北师大版七年级数学上册一元一次方程知识点(含例题)
七年级数学上册第五章一元一次方程4应用一元一次方程_打折销售课件新版北师大版

2.(2018山西农大附中第三次月考,★★☆)小明用的练习本可以到甲、
乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是
购买10本以上从第11本开始按标价的70%出售;乙商店的优惠条件是,
从第一本起按标价的80%出售.
(1)若小明要购买20本练习本,则当小明到甲商店购买时,需付款
元,当到乙商店购买时,需付款
元;
(2)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,需付款
元,当到乙商店购买时,需付款
元;
(3)买多少本练习本时,两家商店付款相同?
解析 (1)到甲商店购买需付款10+10×0.7=17元;到乙商店购买需付款2 0×0.8=16元. 故答案为17;16. (2)小明要购买x(x>10)本练习本,到甲商店购买需付款10+(x-10)×70%= (0.7x+3)元; 到乙商店购买需付款(0.8x)元.故答案为0.7x+3;0.8x. (3)设买x本时给两个商店付相等的钱, 依题意列方程:10+(x-10)×70%=80%x,解得x=30. 答:买30本练习本时,两家商店付款相同.
3.某织布厂有150名工人,每名工人每天能织布30 m,或制衣4件,已知制
衣一件需要布1.5 m,将布直接出售,每米布可获利2元,将布制成衣后出
售,每件可获得25元,若每名工人每天只能做一项工作,且不计其他因素,
设安排x名工人制衣.
(1)一天中制衣所获利润P=
(用含x的式子表示);
(2)一天中剩余布所获利润Q=
2.如图是某超市中某品牌洗发水的价格标签,一售货员不小心将墨水滴 在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是 ( )
北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

第五章《一元一次方程》期末复习基础知识梳理一、主要概念1.方程的概念:含有未知数的等式叫方程.2.一元一次方程的概念:只含有一个未知数,未知数的指数是1,这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.4.解方程:求方程的解的过程叫做解方程.5.同类项:如果两项所含字母相同,并且相同字母的指数也相同,那么这样的两项叫做同类项.二、主要性质1.等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并同类项法则同类项相加(减),把它们的系数相加(减)作为结果的系数,字母部分不变.3.去括号法则(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.三、解一元一次方程的注意事项1.分母是小数时,根据分数的基本性质,分子、分母都扩大相同的倍数,把分母转化成整数,此时和不含分母的项无关,不要和去分母相混淆.2.去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号.3.去括号时,不要漏乘括号内的项,要依据法则,不要弄错符号.4.移项时切记要变号,不要丢项,另外合并同类项和移项要灵活运用,如:有时去括号后等号的某一边或两边有同类项,可先合并,再移项,以免丢项.5.系数化为1时,不要弄错符号,分子、分母不要颠倒.6.不要生搬硬套解方程的步骤,要根据具体题目灵活运用,以便找到一个最简便的解法.四、列一元一次方程解决实际问题的步骤1.审:审题,多读几次,理清题中各量之间的关系.2.设:把题中某个未知数用字母代替,有时直接设元,有时间接设元.为了比较容易列方程或列出的方程比较简单易解,不直接把题目的问题设成未知数,而间接地把和题目中要求的问题有关的量设成未知数,即间接设元.3.找:把已知数和未知数放在一起找出一个相等的关系,有时可借助图形来找相等关系.4.列:根据等量关系列出方程.5.解:求出方程的解.6.验:检验方程的解是否符合问题的实际意义.7.答:写出答案(包括单位)巩固练习一、选择题:1. 下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x xD.由7)1(2+=+x x 移项、合并同类项得x =52.方程2-2x 4x 7312--=-去分母得( )。
北师大版丨七年级数学上册一元一次方程打折销售典型例题!

