北师大版七年级数学上册一元一次方程知识点(含例题)

合集下载

七年级数学上册第五章一元一次方程4应用一元一次方程_打折销售课件新版北师大版

七年级数学上册第五章一元一次方程4应用一元一次方程_打折销售课件新版北师大版

2.(2018山西农大附中第三次月考,★★☆)小明用的练习本可以到甲、
乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是
购买10本以上从第11本开始按标价的70%出售;乙商店的优惠条件是,
从第一本起按标价的80%出售.
(1)若小明要购买20本练习本,则当小明到甲商店购买时,需付款
元,当到乙商店购买时,需付款
元;
(2)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,需付款
元,当到乙商店购买时,需付款
元;
(3)买多少本练习本时,两家商店付款相同?
解析 (1)到甲商店购买需付款10+10×0.7=17元;到乙商店购买需付款2 0×0.8=16元. 故答案为17;16. (2)小明要购买x(x>10)本练习本,到甲商店购买需付款10+(x-10)×70%= (0.7x+3)元; 到乙商店购买需付款(0.8x)元.故答案为0.7x+3;0.8x. (3)设买x本时给两个商店付相等的钱, 依题意列方程:10+(x-10)×70%=80%x,解得x=30. 答:买30本练习本时,两家商店付款相同.
3.某织布厂有150名工人,每名工人每天能织布30 m,或制衣4件,已知制
衣一件需要布1.5 m,将布直接出售,每米布可获利2元,将布制成衣后出
售,每件可获得25元,若每名工人每天只能做一项工作,且不计其他因素,
设安排x名工人制衣.
(1)一天中制衣所获利润P=
(用含x的式子表示);
(2)一天中剩余布所获利润Q=
2.如图是某超市中某品牌洗发水的价格标签,一售货员不小心将墨水滴 在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是 ( )

北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

第五章《一元一次方程》期末复习基础知识梳理一、主要概念1.方程的概念:含有未知数的等式叫方程.2.一元一次方程的概念:只含有一个未知数,未知数的指数是1,这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.4.解方程:求方程的解的过程叫做解方程.5.同类项:如果两项所含字母相同,并且相同字母的指数也相同,那么这样的两项叫做同类项.二、主要性质1.等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并同类项法则同类项相加(减),把它们的系数相加(减)作为结果的系数,字母部分不变.3.去括号法则(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.三、解一元一次方程的注意事项1.分母是小数时,根据分数的基本性质,分子、分母都扩大相同的倍数,把分母转化成整数,此时和不含分母的项无关,不要和去分母相混淆.2.去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号.3.去括号时,不要漏乘括号内的项,要依据法则,不要弄错符号.4.移项时切记要变号,不要丢项,另外合并同类项和移项要灵活运用,如:有时去括号后等号的某一边或两边有同类项,可先合并,再移项,以免丢项.5.系数化为1时,不要弄错符号,分子、分母不要颠倒.6.不要生搬硬套解方程的步骤,要根据具体题目灵活运用,以便找到一个最简便的解法.四、列一元一次方程解决实际问题的步骤1.审:审题,多读几次,理清题中各量之间的关系.2.设:把题中某个未知数用字母代替,有时直接设元,有时间接设元.为了比较容易列方程或列出的方程比较简单易解,不直接把题目的问题设成未知数,而间接地把和题目中要求的问题有关的量设成未知数,即间接设元.3.找:把已知数和未知数放在一起找出一个相等的关系,有时可借助图形来找相等关系.4.列:根据等量关系列出方程.5.解:求出方程的解.6.验:检验方程的解是否符合问题的实际意义.7.答:写出答案(包括单位)巩固练习一、选择题:1. 下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x xD.由7)1(2+=+x x 移项、合并同类项得x =52.方程2-2x 4x 7312--=-去分母得( )。

北师大版丨七年级数学上册一元一次方程打折销售典型例题!

北师大版丨七年级数学上册一元一次方程打折销售典型例题!

