)2 =(3-x)2
练一练
4一个球的表面积是100cm2, 求这个球的半径。 (球的表面积s=4R2,其中R是 球半径)
变成(x+h)2=k (k≥0)的形式;
解:(1)移项,得(x-1)2=4 ∴x-1=±2
即x1=3,x2=-1
例2解下列方程: 典型例题
(2) 12(3-2x)2-3 = 0
分析:第2小题先将-3移到方程的右边,再 两边都除以12,再同第1小题一样地去解,然后 两边都除以-2即可。

(完整版)初中数学一元二次方程知识点总结与练习

(完整版)初中数学一元二次方程知识点总结与练习

知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点: (1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程; (4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a ≠0);3。

一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

4。

一元二次方程的解法 (1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p )2=q 的形式,如果q ≥0,方程的根是x=—p ±√q ;如果q <0,方程无实根. (3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

初中数学一元二次方程的解根公式讲解四

初中数学一元二次方程的解根公式讲解四

初中数学一元二次方程的解根公式讲解四一元二次方程根教学设计 4一、复习引入1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。

2、有上题可知一元二次方程的系数与根有着密切的关系。

其实我们已学过的.求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。

两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程x1x2x1+x2x1、 x2x2—2x=0x2+3x—4=0x2—5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程x1x2x1+x2x1、 x22x2—7x—4=03x2+2x—5=05x2—17x+6=0小结:1、根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p,x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。

)(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。

即:对于方程 ax2+bx+c=0(a≠0)(可以利用求根公式给出证明)例1:不解方程,写出下列方程的两根和与两根积:例2:不解方程,检验下列方程的解是否正确?例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)例4:已知方程的一个根是,求另一根及k的值、变式一:已知方程的两根互为相反数,求k;变式二:已知方程的两根互为倒数,求k;三、巩固练习1、已知方程的一个根是1,求另一根及m的值、2、已知方程的一个根为,求另一根及c的值、四、应用拓展1、已知关于x的方程的一个根是另一个根的2倍,求m 的值、2、已知两数和为8,积为9,求这两个数、3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?五、归纳小结1、根与系数的关系:2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零、六、布置作业1、不解方程,写出下列方程的两根和与两根积。

解一元二次方程及不等式的解法

解一元二次方程及不等式的解法

适用能因式分解的方程解一元二次方程 解法一元二次方程:因式分解法;公式法1、因式分解法移项:使方程右边为0因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组 由A?B=0,则A=0或B=0,解两个一元一次方程2、公式法将方程化为一般式写出a 、b 、c求出ac b 42-,若<0,则无实数解若>0,则代入公式求解解下列方程:1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2=648、5x 2-52=09、8(3-x )2–72=0 10、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=012、x 2+2x+3=013、x 2+6x -5=014、x 2-4x+3=015、x 2-2x -1=016、2x 2+3x+1=017、3x 2+2x -1=018、5x 2-3x+2=019、7x 2-4x -3=020、-x 2-x+12=021、x 2-6x+9=022、22(32)(23)x x -=-23、x 2-2x-4=024、x 2-3=4x25、3x 2+8x -3=026、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3)2=x 2-929、-3x 2+22x -24=030、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=032、3(x-5)2=x(5-x)33、(x +2)2=8x 34、(x -2)2=(2x +3)235、2720x x +=36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+=39、()2231210x --=40、2223650x x -+=41、()()2116x x ---=42、()()323212x x -+=44、22510x x +-=45、46、21302x x ++=、 二.利用因式分解法解下列方程(x -2)2=(2x-3)2042=-x x 3(1)33x x x +=+x 2-23x+3=0()()0165852=+---x x 三.利用开平方法解下列方程51)12(212=-y 4(x-3)2=2524)23(2=+x四. 利用配方法解下列方程7x=4x 2+201072=+-x x五. 利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x2+5(2x+1)=0 六. 选用适当的方法解下列方程(x +1)2-3(x +1)+2=022(21)9(3)x x +=-2230x x --= 2)2)(113(=--x x x (x +1)-5x =0.3x (x -3)=2(x -1)(x +1).一元二次不等式及其解法知识点一:一元二次不等式的定义(标准式)任意的一元二次不等式,总可以化为一般形式:或. 知识点二:一般的一元二次不等式的解法一元二次不等式或的解集可以联系二次函数的图象,图象在轴上方部分对应的横坐标值的集合为不等式的解集,图象在轴下方部分对应的横坐标值的集合为不等式的解集.设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:二次函数()的图象039922=--x x有两相异实根有两相等实根无实根知识点三:解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;(2)写出相应的方程,计算判别式:①时,求出两根,且(注意灵活运用因式分解和配方法);②时,求根;③时,方程无解(3)根据不等式,写出解集.规律方法指导1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数例1.解下列一元二次不等式(1);(2);(3)(1)解:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.(1)练习:解下列不等式(2) ; ;02732<+-x x ;0262≤+--x x ;01442<++x x ;0532>+-x x062=--x x 01522=--x x ;01662=++x x ;08232≥+--x x ;0542≥+-x x ;31≥-x x ;。

