自动控制实验报告一-控制系统的稳定性分析
自动控制预实习报告

自动控制预实习报告
一、实习目的
1.了解自动控制系统的基本原理和组成。
2.掌握自动控制系统的建模和分析方法。
3.熟悉常见的自动控制系统及其应用。
4.培养动手能力和实践经验。
二、实习内容
1.自动控制系统概论
1.1 自动控制系统的定义和分类
1.2 自动控制系统的基本组成
1.3 自动控制系统的特点和应用领域
2.自动控制系统的数学模型
2.1 传递函数法
2.2 状态空间法
2.3 非线性系统建模
3.自动控制系统的性能分析
3.1 时域性能指标
3.2 频率域性能指标
3.3 稳定性分析
4.自动控制系统的设计
4.1 PID控制器设计
4.2 先进控制方法
5.实验和仿真
5.1 自动控制系统实验装置
5.2 MATLAB/Simulink仿真
三、实习要求
1.认真学习理论知识,掌握基本概念和分析方法。
2.积极参与实验和仿真,培养动手能力。
3.按时完成实习报告,总结实习心得。
四、实习安排
本实习为期4周,包括理论学习、实验和仿真环节。
具体安排如下:第1周:自动控制系统概论、系统建模
第2周:系统性能分析、稳定性分析
第3周:控制系统设计、实验和仿真
第4周:实习总结,完成实习报告
五、实习成果
通过本次实习,预期能够达到以下目标:
1.掌握自动控制系统的基本原理和分析方法。
2.熟悉常见的自动控制系统及其应用。
3.培养动手能力和实践经验。
4.提高综合运用所学知识的能力。
《自动控制理论》实验报告

1.实验接线:按模拟电路图2-5接线,检查无误后方可开启设备电源。
五、实验过程记录(数据、图表、计算等)
1、观察电机转速及示波器上给定值与反馈值的波形,分析其响应特性,结果记录在表4-1中。
2、记录较好的一组较好的控制参数,结果记录在表4-1中。
项目参数
IBAND
KPP
KII
KDD
超调
稳定<2%时间
例程中参数响应特性
0060H
1060H
1010H
0020H
自测一组较好参数
2.直接测量方法(测对象的闭环波特图)
(1)将示波器单元的“SIN”接至图2-5中的信号输入端,“CH1”路表笔插至图2-5中的4#运放的输出端。
(2)打开集成软件中的频率特性测量界面,弹出时域窗口,点击 按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:
点击极坐标图按钮 ,可以得到对象的闭环极坐标图。
(5)根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。
3.间接测量方法:(测对象的开环波特图)
将示波器的“CH1”接至3#运放的输出端,“CH2”接至1#运放的输出端。按直接测量的参数将参数设置好,将测量方式改为间接测量。此时相位差是指反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。测得对象的开环波特图。
自动控制原理实验指导

实验四 控制系统的稳定性判据一、实验目的熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB 函数用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.直接求根判稳roots()控制系统稳定的充要条件是其特征方程的根均具有负实部。
因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。
MATLAB 中对多项式求根的函数为roots()函数。
若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])ans =-4.0000-3.0000-2.0000-1.0000特征方程的根都具有负实部,因而系统为稳定的。
2.劳斯稳定判据routh ()劳斯判据的调用格式为:[r, info]=routh(den)该函数的功能是构造系统的劳斯表。
其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。
以上述多项式为例,由routh 判据判定系统的稳定性。
den=[1,10,35,50,24];[r,info]=routh(den)r=1 35 2410 50 030 24 042 0 024 0 0info=[ ]由系统返回的routh 表可以看出,其第一列没有符号的变化,系统是稳定的。
注意:routh ()不是MATLAB 中自带的功能函数,须加载routh.m 文件(自编)才能运行。
三、实验内容1.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验-典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
自动控制原理实验报告

自动控制原理实验报告班级自动化1204姓名焦雍堡学号12212153组员黄寅峰学号:12212124任课老师苗宇实验一经典环节及其阶跃响应1.各个环节的模拟电路图及其阶跃响应曲线(1)比例环节(2)惯性环节(3)积分环节(4)微分环节(5)比例微分环节2.由阶跃响应曲线计算出传递函数(1)惯性环节K=R2/R1=200K/100K=2 T=R2C=0.2G(S)=-2/(0.2S+1)由图可得,输入1000mv的阶跃信号,输出信号稳定在-2000mv 与理论值相符。
(2)积分环节T=RC=0.1G(S)=1/TS=10/s由图可得,R(S)=100/S,C(S)=1000/2S,与理论值相符。
实验二二阶系统阶跃响应1.画出二阶系统的模拟电路图,讨论经典二阶系统性能指标与ξ,nω的关系。
(1)R2=0,ξ=0,nω=10 rad/s(2)R2=50K,ξ=0.25,nω=10 rad/s(3)R2=100K,ξ=0.5,nω=10 rad/s(4)R2=150K,ξ=0.75,nω=10 rad/s(5)R2=200K,ξ=1,nω=10 rad/s(6)R2=400K,ξ=2,nω=10 rad/s(7)ξ=0.5,nω=100 rad/s2.不同ξ,n ω条件下的Mp 和ts 值。
实际测量值: n ωξMpTs (ms )10 rad/s 0 无 无穷 10 rad/s 0.25 41.1% 1098 10 rad/s 0.5 15.9% 665 10 rad/s 0.75 17.3% 333 10 rad/s 1 0 - 10 rad/s 2 0 - 100 rad/s0.515.3%73当ξ=0时,系统处于零阻尼状态,等幅振荡;当0<ξ<1时,系统处于欠阻尼状态,在相同自然角频率的情况下,通过改变ξ可以减小系统的响应时间并减少超调量,且在0.5<ξ<0.75存在最佳阻尼比。
自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一控制系统的稳定性分析
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响。
二、实验仪器
1.自动控制系统实验箱一台
2.计算机一台
三、实验内容
系统模拟电路图如图
系统模拟电路图
其开环传递函数为:
G(s)=10K/s(0.1s+1)(Ts+1)
式中K1=R3/R2,R2=100K,R3=0~500K;T=RC,R=100K,C=1f或C=0.1f两种情况。
四、实验步骤
1.连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电
路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。
检查无误后接通电源。
2.启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。
3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析]
5.取R3的值为50K,100K,200K,此时相应的K=10,K1=5,10,20。
观察
不同R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。
再把电阻R3由大至小变化,即R3=200k,100k,50k,观察不同R3值时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K 值,并观察U2的输出波形。
五、实验数据
1模拟电路图
2.画出系统增幅或减幅振荡的波形图。
C=1uf时:
R3=50K K=5:
R3=100K K=10
R3=200K K=20:
等幅振荡:R3=220k:
增幅振荡:R3=220k:
R3=260k:
C=0.1uf时:R3=50k:
R3=100K:
R3=200K:。