高考二轮复习 数学限时训练(29)

合集下载

高三数学二轮复习课余自主加餐训练“5选”解答题限时练二理

高三数学二轮复习课余自主加餐训练“5选”解答题限时练二理

“5+2选1〞解答题限时练(二)1.等比数列{a n }各项均为正数,a 1=1,公比为q .等差数列{b n }中,b 1=3,且{b n }前n 项与为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }通项公式;(2)设数列{c n }满足c n =32S n,求{c n }前n 项与T n .2.如图,四棱柱ABCD ­A 1B 1C 1D 1底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =AA 1=2.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)假设∠BAD =60°,求二面角B ­OB 1­C 余弦值.3.根据以往经历,某工程施工期间降水量X (单位:mm)对工期影响如下表:,900,0.7,0.9,求:(1)工期延误天数Y 均值与方差;(2)在降水量X 至少是300条件下,工期延误不超过6天概率.4.椭圆C :x 2a 2+y 2b 2=1(a >b >0)离心率为12,且经过点P ⎝⎛⎭⎪⎪⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 方程;(2)过F 1直线l 与椭圆C 相交于A ,B 两点,假设△AF 2B 内切圆半径为327,求以F 2为圆心且与直线l 相切圆方程.5.函数f (x )=a 2x+a ln x .(1)当a >0时,假设曲线f (x )在点(2a ,f (2a ))处切线过原点,求a 值;(2)假设函数f (x )在其定义域上不是单调函数,求a 取值范围; (3)求证:当a =1时,ln(n +1)>12+13+…+1n +1(n ∈N *).6.[二选一](选修4-4)在直角坐标系xOy 中,直线l 参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t(t 为参数),在以O 为极点,x 轴正半轴为极轴极坐标系中,曲线C 极坐标方程为ρ=4sin θ-2cos θ.(1)求直线l 普通方程与曲线C 直角坐标方程;(2)假设直线l 与y 轴交点为P ,直线l 与曲线C 交点为A ,B ,求|PA |·|PB |值.(选修4-5)设f (x )=|ax -1|.(1)假设f (x )≤2解集为[-6,2],求实数a 值;(2)当a =2时,假设存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 取值范围.答 案1.解:(1)设数列{b n }公差为d ,∵a 3+S 3=27,q =S 2a 2,∴q 2+3d =18,6+d =q 2,联立方程可得q =3,d =3, ∴a n =3n -1,b n =3n . (2)由(1)知S n =n 〔3+3n 〕2,c n =32S n =32·23·1n 〔n +1〕=1n-1n +1,∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.2.解:(1)证明:因为A 1O ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1O ⊥BD .因为四边形ABCD 是菱形, 所以CO ⊥BD . 因为A 1O ∩CO =O , 所以BD ⊥平面A 1CO . 因为BD ⊂平面BB 1D 1D , 所以平面BB 1D 1D ⊥平面A 1CO .(2)因为A 1O ⊥平面ABCD ,CO ⊥BD ,以O 为原点,方向为x 轴,y 轴,z 轴正方向建立如下图空间直角坐标系.因为AB =AA 1=2,∠BAD =60°, 所以OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2=1.那么B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,1), 所以=(0,3,1),=(1,3,1).设平面OBB 1法向量为n =(x ,y ,z ), 因为=(1,0,0),=(1,3,1),所以⎩⎪⎨⎪⎧x =0,x +3y +z =0,令y =1,得平面OBB 1一个法向量n =(0,1,-3).同理可求得平面OCB 1一个法向量为m =(1,0,-1). 所以cos<n ,m>=322=64.因为二面角B ­OB 1­C 平面角为钝角, 所以二面角B ­OB 1­C 余弦值为-64.3.解:(1)由条件与概率加法公式,有P (X ,P (300≤X , P (700≤X ,P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 分布列为:所以E (Y )3;D (Y )=(0-3)2×+(2-3)2×+(6-3)2×+(10-3)2×=9.8.故工期延误天数Y 均值为3,方差为9.8. (2)由题可得,P (X ≥300)=1-P (X , 又P (300≤X <900)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P 〔300≤X <900〕P 〔X ≥300〕=错误!=错误!.故在降水量至少是300条件下,工期延误不超过6天概率是67.4.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎪⎪⎫1,32坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)设直线l 方程为x =ty -1,代入椭圆方程得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 内切圆半径为r 0,那么有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327, 所以S △AF 2B =S △AF 1F 2+S △BF 1F 2 =12|F 1F 2|·|y 1-y 2| =12|F 1F 2|·〔y 1+y 2〕2-4y 1y 2 =12t 2+14+3t 2.而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|) =12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a=12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆方程为(x -1)2+y 2=2.5.解:(1)法一:因为f ′(x )=-a 2x 2+ax(x >0),所以f ′(2a )=14.又f (2a )=a2+a ln 2a =a ⎝⎛⎭⎪⎪⎫12+ln 2a , 故切线方程为y -a ⎝⎛⎭⎪⎪⎫12+ln 2a =14(x -2a ). 又切线过原点,所以将点(0,0)代入切线方程得-a ⎝⎛⎭⎪⎪⎫12+ln 2a =14×(-2a ),即ln 2a =0,解得a =12.法二:因为f ′(x )=-a 2x 2+a x (x >0),所以f ′(2a )=14.又切线过原点,所以切线方程为y =14x .当x =2a 时,y =a2.把点⎝⎛⎭⎪⎪⎫2a ,a 2代入函数f (x )=a 2x +a ln x 得a 2=a 2+a ln 2a ,解得a =12. (2)因为f ′(x )=-a 2x 2+a x =a 〔x -a 〕x2(x >0), 当a =0时,f ′(x )=0,此时f (x )=0, 显然f (x )在(0,+∞)上不是单调函数; 当a <0时,因为x >0,所以x -a >0,故f ′(x )<0,所以f (x )在(0,+∞)上是单调递减函数. 当a >0时,由f ′(x )>0得x -a >0,即x >a . 故f (x )在(0,a )上是单调递减函数, 在(a ,+∞)上是单调递增函数, 即f (x )在(0,+∞)上不是单调函数. 综上可知a 取值范围是[0,+∞). (3)证明:当a =1时,f (x )=1x+ln x ,由(2)知f (x )在(1,+∞)上是增函数,所以当x >1时,f (x )=1x +ln x >f (1)=1⇒ln x >1-1x.设x =n +1n ,n ∈N *,那么ln n +1n >1-n n +1=1n +1.所以ln 2+ln 32+ln 43+…+ln n +1n >12+13+…+1n +1,又ln 2+ln 32+ln 43+…+ln n +1n=ln ⎝ ⎛⎭⎪⎪⎫2×32×43×54×…×n +1n =ln(n +1), 所以ln(n +1)>12+13+…+1n +1.6.[二选一](选修4-4)解:(1)直线l 普通方程为x -y +3=0, ∵ρ2=4ρsin θ-2ρcos θ,∴曲线C 直角坐标方程为(x +1)2+(y -2)2=5.(2)将直线l 参数方程⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数)代入曲线C :(x +1)2+(y -2)2=5,得到t 2+22t -3=0,∴t 1t 2=-3,∴|PA |·|PB |=|t 1t 2|=3. (选修4-5)解:(1)显然a ≠0,当a >0时,解集为⎣⎢⎢⎡⎦⎥⎥⎤-1a ,3a ,那么-1a =-6,3a=2,无解;当a <0时,解集为⎣⎢⎢⎡⎦⎥⎥⎤3a,-1a ,令-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎪⎨⎪⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝ ⎛⎭⎪⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎪⎫32,+∞上单调递增,那么当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,那么实数m 取值范围是⎝ ⎛⎦⎥⎥⎤-∞,72.。