北师大版丨七年级数学上册一元一次方程打折销售典型例题!1.商品销售中与打折有关的概念及公式(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:商家卖出商品的价格,也叫成交价.④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出,如打8折就是以原价的80%卖出.2.利润问题中的关系式①售价=标价x折扣;售价=成本+利润=成本×(1 +利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价x利润率;利润=成本价x利润率;利润率=利润进价=售价一进价进价.[例1~1] :(1)某商品成本100元,提高40%后标价,则标价为____ 元;(2)500元的9折是____ 元, ____元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是____。

解析:(1)成本x(1+ 提高率)=标价,即100x(1+40%)= 140(元);(2)九折即原价的十分之九,所以500元打9折,就是500x0.9=450(元),设x的八折是340,所以有0.8x=340,解得x=425;(3)利润率=利润进价=(售价-进价)÷进价=(70-40)÷40=75%.答案: (1)140 (2)450 425 (3)75%[例1~2]:列方程解应用题的一般步骤及注意事项:(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系.②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一。

北师大版七年级数学上册-第五章一元一次方程(同步+复习)串讲精品课件【作者:李树茂】

北师大版七年级数学上册-第五章一元一次方程(同步+复习)串讲精品课件【作者:李树茂】
内蒙古包头瑞星教育原创精品课件——版权所有
第五章
一元一次方程
七年级(上)
第一单元:认识一元一次方程
一.等式及性质
1. 2. 等式:表示相等关系的式子叫做等式(左右 两边的代数式用等号连接)。 等式的性质:
① 性质1: 等式的两边都加上(或减去)同一个数 或同一个整式,所得的结果仍是等式。 若 A=B,则:A+M=B+M ② 性质2:等式的两边都乘(或除以)同一个数 (除数不为零),所得的结果仍是等式。 A B 若 A=B,则:AM=BM;— = — M M ③ 等式的可逆性(对称性);等式的传递性。 若A=B 则B=A;若A=B,B=C 则A=C。
解:设这批夹克每件的成本是X元,则: X(1+50%)×80%=60 X=50 答:这批夹克每件的成本是50元。
【练习】甲、乙两家商场销 售同一种书包,甲商场售价 为80元,乙商场标价为120元, 但打出“特价酬宾,7折优惠” 的广告。 (1)若你是顾客,你会选 择在哪家商场购买? (2)若你是商场经理,你 会选择哪种销售方式?说说 你的想法。
【例1】用适当的数或整式填空,使所得的结 果仍是等式,并说明依据和变形的过程。
① ② ③ ④ ⑤ 若x+3=4 则: x=4+( ). 若2x=10-3x 则: 2x+( )=10. 若0.2x=0 则: x=( ). -2x=6 则: x=( ). 若4x+3=4 则: x=( ).
二.方程与一元一次方程的概念
则a =______ 。 -6 4.若x=4是方程 mx-8=20的解。则m=(
).
第二单元:求解一元一次方程
一.移项
1. 定义:依据等式的性质1,把方程中的项改 变符号后,从方程的一边移到另一边,这种 变形叫做移项。 注意:

北师大版初中七年级上册数学课件 《应用一元一次方程—追赶小明》一元一次方程课件

北师大版初中七年级上册数学课件 《应用一元一次方程—追赶小明》一元一次方程课件

在审题过程中,如果能把文字 语言变成图形语言——线段图,即 可使问题更加直观,等量关系更加 清晰.我们只要设出未知数,并用代 数式表示出来,便可以得到方程.
例题讲 解 例1小丽和小红每天早晨坚持跑步,小 红每秒跑4米,小丽每秒跑6米.
(1)如果她们从100米跑道的两端相向 跑,那么几秒之后两人相遇?
(2)如果小丽站在百米跑道起跑处,小红 站在她面前10米处,两人同时同向起跑,几 秒后小丽追上小红?
(1)如果她们从100米跑道的两端 相向跑,那么几秒之后两人相遇?
题目中已知些什么?用图表示出来.
100 米
小丽
小红
跑的
跑的
路程
路程
等量关系:小丽所跑的路程+小红所跑
的路程=100米.
100 米
小丽
路程解:设无风时飞机的航速为xkm/h, 根据题意,得2.9(x+20)=3.1(x-20). 解这个方程,得x=600. 则3.1(x-20)=1798. 因此,无风时飞机的航速为600km/h,这两个城 市之间的距离为1798km.
1.顺(逆)风问题中的有关公式:
5.6应用一元一次方程——追赶小明
情境导 入
小明和小华相距10米,他们同时出发,相向 而行,小明每秒走3米,小华每秒走4米,他 们能相遇吗?几秒钟可以相遇?
等量关系: 小明走的路程+小华走的路程=相 距的路程
所用公式:路程=速度×时间
这道题是小学做过的一种很常见的应用题: 行程问题, 用到的数量关系主要有: 路程=平均速度×时间; 时间=路程÷平均速度.
以5km/h的速度行进,走了18min的时候,
学校要将一个紧急通知传给队长,通讯员
从学校出发,骑自行车以14km/h的速度按