初中数学联赛题型解读四:一元二次方程

初中数学联赛题型解读四:一元二次方程
下面我们通过统计近 15 年初中数学联赛中一元二次方程的分值(注:至少在结构和形 式上是对方程尤其是一元二次方程的考察才会计入分值统计),帮助大家更好的了解一元二 次方程这个模块在联赛中的分值比重。
2001~2016年联赛二次方程考察分值
50
45
45
45 39
40 35
34
32
39 32
30
27
27
x2

c a

b a
(4) 一元二次方程的四种解法:开方;配方;公式法;因式分解.
2. 一元二次方程的常见问题
简单的介绍一下初中阶段可以学习和使用的 10 种常见因式分解的方法
(1) 可转化为一元二次方程
绝对值方程;分式方程;根式方程;
(2) 判别式
利用判别式的非负性
(3) 根系关系
通过根的性质或方程,找到系数之间的关系或方程
二、一元二次方程的基础知识与常见问题
1. 一次方程组的概念与解法
对于一元二次方程 ax2 bx c 0a 0
(1) 判别式: b2 4ac
1
(2)
求根公式: x1,2 b
b2 4ac , 0
2a
(3)
根系关系:

x1 x1 x2
【例3】
(2012
年竞赛)如果关于
x
的方程
x2

kx

3 4
k2

3k

9 2

0
的两个实数根分别为
x1

x2 ,那么
x 2011 1
x 2012 2
的值为_________.
【解析】

初中数学《一元二次方程》全章讲义

初中数学《一元二次方程》全章讲义

初中数学《一元二次方程》全章讲义一元二次方程的解法包括四种:因式分解法、配方法、公式法和图像法。

1、因式分解法:将一元二次方程化为两个一次因式的乘积,使每个一次因式等于0,从而求出方程的解。

2、配方法:通过加减平方完成方程的配方,将一元二次方程化为一个完全平方式的形式,从而求出方程的解。

3、公式法:利用求根公式求出一元二次方程的解,其中求根公式为x=(-b±√(b²-4ac))/2a。

4、图像法:通过绘制一元二次方程的图像,找出方程在x轴上的根,从而求出方程的解。

例1、用因式分解法解方程x²-3x-10=0.解:将方程化为(x-5)(x+2)=0,得到x=5或x=-2.例2、用配方法解方程2x²+5x-3=0.解:将方程改写为2(x+5/4)²-121/16=0,得到x=-3/2或x=1/2.例3、用公式法解方程3x²+4x-1=0.解:根据求根公式,得到x=(-4±√52)/6,化简后得到x=-1/3或x=1/2.例4、用图像法解方程x²-2x-3=0.解:绘制出方程的图像,找到x轴上的两个根,得到x=-1和x=3.一元二次方程的常用解法包括直接开平方法、配方法、求根公式法和因式分解法。

选择合适的解法可以按以下方法进行:当方程一边为完全平方式,另一边为非负数时,可用直接开平方法;当方程的一边为一次因式的乘积,而另一边可以分解为两个一次因式的乘积的形式时,运用因式分解法求解;当方程的一边较易配成含未知数的完全平方式,另一边为非负数时,常用配方法;当不便用上面三种方法时,就用求根公式法。

例如,对于方程$2x-8=\sqrt{x+2}$,可以使用直接开平方法求解;对于方程$(1-x)^2-9=0$,可以使用因式分解法求解;对于方程$2x(x-3)=5(x-3)$,可以使用配方法求解;对于方程$(4x+y)^2+3(4x+y)-4=0$,可以使用求根公式法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组知识点
1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二
元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元
一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一
次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的
解。

5、代入消元法解二元一次方程组:
(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做
代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:
1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个
未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”.
2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

3、解出这个一元一次方程,求出x的值,即“解”。

4、把求得的x值代入y=ax+b中求出y的值,即“回代”
5、把x、y的值用{联立起来即“联”}
6、加减消元法解二元一次方程组
(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简
称加减法。

(2)用加减消元法解二元一次方程组的解
1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数也不相等,那么就用适当的数
乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。

3、解这个一元一次方程,求得一个未煮熟的值,即“解”。

4、将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

5、把求得的两个未知数的值用{联立起来,即“联”。

二元一次方程组应用题
1、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
2、审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个
未知数;
3、找:找出能够表示题意两个相等关系;
4、列:根据这两个相等关系列出必需的代数式,从而列出方程组;
5、解:解这个方程组,求出两个未知数的值;
6、答:在对求出的方程的解做出是否合理判断的基础上,写出答案
一.解答题(共16小题)
1.求适合的x,y的值.
2.解下列方程组
(1)(2)
(3)(4).
3.解方程组:
4.解方程组:
(1);(2).5.解方程组:
(1)(2)
(3)(4)(5).
二、典型例题讲解
题型一、列二元一次方程组解决生产中的配套问题
1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,
贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套
题型二、列二元一次方程组解决行程问题
2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相
遇。

相遇后,拖拉机继续前进,汽车在相遇处停留1小时候后调转车头原速返回,在汽车再次出发后半小时后追上乐拖拉机,这时,汽车、拖拉机各行驶了多少千米?
3、一轮船从甲地到乙地顺流航行需4小时,从乙地到甲地逆流航行需6小时,那么一木筏由甲地
漂流到乙地需要多长时间?
题型三、列二元一次方程解决商品问题
4、在“五一”期间,某超市打折促销,已知A商品7.5折销售,B商品8折销售,买20件A商品
与10件B商品,打折前比打折后多花460元,打折后买10件A商品和10件B商品共用1090元。

求A、B商品打折前的价格。

题型四、列二元一次方程组解决工程问题
5、某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的一条大河的水引到城
市中来,把这个工程交给甲、乙两个施工队,工期为50天,甲、乙两队合作了30天后,乙队因另外有任务需要离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来后,为了保证工期,甲队保持现在的速度不变,乙队每天比原来多修0.4千米,结果如期完成,问:甲、乙两队原计划每天各修多少千米?
题型五:列二元一次方程组解决增长问题
6、某中学现有学生4200人,计划一年后初中在校学生增加8%,高中在校学生增加11%,这样全校
在校生将增加10%,则该校现在有初中生多少人?在校高中生有多少人?。

相关文档
最新文档