北师大版丨七年级数学上册一元一次方程打折销售典型例题!1.商品销售中与打折有关的概念及公式(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:商家卖出商品的价格,也叫成交价.④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出,如打8折就是以原价的80%卖出.2.利润问题中的关系式①售价=标价x折扣;售价=成本+利润=成本×(1 +利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价x利润率;利润=成本价x利润率;利润率=利润进价=售价一进价进价.[例1~1] :(1)某商品成本100元,提高40%后标价,则标价为____ 元;(2)500元的9折是____ 元, ____元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是____。
解析:(1)成本x(1+ 提高率)=标价,即100x(1+40%)= 140(元);(2)九折即原价的十分之九,所以500元打9折,就是500x0.9=450(元),设x的八折是340,所以有0.8x=340,解得x=425;(3)利润率=利润进价=(售价-进价)÷进价=(70-40)÷40=75%.答案: (1)140 (2)450 425 (3)75%[例1~2]:列方程解应用题的一般步骤及注意事项:(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系.②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一。
北师大版七年级数学上册-第五章一元一次方程(同步+复习)串讲精品课件【作者:李树茂】

第五章
一元一次方程
七年级(上)
第一单元:认识一元一次方程
一.等式及性质
1. 2. 等式:表示相等关系的式子叫做等式(左右 两边的代数式用等号连接)。 等式的性质:
① 性质1: 等式的两边都加上(或减去)同一个数 或同一个整式,所得的结果仍是等式。 若 A=B,则:A+M=B+M ② 性质2:等式的两边都乘(或除以)同一个数 (除数不为零),所得的结果仍是等式。 A B 若 A=B,则:AM=BM;— = — M M ③ 等式的可逆性(对称性);等式的传递性。 若A=B 则B=A;若A=B,B=C 则A=C。
解:设这批夹克每件的成本是X元,则: X(1+50%)×80%=60 X=50 答:这批夹克每件的成本是50元。
【练习】甲、乙两家商场销 售同一种书包,甲商场售价 为80元,乙商场标价为120元, 但打出“特价酬宾,7折优惠” 的广告。 (1)若你是顾客,你会选 择在哪家商场购买? (2)若你是商场经理,你 会选择哪种销售方式?说说 你的想法。
【例1】用适当的数或整式填空,使所得的结 果仍是等式,并说明依据和变形的过程。
① ② ③ ④ ⑤ 若x+3=4 则: x=4+( ). 若2x=10-3x 则: 2x+( )=10. 若0.2x=0 则: x=( ). -2x=6 则: x=( ). 若4x+3=4 则: x=( ).
二.方程与一元一次方程的概念
则a =______ 。 -6 4.若x=4是方程 mx-8=20的解。则m=(
).
第二单元:求解一元一次方程
一.移项
1. 定义:依据等式的性质1,把方程中的项改 变符号后,从方程的一边移到另一边,这种 变形叫做移项。 注意:
北师大版初中七年级上册数学课件 《应用一元一次方程—追赶小明》一元一次方程课件

在审题过程中,如果能把文字 语言变成图形语言——线段图,即 可使问题更加直观,等量关系更加 清晰.我们只要设出未知数,并用代 数式表示出来,便可以得到方程.
例题讲 解 例1小丽和小红每天早晨坚持跑步,小 红每秒跑4米,小丽每秒跑6米.
(1)如果她们从100米跑道的两端相向 跑,那么几秒之后两人相遇?
(2)如果小丽站在百米跑道起跑处,小红 站在她面前10米处,两人同时同向起跑,几 秒后小丽追上小红?
(1)如果她们从100米跑道的两端 相向跑,那么几秒之后两人相遇?
题目中已知些什么?用图表示出来.
100 米
小丽
小红
跑的
跑的
路程
路程
等量关系:小丽所跑的路程+小红所跑
的路程=100米.
100 米
小丽
路程解:设无风时飞机的航速为xkm/h, 根据题意,得2.9(x+20)=3.1(x-20). 解这个方程,得x=600. 则3.1(x-20)=1798. 因此,无风时飞机的航速为600km/h,这两个城 市之间的距离为1798km.
1.顺(逆)风问题中的有关公式:
5.6应用一元一次方程——追赶小明
情境导 入
小明和小华相距10米,他们同时出发,相向 而行,小明每秒走3米,小华每秒走4米,他 们能相遇吗?几秒钟可以相遇?
等量关系: 小明走的路程+小华走的路程=相 距的路程
所用公式:路程=速度×时间
这道题是小学做过的一种很常见的应用题: 行程问题, 用到的数量关系主要有: 路程=平均速度×时间; 时间=路程÷平均速度.
以5km/h的速度行进,走了18min的时候,
学校要将一个紧急通知传给队长,通讯员
从学校出发,骑自行车以14km/h的速度按
5.1认识方程+课件+2024-2025学年北师大版七年级数学+上册