5.1认识方程+课件+2024-2025学年北师大版七年级数学+上册

5.1认识方程+课件+2024-2025学年北师大版七年级数学+上册
《九章算术》第七章"盈不足"中有这样一个问题:"今有共买物,人出入,
盈三;人出七,不足四。问:人数、物价各几何?"你知道我国古人是如何解
决这个问题的吗?
5.1
认识方程
情景导入
本章你将经历从具体问题情境中发现等量关系、抽象出方程模型的过程,
利用等式的基本性质求解一元一次方程,并运用一元一次方程解决实际问题,
新课标 北师大版(2024) 七年级上册
第五章 一元一次方程
5.1认识方程
认识方程
学习目标
01
我能根据实际问题中的等量关系列出方程,感受方程作为刻画现实世界的有
效模型的意义.
02
我能通过观察方程的特点,归纳出一元一次方程的概念.
03
我能学会判断一元一次方程和验证一元一次方程的解.
5.1
认识方程
情景导入



+



=
问题三:这三个式子有什么共同特点?
(1)都含有未知数x
(2)都含有等号,表示量相等的式子
含有未知数的表示量相等的等式称为方程
5.1
认识方程
知识.归纳
在一个方程中,只含有一个未知数,且方程中的代数式都是整式,
未知数的次数都是1,这样的方程叫作一元一次方程.
如:10x + 15(45 - x)=475,2x+3=7x+4都是一元一次方程
感受方程的模型思想和方程求解的转化思想,发展抽象能力和运算能力。
在本章学习过程中,你可以持续思考以下问题:
为什么要学习方程?方程的本质是什么?
如何得到一个方程?求解方程的基本思路是什么?
5.1

【北师大】七年级上册数学 第15讲 一元一次方程的解法 讲义(含答案)

5.解:- 13的倒数是-3,∵2x-3与- 13互为倒数,∴2x-3=3,解得:x=0.故填0.
6.解:移项得:x=3+5=8,故填8.
7.解:去括号得:5x-25+2x=-4
移项得:7x=21
系数化为1得:x=3
8.解:原方程可化为:2x=7-1
合并得:2x=6
系数化为1得:x=3
9.解:〔1〕去括号得:8x+12=8-8x-5x+10,
【例8】关于x的方程mx+2=2〔m-x〕的解满足|x-12|-1=0,求m的值.
同步练习
1.|2-23x|=4,那么x的值是〔 〕
A、-3B、9C、-3或9D、以上结论都不对
2.方程|3x|=15的解的情况是〔 〕
A、有一个解,是5B、无解C、有无数个解D、有两个解,是±5
3.使方程3|x+2|+2=0成立的未知数x的值是〔 〕
四、典型例题
〔一〕一元一次方程的解
【例1】3是关于x的方程2x-a=1的解,那么a的值是〔 〕
A、-5B、5C、7D、2
【例2】假设关于x的一元一次方程2x-k/3-x-3k/2=1的解是x=-1,那么k的值是〔 〕
A、27B、1C、-13/11D、0
【例3】请写出一个解为x=2的一元一次方程:
【例4】5是关于x的方程3x-2a=7的解,那么a的值为.
7.解:把x=0代入方程2x+n3+1=1-x2+n得:n3+1=12+n,去分母得:2n+6=3+6n,∴n=34,即当n=34时,关于x的方程2x+n3+1=1-x2+n的解为0.
〔二〕解一元一次方程

2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程

2或-2
1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y


7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.