高考数学二轮复习小题限时训练2理

高考数学二轮复习小题限时训练2理

高考数学二轮复习小题限时训练2理一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只要一项为哪一项契合标题要求的.1.[2021·江西重点中学协作体第二次联考]集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =11-2x ,那么A ∩B =( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,+∞) C.⎝ ⎛⎭⎪⎫12,1 D .∅ 2.[2021·全国卷Ⅰ]设z =1-i1+i+2i ,那么|z |=( ) A .0 B.12C .1 D. 23.[2021·重庆七校联考]函数f (x )=⎩⎪⎨⎪⎧3-x+1x ≤0x a+log 2x x >0,假定f (f (-1))=18,那么实数a 的值是( )A .0B .1C .2D .34.[2021·山东日照联考]向量a =(-2,m ),b =⎝ ⎛⎭⎪⎫1,m 2,m ∈R ,那么〝a ⊥b 〞是〝m=2”的( )A .充要条件B .必要不充沛条件C .充沛不用要条件D .既不充沛也不用要条件5.[2021·江南十校二模]a =40.4,b =⎝ ⎛⎭⎪⎫12-0.6,c =-log 12422,那么a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a6.[2021·河北景县月考]记S n 为等差数列{a n }的前n 项和.假定a 4+a 5=24,S 6=48,那么{a n }的公差为( )A .1B .2C .4D .87.[2021·福建三明一中模拟]随机变量X 听从正态散布X ~N (10,σ2),P (X >12)=m ,P (8≤X ≤10)=n ,那么2m +1n的最小值为( )A .3+4 2B .6+2 2C .8+2 2D .6+4 28.[2021·河北衡水中学三轮测试]如图是正四面体的展开图,G ,H ,M ,N 区分是DE ,BE ,EF ,EC 的中点.在这个正四面体中:①DE 与MN 平行;②BD 与MN 为异面直线;③GH 与MN 成60°角;④DE 与MN 垂直.以上四个命题中,正确命题的个数是( )A .1B .2C .3D .49.[2021·陕西吴起中学期中]函数f (x )=2sin(2x +φ)(0<φ<π),假定将函数f (x )的图象向右平移π6个单位后关于y 轴对称,那么以下结论中不正确的选项是( )A .φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心 C .f (φ)=-2D .x =-π6是f (x )图象的一条对称轴10.[2021·河南中原名校预测金卷]以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上恣意一点,BM 与直线y =-2垂直,垂足为M ,那么|BM |-|AB |的最大值为( )A .-1B .2C .1D .811.[2021·福建顺应性练习]A ,B ,C ,D 四点均在以点O 为球心的球面上,且AB ⊥平面BCD ,BC =BD =2,AB =2CD =43,那么球O 的外表积为( )A .16π B.32π C .60π D.64π12.定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1|x ≠1,1 x =1假定关于x 的方程[f (x )]2+bf (x )+c =0有3个不同的实根x 1,x 2,x 3,那么x 21+x 22+x 23=( )A .13 B.2b 2+2b 2C .5 D.3c 2+2c2二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上.13.[2021·天津南开中学第五次月考]圆C :(x -3)2+(y -5)2=5,过圆心C 的直线l 交圆C 于A ,B 两点,交y 轴于点P ,假定A 恰为PB 的中点,那么直线l 的斜率为________.14.[2021·山东威海第二次模拟]二项式⎝⎛⎭⎪⎫x +a x 5的展开式中各项系数的和为-1,那么该展开式中系数最大的项为________.15.[2021·浙江大学隶属中学模拟]在△ABC 中,内角A ,B ,C 的对边区分为a ,b ,c .c -a cos B =b2,那么角A 为________,假定b -c =6,a =23,那么BC 边上的高为________.16.[2021·名校联盟模拟]有一个数阵陈列如下: 1 2 3 4 5 6 7 8…… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……那么第10行从左至右第10个数字为________.。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

高考二轮复习 数学限时训练(39)

高考二轮复习 数学限时训练(39)