盈三;人出七,不足四。问:人数、物价各几何?"你知道我国古人是如何解
决这个问题的吗?
5.1
认识方程
情景导入
本章你将经历从具体问题情境中发现等量关系、抽象出方程模型的过程,
利用等式的基本性质求解一元一次方程,并运用一元一次方程解决实际问题,
新课标 北师大版(2024) 七年级上册
第五章 一元一次方程
5.1认识方程
认识方程
学习目标
01
我能根据实际问题中的等量关系列出方程,感受方程作为刻画现实世界的有
效模型的意义.
02
我能通过观察方程的特点,归纳出一元一次方程的概念.
03
我能学会判断一元一次方程和验证一元一次方程的解.
5.1
认识方程
情景导入
-
+
=
问题三:这三个式子有什么共同特点?
(1)都含有未知数x
(2)都含有等号,表示量相等的式子
含有未知数的表示量相等的等式称为方程
5.1
认识方程
知识.归纳
在一个方程中,只含有一个未知数,且方程中的代数式都是整式,
未知数的次数都是1,这样的方程叫作一元一次方程.
如:10x + 15(45 - x)=475,2x+3=7x+4都是一元一次方程
感受方程的模型思想和方程求解的转化思想,发展抽象能力和运算能力。
在本章学习过程中,你可以持续思考以下问题:
为什么要学习方程?方程的本质是什么?
如何得到一个方程?求解方程的基本思路是什么?
5.1
【北师大】七年级上册数学 第15讲 一元一次方程的解法 讲义(含答案)

6.解:移项得:x=3+5=8,故填8.
7.解:去括号得:5x-25+2x=-4
移项得:7x=21
系数化为1得:x=3
8.解:原方程可化为:2x=7-1
合并得:2x=6
系数化为1得:x=3
9.解:〔1〕去括号得:8x+12=8-8x-5x+10,
【例8】关于x的方程mx+2=2〔m-x〕的解满足|x-12|-1=0,求m的值.
同步练习
1.|2-23x|=4,那么x的值是〔 〕
A、-3B、9C、-3或9D、以上结论都不对
2.方程|3x|=15的解的情况是〔 〕
A、有一个解,是5B、无解C、有无数个解D、有两个解,是±5
3.使方程3|x+2|+2=0成立的未知数x的值是〔 〕
四、典型例题
〔一〕一元一次方程的解
【例1】3是关于x的方程2x-a=1的解,那么a的值是〔 〕
A、-5B、5C、7D、2
【例2】假设关于x的一元一次方程2x-k/3-x-3k/2=1的解是x=-1,那么k的值是〔 〕
A、27B、1C、-13/11D、0
【例3】请写出一个解为x=2的一元一次方程:
【例4】5是关于x的方程3x-2a=7的解,那么a的值为.
7.解:把x=0代入方程2x+n3+1=1-x2+n得:n3+1=12+n,去分母得:2n+6=3+6n,∴n=34,即当n=34时,关于x的方程2x+n3+1=1-x2+n的解为0.
〔二〕解一元一次方程
2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程

1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y
√
√
7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.