【北师大】七年级上册数学 第18讲 列一元一次方程解应用题(3) 讲义(含答案)

教师讲义〔4〕期数:存入的时间叫期数.〔5〕利率:每个期数内的利息与本金的比叫利率.2.储蓄中的常用公式:〔1〕每个期数内:〔2〕利息=本金〔3〕利息=本金〔4〕本息和=本金+利息四、典型例题及同步练习〔一〕、行程问题【例1】小华和小玲同时从相距700米的两地相对走来,小华每分钟走60米,小玲每分钟走80米.几分钟后两人相遇?分析:先画线段图:假设x分钟后两人相遇,此时小华走了_________米,小玲走了_________米,两人一共走了_________米.找出等量关系,小华和小玲相遇时_________+_________=_________写解题过程:同步练习1假设A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.两车同时开出,相向而行,过几小时后两车相遇?分析:先画线段图:写解题过程:需要〔〕A、3小时B、3小时C、4小时D、4小时3、学校到县城有28千米,除公共汽车以外,还需步行一段路程,公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时,那么步行所用时间是〔〕A、小时B、小时C、小时D、小时4、一个图书馆对图书进行防火保险,如果每年的保险费是图书价值的0.4%,参加保险6年,一共交付保险费7.8万元,那么图书馆的图书价值〔〕A、300万元B、305万元C、320万元D、325万元5、某企业为节约用水,自建污水净水站,3月份净化污水3000吨,4月份净化污水3300吨,那么这个月净化污水的量的增长百分率为〔〕A、7%B、8%C、9%D、10%6、小明同学存入300元的活期储蓄,存满3个月时取出,共得本息和301.35元〔不计利息税〕,那么此活期储蓄的月利率是〔〕A、1.6‰B、1.5‰C、1.8‰D、1.7‰二、填空题〔共5小题,每题5分,总分值25分〕1、A,B两地间的路程为450千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米.假设两车同时开出,相向而行,_________小时相遇;假设慢车先开1小时,快车在同地同向开出,快车经过了_________小时可追上慢车.2、某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送交后又立即返回队尾,共用13.2分钟,那么这支队伍的长度为_________千米.3、假设一艘轮船在静水中的速度是7千米/时,水流速度是2千米/时,那么这艘船逆流而上的速度是_________千米/时,顺流而下的速度是_________千米/时.4、环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过_________秒两人相遇.5、在一段复线铁道上,两辆火车迎头驶头,A列车车速为20米/秒,B列车车速为25米/秒,假设A列车全长200米,B列车全长160米,两列车错车的时间为_________秒.6、妈妈用10 000元钱为小彬存了6年期的教育储蓄,6年后能取得11 728元,这种储蓄的年利率为_________%.7、某人将一笔钱按定期2年存入银行,年利率为2.25%〔不计复利〕,到期支取扣除20%利息税,实得利息72元,5、从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程?6、甲、乙两人骑自行车同时从相距80千米的两地出发,相向而行,2小时后相遇,甲每小时比乙多走2.4千米,求甲、乙每人每小时走多少千米?7、甲、乙二人从相距91千米的A、B两地相向而行,甲先出发1小时,二人在乙出发4小时后相遇,而甲每小时比乙快2千米,求甲、乙二人的速度?附答案典型例题及同步练习〔一〕【例1】解:小华走的路程为60x米,小玲走的路程为80x米,两人一共走了700米,60x+80x=700,解得x=5.答:5分钟后两人相遇.故答案为60x;80x;700;60x;80x;700.同步练习1解:设经过x小时相遇,根据题意可得〔60+65〕x=480,解得:x=3.84〔小时〕.答:两车需要3.84小时相遇.同步练习2解:设货车的速度为x千米/小时,根据题意可作出如下方程及图示:80×4+x×4=600,解得:x=70〔千米/小时〕.答:货车每小时行70千米.【例2】解:〔1〕设爸爸追上小明用了x 分钟,根据题意可得线段图〔红线代表爸爸,黑线代表小明〕:得方程:80×5+80x=180x ,解得:x=4.答:爸爸追上小明用了4分钟.各空依次填:180x 、400、80x 、400+80x=180x .〔2〕爸爸追上小明用了4分钟,爸爸和小时走了180×4=720〔米〕,此时离学校还有1000﹣720=280米.同步练习1解:设小明x 秒钟追上小兵,7x=6×〔4+x 〕,解得x=24.答:小明24秒钟追上小兵.同步练习2解:设x 秒后小明能追上小华,7x ﹣5x=20,解得x=10.答:10秒后小明能追上小华.同步练习3解:设经过x 小时摩托车可以追赶上自行车,根据题意得:60x -20x =80 解得x =2所以经过2小时摩托车可以追赶上自行车。