限时训练(三十九)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设{}220A x x x =--<,{}B x x a =<,若A B ≠∅,则a 的取值范围是( ).(A )(),2-∞ (B )()2,-+∞ (C )()1,-+∞ (D )(]1,2-(2)若12i z =-,则4i1zz=-( ).(A )1 (B )1- (C )i (D )i - (3)设等差数列{}n a 的前n 项和为n S .若13m S -=-,0m S =,14m S +=,则m =( ).(A )4 (B )5 (C )6 (D )7(4)甲、乙两人相约晚7时到8时之间在某地会面,先到者等候另一人20min ,过时离去,则两人能会面的概率是( ). (A )13 (B )14 (C )59 (D )23(5)已知O 为坐标原点,F 是椭圆()2222:10x y C a b a b+=>>的左焦点,,A B 分别是C 的左、右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的三等分点(靠近O 点),则C 的离心率为( ). (A )13 (B )12 (C )23 (D )34(6)某四面体的三视图如图所示,该四面体的六条棱中,长度最长的是( ).(A ) (B ) (C ) (D )(7)设函数()2ax bf x x c+=+的图像如图所示,则,,a b c 的大小关系是( ). (A )a b c >> (B )a c b >> (C )b a c >> (D )c a b >>(8)函数()sin()f x A x ωϕ=+()0,0,A ωϕ>><π的部分图像如图所示,若12,,36x x ππ⎛⎫∈- ⎪⎝⎭,12x x ≠,且()()12f x f x =,则()12f x x +=( ).(A )1 (B )12(C)2 (D正(主)视图俯视图(9)秦九韶是我国南宋时期的数学家,普州(现四川安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入,n x 的分别为5,4.则输出v 的等于( ).(A )569 (B )2275 (C )2276 (D )2272(10)已知点M 是抛物线24yx =上的一点,F 为抛物线的焦点,A 在圆()()22:311C x y -+-=上,则MA MF+的最小值为( ).(A )2 (B )3 (C )4 (D )5 (11)已知{}n a 是等差数列,数列{}n b 满足()*12n n n n b a a a n ++=∈N ,设n S 为{}n b 的前n 项和,若95308a a =>,则当n S 取得最大值时,n =( ). (A )9 (B )10 (C )11 (D )12(12)已知e 为自然对数的底数,若对任意的1,1e x ⎡⎤∈⎢⎥⎣⎦,总存在唯一的[]1,1y ∈-,使得2ln 1e y x x a y -++=成立,则实数a 的取值范围是().(A )1,e e ⎡⎤⎢⎥⎣⎦ (B )2,e e ⎛⎤ ⎥⎝⎦ (C )2,e ⎛⎫+∞ ⎪⎝⎭ (D )21,e e e⎛⎫+ ⎪⎝⎭二、填空题:本题共4小题,每小题5分.(13)在等边ABC △中,AB 在BC 方向上的投影为1-,且2AD DC =,则BD AC ⋅= ___.(14)若,,,A B C D 四人站在一排照相,,A B 不相邻的排法总数为k ,则二项式()1kx -的展开式中2x 项的系数为___.(15)过平面区域202020x y y x y -+⎧⎪+⎨⎪++⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,当α最小时,此时点P 的坐标为___.(16)设各项均为正数的数列{}n a 的前n 项和n S 满足212nn a S +⎛⎫= ⎪⎝⎭,又cos n n b S n =⋅π,则数列{}n b 的前n 项和nT=___.限时训练(三十九)答案部分一、选择题二、填空题 13.2314.66 15. ()4,2-- 16. ()()112n n n +-⋅解析部分(1)解析 依题意,{}12A x x =-<<,{}B x x a =<,如图所示,若AB ≠∅,则1a >-.故选C.(2)解析 解法一:首先计算分母1zz -,由12i z =-得其共轭复数12i z =+,根据复数的运算法则(或者根据共轭复数的性质)知()()1112i 12i 4zz -=-+-=-,所以4ii 1z z=--.故选D.解法二:根据共轭复数的性质,2zz z =为实数,从而1zz -也是实数,所以4i1zz-是纯虚数,故排除选项A 和B.又1zz >,则10z z -<.故选D.评注 本题考查考生最熟悉的知识点之一——复数及其运算.考生只要知道复数共轭的概念,掌握复数的四则运算法则就能得出正确的答案.同时,本题还可以利用复数及其共轭复数的性质,通过简单的逻辑推理得出正确选项. (3)解析 解法一:由题设得13mm m a S S -=-=,114m m m a S S ++=-=,故等差数列{}n a 的公差11m m d a a +=-=,所以由3m a =,0m S =,得()1113102a m m m ma +-=⎧⎪⎨-+=⎪⎩,解得13a =-,7m =.故选D.a-1解法二:等差数列{}n a 的前n 项和()112n n n S na d -=+,故112n S n a d n -=+,所以n S n ⎧⎫⎨⎬⎩⎭成等差数列,于是11211m m m S S S m m m -++=-+,即34011m m -+=-+,解得7m =.故选D. (4)解析 依题意,则设甲到达的时刻为x ,乙到达的时刻为y ,若两人能会面,则20x y -,如图所示,所以,两人能会面的概率为221402521609P ⨯⨯=-=.故选C.(5)解析 解法一:如图所示,记OE 得三等分点Q (靠近点O )的坐标为()0,m ,则()0,3E m ,从而直线AE 的方程为:13x ya m+=-,直线BQ 的方程为:1x ya m +=.由题意,可设直线AE 与直线BM 的交点M的坐标为()0,c y -,所以013y c a m-+=-,1y c a m-+=, 可得131c c a a ⎛⎫+=- ⎪⎝⎭,即()131e e +=-,得12e =.故选B. 解法二:如图所示,记OE 得三等分点为Q (靠近点O ).