北师大版七年级数学上册第五章《一元一次方程》练习题含答案解析 (3)

一、选择题1.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是( )A.x(1+50%)80%=x−250B.x(1+50%)80%=x+250C.(1+50%x)80%=x−250D.(1+50%x)80%=250−x+3的解也为整数,则所有满足条件的数2.已知a为整数,关于x的一元一次方程2x+1=ax3a的和为( )A.0B.24C.36D.483.某商品提价25%后.欲恢复原价,则应降低( )A.40%B.25%C.20%D.15%4.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元B.85元C.90元D.95元5.妈妈将2万元为小明存了一个6年期的教育储蓄(免利息税),6年后,总共能得27056元,则这种教育储蓄的年利率为( )A.5.86%B.5.88%C.5.84%D.5.82%6.用一根绳子环绕一棵大树,环绕大树3周绳子还多4米,环绕4周又少了3米,则环绕大树一周需要的绳长为( )A.5米B.6米C.7米D.8米7.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.若关于x的方程(k−4)x=3有正整数解,则自然数k的值是( )A.1或3B.5C.5或7D.3或79.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A.400cm2B.500cm2C.600cm2D.300cm210.一台电视机成本价为a元,销售价比成本价增加了25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为( )A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1−70%)a元D.(1+25%+70%)a元二、填空题11.9月6日,重庆来福购物中心正式开业,购物中心里的美食店推出了A,B两种套餐和其他美食,当天,A套餐的销售额占总销售额的40%,B套餐的销售额占总销售额的20%.国庆期间,重庆外来旅客增加,此店老板考虑外来游客的饮食口味推出了C套餐,在10月1日这一天,A,B套餐各自的销售额都比9月6日的销售额减少了15%,C套餐的销售额占10月1日当天总销售额的20%,其他美食的销售额不变,则10月1日的总销售额比9月6日的总销售额增加%.12.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.13.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A,B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A,B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.14.如图,∠AOC是平角,∠AOB=60∘,在平面内,OA,OB绕点O顺时针转动,速度分别为每秒40∘和每秒20∘.经过t秒后,首次出现射线OA,OB,OC中的一条是另外两条组成角的角平分线,则t=.15.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.16.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为元.17.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x元,由题意可列方程为.三、解答题18.如图,已知线段AB,点C是线段AB的中点,点D在AB延长线上.(1) 用直尺和圆规在答题纸上作出点C;(2) 已知线段AD的长是7,线段AC的长比线段BD长的一半少1,求线段AC的长.19.已知一张方桌由1个桌面和4条桌腿组成,1立方米木料可制作方桌桌面50张或桌腿300条.现有5立方米木料,那么多少木料做桌面,多少木料做桌腿,可以恰好配套成方桌?20.如图1,O为直线AB上点,过点O作射线OC,∠AOC=30∘,将一直角三角板(∠M=30∘)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1) 将图1中的三角板绕点O以每秒3∘的速度沿顺时针方向旋转一周,如图2经过t秒后,OM恰好平分∠BOC.①求t的值.②此时ON是否平分∠AOC?请说明理由.(2) 在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6∘ 的速度沿顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分 ∠MON ?请你说明理由.(3) 在(2)问的基础上,经过多长时间 OC 平分 ∠MOB ?请画图并说明理由.21. “六一”期间,小张购进 100 只两种型号的文具并全部售出后获利 500 元,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A 型1012B 型1523问当初小张进货,用了多少元?22. 已知有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C ,其中 b 是最小的正整数,a ,c 满足∣a +2∣+(c −5)2=0.(1) 填空:a = ,b = ,c = ;(2) 现将点 A ,点 B 和点 C 分别以每秒 4 个单位长度,1 个单位长度和 1 个单位长度的速度在数轴上同时向右运动,设运动时间为 t 秒.①定义:已知 M ,N 为数轴上任意两点,将数轴沿线段 MN 的中点 Q 进行折叠,点 M 与点 N 刚好重合,所以我们又称线段 MN 的中点 Q 为点 M 和点 N 的折点. 试问:当 t 为何值时,这三个点中恰好有一点为另外两点的折点?②当点 A 在点 C 左侧时(不考虑点 A 与点 B 重合),是否存在一个常数 m 使得 2AC +m ⋅AB 的值在一定时间范围内不随 t 的改变而改变?若存在,求出 m 的值;若不存在,请说明理由.23. 已知;如图,线段 AB =6,点 C 是线段 AB 的中点.动点 P 从点 A 出发,以每秒 1 个单位的速度沿 AB 向终点 B 运动,设点 P 运动的时间是 t (秒).(1) 用含t的代数式表示AP,则AP=.(2) 当点P与点C重合时,求t的值.(3) 用含t的代数式表示CP.(4) 若在点P出发的同时,动点Q从点B出发,以每秒2个单位的速度沿BA向终点A运动,当P,Q两点的距离是1时,直接写出t的值.24.我们把解相同的两个方程称为同解方程.例如:方程2x=6与方程4x=12的解都为x=3,所以它们为同解方程.(1) 若方程2x−3=11与关于x的方程4x+5=3k是同解方程,求k的值.(2) 若关于x的方程3[x−2(x−k3)]=4x和3x+k12−1−5x8=1是同解方程,求k的值.(3) 若关于x的方程2x−3a=b2和4x+a+b2=3是同解方程,求14a2+6ab2+8a+6b2的值.25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1) 若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?答案一、选择题1. 【答案】B【解析】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.【知识点】利润问题2. 【答案】D+3,【解析】∵2x+1=ax3∴(6−a)x=6,+3的解为整数,∵关于x的一元一次方程2x+1=ax3为整数,∴x=66−a∴6−a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48.【知识点】含参一元一次方程的解法3. 【答案】C【知识点】利润问题4. 【答案】C【知识点】利润问题5. 【答案】B【知识点】和差倍分6. 【答案】C【解析】设环绕大树一周需要的绳长为x米.根据题意,得3x+4=4x−3,解得x=7,则环绕大树一周需要的绳长为7米.【知识点】和差倍分7. 【答案】A【知识点】利润问题8. 【答案】C【解析】由 (k −4)x =3,解得 x =3k−4,又因为 (k −4)x =3 有正整数解,k 为自然数, 所以 k −4=1或3,所以 k =5或7,所以自然数 k 的值是 5 或 7. 【知识点】含参一元一次方程的解法9. 【答案】A【解析】设一个小长方形的长为 x cm ,宽为 y cm , 则可列方程组 {x +y =50,x +4y =2x,解得 {x =40,y =10,则一个小长方形的面积 =40 cm ×10 cm =400 cm 2. 【知识点】几何问题10. 【答案】B【解析】可先求销售价 (1+25%)a 元,再求实际售价 70%(1+25%)a 元. 【知识点】利润问题二、填空题11. 【答案】 13.75【解析】设 9 月 6 日的总销售额为 x 元, 则 9 月 6 日 A 套餐的销售额为 40%x 元, B 套餐的销售额为 20%x 元,其他美食的销售额为 (1−40%−20%)x =40%x ,则 10 月 1 日 A 套餐的销售额为 40%x ×(1−15%)=34%x 元, B 套餐的销售额为 20%x ×(1−15%)=17%x 元, 其他美食的销售额为 40%x ,则 10 月 1 日的总销售额为 (34%x +17%x +40%x )÷(1−20%)=1.1375x ,则 10 月 1 日的总销售额比 9 月 6 日的总销售额增加 (1.1375x −x )÷x =13.75%. 