由PF x ⊥轴,知Rt Rt BOQ BFM △∽△,于是OQ OBFM BF =,所以 OQ aFM a c=+①类似地,有Rt Rt AFM AOE △∽△,于是OE aMF a c=- ② 由①②得13OQ a c OE a c -==+,即1113e e -=+,得12e =.故选B.(6)解析 由三视图还原几何体四棱锥D ABC -,如图所示,由主视BE =,图知CD ABC ⊥平面,设AC 的中点为E ,则BE AC ⊥,且2AE CE ==,由左视图得4CD =,BE =DCBA在Rt BCE△中,4BC===,同理4AB=,在Rt BCD△中,BD===在Rt ACD△中,AD===综上,四面体的六条棱中,长度最长的是故选A.(7)解析因为函数()f x的定义域为R,所以0c>,且()00f=,得0b=.又()111afc==+,因此1a c c=+>,所以a c b>>.故选B.(8)解析依题意,1A=,22Tπ=,得2Tωπ=π=,所以2ω=,()sin(2)f x xϕ=+,又函数()f x的图像的对称轴方程为36212xππ-π==,则sin16ϕπ⎛⎫+=⎪⎝⎭,得262kϕππ+=+π,k∈Z,所以23k kϕ2π=π+∈Z,,又ϕ<π,故3ϕ2π=,所以()sin23f x x2π⎛⎫=+⎪⎝⎭.又()()12f x f x=,12,,36x xππ⎛⎫∈- ⎪⎝⎭,则12362212x xππ-++π==-,所以126x xπ+=-,则()12sin2663f x x fπ⎡π2π⎤⎛⎫⎛⎫+=-=⨯-+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选C.(9)解析因为输入的5n=,4x=,故1v=,4i=,满足进行循环的条件;1448v=⨯+=,3i=,满足进行循环的条件;84335v=⨯+=,2i=,满足进行循环的条件;3542142v=⨯+=,1i=,满足进行循环的条件;14241569v=⨯+=,0i=,满足进行循环的条件;569402276v=⨯+=,1i=-,不满足进行循环的条件,故输出的v值为2276.故选C.(10)解析依题意,由抛物线定义得MF d=(M到准线:1l x=-),则MF MA+=()()11:1:113MM MA AM d A l x d C l x+=-=--=点到准线点到准线.故选B.评注 求圆锥曲线的最值一般用几何法+定义法或函数法.本题利用抛物线定义类比,将MF转化为点M 到准线:1l x =-的距离是关键,在多次转化过程中,要注意取等号的条件是否同时取得. (11)解析 设等差数列{}n a 的首项为1a ,公差为d ,由9538aa =得()113848a d a d +=+,即 1525a d =-,则5132405a a d d =+=->,得0d <,10a >.故12110a a a >>>>>1213a a >>.因此910110a a a >,1011120a a a <,1112130a a a >,1213140a a a <,且()()()111213101112111210131112111211121111222105da a a a a a a a a a a a a a a a a d a a +=+=+=+=>, 所以当11n =时,n S 取最大值.故选C. (12)解析 设()ln 1f x x x a =-++,当1,1e x ⎡⎤∈⎢⎥⎣⎦,()110f x x '=-,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()()11e f f x f ⎛⎫ ⎪⎝⎭,即()1,e f x a a ⎡⎤∈-⎢⎥⎣⎦.设()2e yg y y =,因为对任意1,1e x ⎡⎤∈⎢⎥⎣⎦,总存在唯一的[]1,1y ∈-,使得2ln 1e yx x a y -++=成立,所以1,e a a ⎡⎤+⎢⎥⎣⎦是()g y 的不含极值点的单调区间的子集,因为()()2e y g y y y '=+,所以当[)1,0y ∈-时,()0g y '<,()g y 在[)1,0-上单调递减,若(]0,1y ∈时,()0g y '>,()2e yg y y =在(]0,1上单调递增.又因为()()11e 1e g g -=<=,所以11,,e e e a a ⎡⎤⎛⎤-⊆ ⎢⎥⎥⎣⎦⎝⎦,解得2e e a <.故选B.(13解析 因为AB 在BC 方向上的投影为1-,且ABC △为等边三角形,所以BC AB ==2AC =.又2AD DC =,所以()2233BD BA AD BA AC BA BC BA =+=+=+-=2133BC BA +,AC BC BA=-,故()2212333BD AC BC BA BC BA BC ⎛⎫⋅=+⋅-=-⎪⎝⎭2211333BC BA BA BC BA ⋅+⋅-=22211333BC BC BA BA -⋅-=2211222332⨯-⨯⨯⨯- 212233⨯=.(14)解析 依题意,,A B 不相邻的排法有2232A A 12=种,则二项式()121x -的展开式中2x 项的系数为212C 66=.(15)解析 如图阴影部分所示,表示二元一次不等式组确定的平面区域,当APB α∠=最小值时,得2APO α∠=也取最小值,此时1sin 2OA OP PO α==,即线段OP 最长,也即当点P 离圆心O 最远时,α最小,此时点P 位于2020x y y -+=⎧⎨+=⎩的交点()4,2--.故答案为()4,2--.(16)解析 在212n n a S +⎛⎫= ⎪⎝⎭中,令1n =可得1a =,还可得()241n n S a =+, ()21141n n S a --=+()*2,n n ∈N ,所以()()()2211411n n n n S S a a ---=+-+,即2211422n n n n n a a a a a --=+--,也即2211220n n n n a a a a -----=,()()()1112n n n n n n a a a a a a ---+-=+.又()*0n a n >∈N ,则()*122,n n a a nn --=∈N ,所以{}n a 是首项为1,公差为2的等差数列,则得()*21n a n n =-∈N ,所以2212n n a S n +⎛⎫== ⎪⎝⎭,()22cos 1n n b n n n =π=-. 当n 为偶数时,有()()()22222212341nT n n ⎡⎤=-++-+++--+=⎣⎦()137212n n n ++++-=; 当n 为奇数时,有()()2211122nn n n n n T T nn --+=-=-=-.故()()112nn n n T +=-⋅.。

2021年高考数学二轮复习 专题训练 限时练2 理

2021年高考数学二轮复习 专题训练 限时练2 理

限时练二2021年高考数学二轮复习 专题训练 限时练2 理一、选择题1.设U ={1,2,3,4,5},A ={1,5},B ={2,4},则B ∩(∁U A )= ( ).A .{2,3,4}B .{2}C .{2,4}D .{1,3,4,5}解析 ∁U A ={2,3,4},所以B ∩(∁U A )={2,4}.答案 C2.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( ).A .0B .-32C .6D .-6解析z 1z 2=3-b i 1-2i =3-b i 1+2i1-2i 1+2i=3+2b +6-b i5,因为z 1z 2是实数,所以6-b =0,所以实数b 的值为6.答案 C3.已知{a n }是由正数组成的等比数列,S n 表示{a n }的前n 项的和,若a 1=3,a 2a 4=144,则S 5的值是( ).A.692B .69C .93D .189解析 因为{a n }是由正数组成的等比数列,所以a 23=a 2a 4=144,即a 3=12,又因为a 1=3,所以q =2,所以S 5=31-251-2=93.答案 C4.在△ABC 中,A =60°,b =1,△ABC 的面积为3,则边a 的值为( ).A .27B .21 C.13D .3解析 因为△ABC 的面积为3,所以12bc sin A =3,所以c =4,由余弦定理得:a2=b2+c2-2bc cos A=13,所以a=13.答案 C5.如果log a8>log b8>0,那么a,b间的关系是( ).A.0<a<b<1 B.1<a<bC.0<b<a<1 D.1<b<a解析因为log a8>log b8>0,所以log8b>log8a>0=log81,所以1<a<b.答案 B6.若(x-2x)n的二项展开式中的第5项是常数,则自然数n的值为( ).A.6 B.10 C.12 D.15解析∵T r+1=C r n(x)n-r(-2x)r=C r n(-1)r2r x,∴T5=C4n·24·x.令n-12=0,∴n=12.答案 C7.某学生一个学期的数学测试成绩一共记录了6个数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图,那么输出的s是( ).A.1 B.2C.3 D.4解析初始值i=1,s=0,输入x 1=52,此时不满足大于60,i =i +1=2;输入x 2=70,此时满足大于60,s =s +1=1;i =i +1=3; 输入x 3=68,此时满足大于60,s =s +1=2;i =i +1=4; 输入x 4=55,此时不满足大于60,i =i +1=5;输入x 5=85,此时满足大于60,s =s +1=3;i =i +1=6;输入x 6=90,此时满足大于60,s =s +1=4;i =i +1=7,满足i >6,结束循环,所以输出的s 是4. 答案 D8.已知某几何体的三视图如图所示,其中俯视图是圆,且该几何体的体积为V 1;直径为2的球的体积为V 2.则V 1∶V 2=( ).A .1∶4B .1∶2C .1∶1D .2∶1解析 易知:该几何体为一个圆柱内挖去一个圆锥,其中圆柱的底面半径为1,高为1,所以该几何体的体积V 1=π×12×1-13π×12×1=23π,直径为2的球的体积为V 2=43πr 3=43π,所以V 1∶V 2=1∶2.答案 B9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,x -y +2≥0,则目标函数z =3x -4y 的最小值m 与最大值M 的积为( ).A .-60B .-48C .-80D .36解析 画出约束条件⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,x -y +2≥0的可行域,由可行域知:目标函数z =3x -4y过点(2,0)时,取最大值6,所以M =6;过点(2,4)时,取最小值-10,所以m =-10.所以目标函数z =3x -4y 的最小值m 与最大值M 的积为-60. 答案 A10.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2⊥x 轴,则双曲线的离心率为( ).A. 6 B . 3 C. 4D .33解析 ∵MF 2⊥x 轴,∴M (c ,b 2a ),∴tan 30°=b 2a 2c =b 22ac =33,即3c 2-23ac -3a 2=0,e = 3.答案 B11.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =12x 垂直的切线,则实数m 的取值范围是( ).A .m ≤2B .m >2C .m ≤-12D .m >-12解析 由题意可知f ′(x )=e x-m ,存在x 使得e x-m =-2有解,则m =e x+2有解,e x+2>2,知m >2成立. 答案 B12.f (x )是定义在[-c ,c ]上的奇函数,其图象如图所示,令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是( ).A.若a<0,则函数g(x)的图象关于原点对称B.若a=-1,-2<b<0,则方程g(x)=0有大于2的实根C.若a≠0,b=2,则方程g(x)=0有两个实根D.若a≥1,b<2,则方程g(x)=0有两个实根解析A中,若a=-1,b=1,则函数g(x)不是奇函数,其图象不可能关于原点对称,所以选项A错误;B中,当a=-1时,-f(x)仍是奇函数,2仍是它的一个零点,但单调性与f(x)相反,若再加b,-2<b<0,则图象又向下平移-b个单位长度,所以g(x)=-f(x)+b=0有大于2的实根,所以选项B正确;C中,若a=12,b=2,则g(x)=12f(x)+2,其图象由f(x)的图象向上平移2个单位长度,那么g(x)只有1个零点,所以g(x)=0只有1个实根,所以选项C错误;D中,若a=1,b=-3,则g(x)的图象由f(x)的图象向下平移3个单位长度,它只有1个零点,即g(x)=0只有一个实根,所以选项D错误.答案 B二、填空题13.某公司300名员工xx年年薪情况的频率分布直方图如图所示,由图可知,员工中年薪在1.4~1.6万元的共有________人.解析由频率分布直方图知年薪低于1.4万元或者高于1.6万元的频率为(0.2+0.8+0.8+1.0+1.0)×0.2=0.76,因此,年薪在1.4到1.6万元间的频率为1-0.76=0.24,所以300名员工中年薪在1.4到1.6万元间的员工人数为300×0.24=72. 答案 7214.已知e 1,e 2是两个单位向量,若向量a =e 1-2e 2,b =3e 1+4e 2,且a ·b =-6,则向量e 1与e 2的夹角是______.解析 ∵a ·b =(e 1-2e 2)·(3e 1+4e 2)=3e 21-8e 21-2e 1·e 2=-6,即e 1·e 2=12,设向量e 1与e 2的夹角为θ,则cos θ =12,又θ∈[0,π],∴θ=π3.答案π315.某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有种数为______.解析 除甲乙外的四辆车现分为两组,共有C 242种分组,再将甲乙分别放入两组,有A 22种,甲所在小组列车开出顺序有A 33种,乙所在小组列车开出顺序同样有A 33种,所以这六列列车开出顺序共有C 242A 22A 33A 33=216种.答案 21616.将正奇数按下表的规律填在5列的数表中,则第20行第3列的数字与第20行第2列数字的和为________.解析 易知前194列的奇数为2×77-1=153,所以第20行第3列的数字与第20行第2列数字分别为155,157,所以它们的和为312.答案 312d28403 6EF3 滳25447 6367 捧pd27148 6A0C 樌30805 7855 硕&M25893 6525 攥J 30635 77AB 瞫*26170 663A 昺。

高考数学二轮复习 专题整合限时练6 理(含最新原创题,

高考数学二轮复习 专题整合限时练6 理(含最新原创题,

【创新设计】(江苏专用)2015高考数学二轮复习 专题整合限时练6理(含最新原创题,含解析)(建议用时:40分钟)1.设集合A ={x ||x |≤2,x ∈R },B ={y |y =-x 2,-1≤x ≤2},则∁R (A ∩B )=________. 解析 由已知条件可得A =[-2,2],B =[-4,0], ∴∁R (A ∩B )=(-∞,-2)∪(0,+∞). 答案 (-∞,-2)∪(0,+∞)2.若复数z 满足(1+2i)z =-3+4i(i 是虚数单位),则z =________. 解析 ∵(1+2i)z =-3+4i ,∴z =-3+4i 1+2i =-3+4i1-2i 1+2i1-2i =5+10i5=1+2i. 答案 1+2i3.某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为________小时.解析 一天平均每人的课外阅读时间应为一天的总阅读时间与学生的比,即0×7+0.5×14+1.0×11+1.5×11+2.0×750=0.97(小时). 答案 0.974.在一个袋子中装有分别标注数字1,2,3,4,5的5个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是________. 解析 从袋子中随机取2个小球共有10种不同的方法,其中取出的小球标注的数字之和为3或6的方法共有3种,因此所求的概率等于310.答案3105.在平面直角坐标系xOy 中,若点P (m,1)到直线4x -3y -1=0的距离为4,且点P 在不等式2x +y ≥3表示的平面区域内,则m =________.解析 依题意得⎩⎪⎨⎪⎧|4m -4|5=4,2m +1≥3,解得m =6.答案 66.在△ABC 中,BC =2,A =2π3,则AB →·AC →的最小值为________.解析 依题意得a 2=b 2+c 2-2bc cos A ,即b 2+c 2+bc =4≥3bc ,bc ≤43,AB →·AC →=bc cosA =-12bc ≥-23,当且仅当b =c =43时取等号,因此AB →·AC →的最小值是-23. 答案 -237.函数f (x )=log 2x -1x的零点所在的区间是________.解析 利用零点存在定理求解.因为f (1)f (2)=(-1)·⎝ ⎛⎭⎪⎫1-12<0,所以由零点存在定理可知零点所在的区间是(1,2). 答案 (1,2)8.下图是某算法的程序框图,则程序运行后输出的结果是________.解析 由框图的顺序,s =0,n =1,s =(s +n )n =(0+1)×1=1,n =n +1=2,依次循环s =(1+2)×2=6,n =3,注意此刻3>3仍然否,所以还要循环一次s =(6+3)×3=27,n =4,此刻输出s =27. 答案 279.已知四棱锥V ­ABCD ,底面ABCD 是边长为3的正方形,VA ⊥平面ABCD ,且VA =4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.解析 可证四个侧面都是直角三角形,其面积S =2×12×3×4+2×12×3×5=27.答案 2710.在△ABC 中,三个内角A 、B 、C 的对边分别为a ,b ,c ,若b =25,∠B =π4,sin C=55,则c =________,a =________. 解析 由正弦定理得b sin B =c sin C ,所以c =b sin Csin B =25×5522=2 2.由c <b 得C<B ,故C 为锐角,所以cos C =255,sin A =sin(B +C )=sin B cos C +cos B sin C =31010,由正弦定理得b sin B =a sin A ,所以a =b sin Asin B =25×3101022=6.答案 2 2 611.已知sin ⎝ ⎛⎭⎪⎫α+π12=14,则sin ⎝ ⎛⎭⎪⎫5π12-α=________.解析 由sin ⎝ ⎛⎭⎪⎫α+π12=14,得cos ⎝ ⎛⎭⎪⎫α+π12=±154,所以sin ⎝ ⎛⎭⎪⎫5π12-α=cos ⎝ ⎛⎭⎪⎫α+π12=±154.答案 ±15412.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为________.解析 由焦距为10知,c =5,即a 2+b 2=25,根据双曲线方程可知,渐近线方程为y =±b ax ,带入点P 的坐标得,a =2b ,联立方程组可解得a 2=20,b 2=5,所以双曲线方程x 220-y 25=1.答案x 220-y 25=1 13.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-3)(x 0+1)2,则该函数的单调递减区间为________.解析 由导数的几何意义可知,f ′(x 0)=(x 0-3)(x 0+1)2≤0,解得x 0≤3,即该函数的单调递减区间是(-∞,3]. 答案 (-∞,3]14.已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N*恒成立,则B -A 的最小值为________.解析 依题意得S n =43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=1-⎝ ⎛⎭⎪⎫-13n .当n 为奇数时,S n =1+⎝ ⎛⎭⎪⎫13n ∈⎝ ⎛⎦⎥⎤1,43;当n 为偶数时,S n =1-⎝ ⎛⎭⎪⎫13n ∈⎣⎢⎡⎭⎪⎫89,1.由函数y =x -1x 在(0,+∞)上是增函数得S n -1S n 的取值范围是⎣⎢⎡⎭⎪⎫-1772,0∪⎝ ⎛⎦⎥⎤0,712,因此有A ≤-1772,B ≥712,B -A ≥712+1772=5972,即B -A 的最小值是5972.答案 5972。

高考二轮复习限时训练(六)

高考二轮复习限时训练(六)(时间:60分钟)班级 姓名 得分一、填空题(5分×12=60分)1.已知集合A=}41|{<<-x x ,B=}62|{<<x x ,则A ∩B= 。

2.函数)2x (log y a +=(a >0,a ≠1)的图象恒过定点P ,则P 点坐标为 。

3.已知向量)4,3(-=a ,向量b 满足b ∥a ,且1||=b ,则b = 。

4.从[0,1]之间选出两个数,这两个数的平方和大于1的概率是 。

5.在等比数列{n a }中,若7944,1a a a ⋅==,则12a 的值是 。

6.一几何体的三视图如下,它的体积为 。

7.当3=x 时,下面算法输出的结果是 。

8.在△OAB 中,(2cos ,2sin )O A αα= , (5cos ,5sin )O B ββ=,若5OA OB ⋅=- ,则O AB S ∆= .9.若关于x 的方程()233740tx t x +-+=的两个实根,αβ满足012αβ<<<<,实数t的取值范围是 。

10.圆心在(2,-3)点,且被直线0832=-+y x 截得的弦长为34的圆的标准方程为11.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目 若选到男教师的概率为209,则参加联欢会的教师共有 人12.当(12)x ∈,时,不等式240x m x ++<恒成立,则m 的取值范围是 . 二、解答题(15分×2 =30分)13.在锐角三角形ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且t a n t a n (1t a n t a n )3A B A B -=+⋅. Read xIf x <10 Then y ←2x Elsey ←x 2 Print y第7题图(1)若ab b a c -+=222,求A 、B 、C 的大小;(2)已知向量(sin ,cos ),(cos ,sin ),|32|A A B B ==-求m n m n 的取值范围.14.如图,矩形A B C D 的两条对角线相交于点(20)M ,,A B 边所在直线的方程为360x y --=, 点(11)T -,在A D 边所在直线上.(I )求A D 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的方程.南师大附校09高考二轮复习限时训练(六)参考答案 一、填空题(5分×12=60分)1.}42|{<<x x 2.(-1,0) 3.(54,53-)或(54,53-) 4.41π- 5.4 6. 327.6 8.29.22,262 10.222(2)(3)5x y -++=11.120 12.(54,53-)或(54,53-) 二、解答题13.解:由已知.22.20,2033)tan(,33tan tan 1tan tan ππππ<-<-∴<<<<=-∴=⋅+-B A B A B A BA BA 得.6π=-∴B A(I )由已知.4,1253,6,.3,212cos 222ππππππ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=++=∴=-+=B AC B A C B A C abcb a C 解得由得.3,4,125πππ===∴C B A (II )|3m -2n |2=9 m 2+4n 2-12 m ·n =13-12(sin A cos B +cos A sin B )=13-12sin(A +B )=13-12sin (2 B +6π).∵△ABC 为锐角三角形,A -B =6π,∴C =π-A -B <2π,A =6π+B <2π..65622,36πππππ<+<<<∴B B ).1,21()62sin(∈+∴πB14.解:(I )因为A B 边所在直线的方程为360x y --=,且A D 与A B 垂直,所以直线A D 的斜率为3-.又因为点(11)T -,在直线A D 上, 所以A D 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心. 又AM == 从而矩形ABCD 外接圆的方程为22(2)8x y -+=. (III )因为动圆P 过点N ,所以P N 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为的双曲线的左支.因为实半轴长a =,半焦距2c =.所以虚半轴长b ==从而动圆P 的圆心的轨迹方程为221(22xyx -=≤.。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.(2018·高考全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12答案:B解析:设该等差数列的公差为d ,根据题中的条件可得3⎝ ⎛⎭⎪⎫3×2+3×22×d =2×2+d +4×2+4×32×d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10,故选B.2.(2017·江西省五市联考)已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .18 答案:C解析:法一 因为等差数列{a n }的前10项和为30,所以a 1+a 10=6,即a 5+a 6=6,因为a 6=8,所以a 5=-2,公差d =10,所以-2=a 1+4×10,即a 1=-42,所以a 100=-42+99×10=948,故选C.法二 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+5d =8,10a 1+10×92d =30,解得⎩⎪⎨⎪⎧a 1=-42,d =10,所以a 100=-42+99×10=948,故选C. 3.已知数列{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110答案:D解析:a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9. 所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20, 所以S 10=10×20+10×92×(-2)=110.故选D.4.(2019·吉林模拟)已知等比数列{a n }的前n 项和为S n ,若1a 1+1a 2+1a 3=2,a 2=2,则S 3=( ) A .8 B .7 C .6 D .4答案:A解析:1a 1+1a 2+1a 3=a 1+a 3a 1a 3+1a 2=a 1+a 2+a 3a 22=S 34=2,则S 3=8.故选A.5.(2019·怀化三模)《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为m ,n ,一等差数列{a n }的前n 项和为S n ,且a 2=m ,S 6=n ,则a 5为( ) A .18 B .81 C .234 D .243 答案:C解析:∵a 2=9,S 6=93, ∴729=6(a 2+a 5)2=3(a 5+9),∴a 5=234.故选C.6.(2018·昆明市调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( ) A .-2nB .2nC .2n -1D .2n +1答案:B解析:由题意,得a 2a 8=a 24.又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24 D .25答案:A解析:{a n }为等差数列,所以a k =a 1+a 2+…+a 7=7a 4,则a 1+(k -1)d =7(a 1+3d ).因为a 1=0,所以(k -1)d =21d ,d ≠0,解得k =22,故选A.8.正项等比数列{a n }中的a 1,a 4 037是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 019=()A .1B .2 C. 2 D .-1答案:A解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 037是方程x 2-8x +6=0的两根,所以a 1·a 4 037=a 22 019=6,即a 2 019=6,所以log6a 2 019=1,故选A.9.(2018·湖北八校联考)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=( ) A .36 B .33 C .32 D .31答案:D解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选D.10.(2018·大连模拟)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( ) A .n (3n -1) B .n (n +3)2 C .n (n +1) D .n (3n +1)2答案:C解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.11.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B .53 C.256 D .不存在答案:A解析:∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,∴q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a m a n =16a 21,∴q m +n -2=16=24,而q =2,∴m +n -2=4,∴m +n =6,∴1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当m =2,n =4时,等号成立,∴1m +4n 的最小值为32.故选A.12.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510答案:A解析:由于cos 2n π3-sin 2n π3=cos 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9×10×112-25=470.二、填空题13.(2019·北京四中热身卷)若等差数列{a n }满足a 1=12,a 4+a 6=5,则a 2 019=________. 答案:2 0192解析:∵等差数列{a n }满足a 1=12,a 4+a 6=5, ∴12+3d +12+5d =5, 解得d =12,∴a 2 019=12+2 018×12=2 0192.14.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q =__________. 答案:-12解析:由题意得,2S 3=S 1+S 2,∴2(a 1+a 2+a 3)=a 1+(a 1+a 2),整理得a 2+2a 3=0,∴a 3a 2=-12,即公比q =-12.15.(2017·石家庄市高三质量检测)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =__________.答案:78解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2, 所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n4.令T n =n 2+n 4=14,解得n =7,所以a k =78.16.(2018·云南师大附中月考)已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.答案:n ·2n2n -1解析:由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎝ ⎛⎭⎪⎪⎫n -1a n -1-1(n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n-1=-12n ,∴a n =n ·2n 2n-1(n ∈N *). 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·河北模拟)已知数列{a n }满足a 1=2且a n +1=3a n +2n -1(n ∈N *). (1)求证:数列{a n +n }为等比数列; (2)求数列{a n }的通项公式; (3)求数列{a n }的前n 项和S n .解析:(1)数列{a n }满足a 1=2且a n +1=3a n +2n -1, 可得a n +1+n +1=3a n +3n =3(a n +n ),可得数列{a n +n }是首项为3,公比为3的等比数列. (2)a n +n =3n ,即a n =3n -n (n ∈N *). (3)S n =(3+9+…+3n )-(1+2+…+n ) =3(1-3n )1-3-12n (n +1)=32(3n -1)-12n (n +1).2.(2017·山西省八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解析:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3,即2a 1q 3=2a 1q +3a 1q 2. 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2, 因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n , ① 2T n =1×22+2×23+3×24+…+n ×2n +1, ② ①-②得-T n =2+22+23+…+2n -n ×2n +1,-T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.3.(2017·福建省高中毕业班质量检测)已知等差数列{a n }的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }的前n 项和T n 满足T n =(n +5)a n . (1)求a n ;(2)求数列{1a nb n}的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧ a 2=2,S 5=15,即⎩⎪⎨⎪⎧a 1+d =2,5a 1+10d =15,解得a 1=d =1,所以a n =n .(2)由(1)得,a n =n ,所以T n =n (n +5).当n ≥2时,b n =T n -T n -1=n (n +5)-(n -1)(n +4)=2n +4, 当n =1时,b 1=T 1=6也满足上式, 所以b n =2n +4(n ∈N *).所以1a n b n =1n (2n +4)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 设{1a nb n }的前n 项和为P n ,则当n ≥2时,P n =1a 1b 1+1a 2b 2+…+1a n b n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+…+1n +1n +1+1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14(n +1)-14(n +2).当n =1时,P 1=1a 1b 1=16也满足上式.综上,P n =38-14(n +1)-14(n +2).4.已知数列{a n }满足:a 1=1,na n +1=2(n +1)a n +n (n +1)(n ∈N *). (1)若b n =a nn +1,试证明数列{b n }为等比数列; (2)求数列{a n }的通项公式a n 及其前n 项和S n .解析:(1)证明:由na n +1=2(n +1)a n +n (n +1)得a n +1n +1=2a nn +1,得a n +1n +1+1=2a n n +2=2⎝ ⎛⎭⎪⎫a n n +1,即b n +1=2b n .又b 1=2,所以数列{b n }是以2为首项,2为公比的等比数列. (2)由(1)知b n =2n ,得a nn +1=2n ,即a n =n (2n -1),∴S n =1×(2-1)+2×(22-1)+3×(23-1)+…+n (2n -1) =1×2+2×22+3×23+…+n ·2n -(1+2+3+…+n ) =1×2+2×22+3×23+…+n ·2n-n (n +1)2.令T n =1×2+2×22+3×23+…+n ·2n , 则2T n =1×22+2×23+3×24+…+n ·2n +1, 两式相减,得-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T n =2(1-2n )+n ·2n +1=(n -1)·2n +1+2,n(n+1)∴S n=(n-1)·2n+1+2-2.。

高考二轮复习限时训练(二)

高考二轮复习限时训练(二)(时间:60分钟)班级 姓名 得分一.填空题(每题5分,共60分)1. 已知复数121,2z i z i =-=+,那么12z z ⋅的值是 .2. 集合{}22,A x x x R =-≤∈ {}2|,12B y y x x ==--≤≤,则()R C A B= .3. 函数x y 2sin =向量a 平移后,所得函数的解析式是12cos +=x y ,则模最小的一个向量a = .4. 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表 (单位:环)如果甲、乙两人中只有1人入选,则入选的最佳人选应是 .5. 曲线在53123+-=x x y 在1=x 处的切线的方程为 .6. 已知实数x ,y 满足22,052yx y x +=++那么的最小值为 .7. 如图,是棱长为2的正四面体的左视图,则其主视图的面积为 . 8. 设数列{}n a 的首项127,5a a =-=,且满足22()n n a a n N ++=+∈,则135a a a a++++ = . 9.已知tan()35πα-=-则22sin cos 3cos 2sin αααα=- .10.阅读下列程序: Read S ←1For I from 1 to 5 step 2 S ←S+I Print S End for End输出的结果是 .11. 设函数()()f x g x 、在R 上可导,且导函数''()()f x g x >,则当a x b <<时,下列不等式:(1)()()f x g x >(2)()()f x g x <(3)()()()()f x g b g x f b +<+(4) ()()()()f x g a g x f a +>+ 正确的有 .12. 已知抛物线的顶点在原点,焦点在x 轴的正半轴上,F 为焦点,,,A B C 为抛物线上的三点,且满足0FA FB FC ++= ,FA + FB + 6FC =,则抛物线的方程为 .二.解答题(每题15分,共30分)13.直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1; (2)求三棱锥C AB A 11-的体积.14.已知二次函数),,(,)(2R c b a c bx ax x f ∈++=满足:对任意实数x ,都有x x f ≥)(,且当∈x (1,3)时,有2)2(81)(+≤x x f 成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时训练(二十九)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则2i1i=-( ) . A .1+i -B .1i --C .1+iD .1i -2.设集合{}0322=--=x x x A ,{}12==x x B ,则B A 等于( ) .A .{}1-B .{}1,3C .{}1,1,3-D .{}3,1- 3.条件42:<<-x p ,条件()():20q x x a ++<;若p 是q 的充分不必要条件,则a 的取值范围是 ( ) .A .()4,+∞B .(),4-∞-C .(],4-∞-D .[)4,-+∞4.执行如图所示的程序框图,输出的S 值为( ) . A.2 B.4 C.8 D.165.若2+=-=a b a b a ,则向量+a b 与a 的夹角为( ) .A.π6B.π3 C .2π3 D .5π66.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则将()y f x =的图像向右平移π6个单位长度后,得到的图像对应的函数解析式为( ) .A .x y 2sin =B .x y 2cos =C .2πsin 23y x ⎛⎫=+⎪⎝⎭D .πsin 26y x ⎛⎫=- ⎪⎝⎭7.已知椭圆C:()222210x ya ba b+=>>的左、右焦点分别为12,F F,若椭圆C上恰好有6个不同的点P,使得12F F P△为等腰三角形,则椭圆C的离心率的取值范围是().A.12,33⎛⎫⎪⎝⎭B.1,12⎛⎫⎪⎝⎭C.2,13⎛⎫⎪⎝⎭D.111,,1322⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭8.设[]x表示不超过x的最大整数(如[]22=,541⎡⎤=⎢⎥⎣⎦),对于给定的*n∈N,定义[][](1)(1)C,(1)(1)xnn n n xx x x x--+=--+x∈[)1,+∞,则当3,32x⎡⎫∈⎪⎢⎣⎭时,函数8C x的值域是( ) .A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⎥⎥⎝⎦⎝⎦二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中的横线上.9.如图所示是某个四面体的三视图,该四面体的体积为.10.在等差数列{}n a中,912162a a=+,则数列{}n a的前11项和11S等于.11.二项式91xx⎫⎪⎭的展开式中常数项为A,则A= .12.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字且能被3整除的四位数,这样的四位数有个.13.向量()()1,0,1,1OA OB==,O 为坐标原点,动点(),P x y满足0102OP OAOP OB⎧⋅⎪⎨⋅⎪⎩,则点(),Q x y y+构成图形的面积为.14.若12sina x x a x对任意的π0,2x⎡⎤∈⎢⎥⎣⎦都成立,则21a a-的最小值为.限时训练(二十九)答案部分一、选择题二、填空题9. 12 10. 132 11. 84- 12.96 13. 2 14. 21π-解析部分1.解析()()()2i 1+i 2i 2+2i ==1+i 1i 1i 1+i 2-=---.故选A . 2.解析 由题意,{}1,3A =-,{}1,1B =-,所以{}1,1,3AB =-.故选C .3.解析 由已知,:24p x -<<,且p q ⇒,q ⇒/p ,所以:2q x a -<<-,且4a ->,即4a <-. 故选B .4.解析 该程序框图的模拟分析如下表所示.由上表可得,输出8S =.故选C .5.解析 解法一:由+=-a b a b ,得()()22+=-a b a b , 所以22222+=2++⋅-⋅a a b b a a b b ,整理得=0⋅a b .D设+a b 与a 的夹角为θ,则()22++0+cos ====++++θ⋅⋅⋅⋅⋅aa ba a ab a a b aa b aa b aa b,由已知+=2a b a ,所以1cos =2θ,π=3θ.故选B . 解法二:如图所示,由+=-a b a b ,得BD CA =.所以ABCD 为矩形.又由已知+=2a b a ,即2BD BA =,1cos =2BAABD BD ∠=.所以π3ABD ∠=.即向量+a b 与a 的夹角为π3.故选B .评注 解法一与解法二分别从向量运算与几何性质二个方向来求夹角.其中解法二运用几何性质,减少了运算量,体现了解题中多想少算的原则. 6.解析 由题图可得311ππ3π41264T =-=,πT =,所以2π=πω,=2ω.又由图可得1A =. 所以()()=sin 2f x x ϕ+,因为π,16⎛⎫⎪⎝⎭在此图像上,所以π1sin 26ϕ⎛⎫=⨯+ ⎪⎝⎭,π2ϕ⎛⎫< ⎪⎝⎭,解得π6ϕ=,所以()πsin 26f x x ⎛⎫=+⎪⎝⎭,将函数()f x 向右平移π6个单位长度后为 ππsin 266y x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦πsin 26x ⎛⎫=- ⎪⎝⎭.故选D .7.解析 设椭圆的上、下顶点分别为1P ,2P ,则112PF F △与212P F F △均为等腰三角形.由题知,椭圆C 上恰有6个不同点P ,使得12PF F △为等腰三角形,所以在四个象限各有一点P ,使得12PF F △为等腰三角形,由椭圆的对称性,只考虑第一象限的情况即可.①令1122PF F F c ==,如图所示,由图可得1a PF a c <<+,即2a c a c <<+,得112e <<.②令2122PF F F c ==,如图所示,由图可得2a c PF a -<<,即2a c c a -<<,得1132e <<.综上可得,离心率e 的取值范围是111,,1322⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭. 故选D . 评注 本题利用对称性减少需考虑的对象,使问题变得简单明了.这种对称性思想在解决对称图形的相关问题时应用得很普遍,请同学们尝试使用.8.解析 当3,22x ⎡⎫∈⎪⎢⎣⎭时,[]1x =,所以C xn n x =,88C xx=. 因为8y x =为3,22⎡⎫⎪⎢⎣⎭上的单调递减函数,所以8x 的值域为164,3⎛⎤⎥⎝⎦. 当[)2,3x ∈时,[]2x =,所以()()1C 1xnn n x x -=-,()856C 1xx x =-.因为()561x x -为[)2,3上的单调递减函数,所以()561x x -的值域为28,283⎛⎤⎥⎝⎦. 综上所述,函数8C x的值域为164,3⎛⎤ ⎥⎝⎦28,283⎛⎤⎥⎝⎦.故选D . 评注 本题为新定义题型,解这类题时应紧扣新定义进行转化.9.解析 满足题图中三视图的四面体如图所示,其中PA ⊥平面ABC ,D 为中点,6BC =,3AD =,4PA =,()11163412332ABCV S PA =⋅=⨯⨯⨯=△10.解析 由9121=+62a a 得912212a a =+,所以92a =6121212a a a +=+,故612a =. 116111112132S a ==⨯=.11.解析()932191C rrrr T x-+=-,令9302r -=,解得3r =.所以常数项()3391C 84A =-=-. 12.解析 将0,1,2,3,4,5这6个数被3除所得的余数为0,1,2分为3组:{}0,3,{}1,4,{}2,5.若想四位数被3整除,{}1,4与{}2,5中的数必须“配套”出现,即若从{}1,4中取1个,则必须从{}2,5中也取1个;若从{}1,4中取2个,则必须从{}2,5中也取2个. ①从{}1,4中取1个,有1121322233C C C C A =72个数;②从{}1,4中取2个,有224224C C A =24个数.所以这样的四位数共有722496+=个.13. 解析 由0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩可得0102x x y ⎧⎨+⎩.①令x y m +=,y n =,则[]0,1m n x -=∈,①式化为0102m n m -⎧⎨⎩.满足该不等式组的平面区域如图阴影部分所示.122AOBCS=⨯=,所以(),Q m n 构成图形的面积为2,即()+,Q x y y 构成图形的面积为2.DCBAP14.解析 由题意,画出图像如图所示.设sin y x =在()0,0处的切线为OB ,经过原点与π,12⎛⎫⎪⎝⎭的直线为OA .因为12sin a x x a x 对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦都成立,则21OB OAa k a k ⎧⎨⎩,即()()2min 0sin cos01OB x a k x '=====,()1max 12ππ2OA a k ===, 所以21a a -的最小值为()()21min max 21πa a -=-.。

相关文档
最新文档