【知识点】利润问题12. 【答案】 7 ; 53【解析】设共有 x 人,则这个物品的价格是 (8x −3) 元, 依题意,得:8x −3=7x +4,解得:x =7, ∴8x −3=53. 【知识点】和差倍分13. 【答案】312【解析】设A商品的单价为x元/件,则B商品的单价为(27−x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27−x)×a=xa+(27−x)(a+2)+8,∴x=62−5.4a−0.3a+3.8,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10,∴小明购买两种商品实际花费=9×12+1.2×10×17=312元.【知识点】和差倍分14. 【答案】4【知识点】几何问题15. 【答案】1或2【解析】由题意第一象操作后剩下的矩形长是宽的2倍,由此可得:3−m=2m或m=2(3−m),解得m=1或2.【知识点】几何问题16. 【答案】4【解析】设该商品每件的销售利润为x元,根据进价+利润=售价,得80+x=120×0.7,解得x=4,故答案为4.【知识点】利润问题17. 【答案】200×80%=(1+25%)x【知识点】利润问题三、解答题18. 【答案】(1) 图略.(2) 设AC的长为x,则BD的长为7−2x.由题意得x=12(7−2x)−1.解得x=54.答:线段AC的长是54.【知识点】几何问题、线段中点的概念及计算、线段的和差19. 【答案】设桌面用木料x立方米,则桌腿用木料(5−x)立方米,根据题意得,50x×4=300(5−x)解得x=35−3=2答:桌面3立方米,桌腿2立方米.【知识点】和差倍分20. 【答案】(1) ① ∵∠AON+∠BOM=90∘,∠COM=∠MOB,∵∠AOC=30∘,∴∠BOC=2∠COM=150∘,∴∠COM=75∘,∴∠CON=15∘,∴∠AON=∠AOC−∠CON=30∘−15∘=15∘,解得t=15∘÷3∘=5秒.②是,理由如下:∵∠CON=15∘,∠AON=15∘,∴ON平分∠AOC.(2) 5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90∘,∠CON=∠COM,∵∠MON=90∘,∴∠CON=∠COM=45∘,三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,∵∠AOC−∠AON=45∘,可得:30+6t−3t=45∘,解得:t=5秒.(3) OC平分∠MOB,∵∠AON+∠BOM=90∘,∠BOC=∠COM,∵三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,(90∘−3t),∴∠COM为12∵∠BOM+∠AON=90∘,(90∘−3t).可得:180∘−(30∘+6t)=12秒.解得:t=703如图:【知识点】角平分线的定义、几何问题、角的计算21. 【答案】A文具为40只,B文具60只,进货用了1300元.【知识点】利润问题22. 【答案】(1) −2;1;5(2) ① t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A为点B和点C的对折点时,有:(1+t)+(5+t)=2(−2+4t),解得t=53;(ii)当点B为点A和点C的对折点时,有:(−2+4t)+(5+t)=2(1+t),解得t=−13<0(舍去);(iii)当点C为点B和点A的对折点时,有:(−2+4t)+(1+t)=2(5+t),解得t=113.综上所述,满足条件的t的值是53或113.② t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A在点B的左侧时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=(1+t)−(−2+4t)=3−3t∴2AC+m⋅AB=2(7−3t)+m(3−3t)=(−3m−6)t+3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴−3m−6=0.∴m=−2;(ii)当点A在点B与点C之间时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=−(1+t)+(−2+4t)=−3+3t∴2AC+m⋅AB=2(7−3t)+m(−3+3t)=(3m−6)t−3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴3m−6=0.∴m=2.综上:m的值是2或−2.【解析】(1) ∵最小的正整数是1,∴b=1,由题意得,a+2=0,c−5=0,解得a=−2,c=5.【知识点】数轴的概念、行程问题23. 【答案】(1) t(2) ∵AB=6,C是线段AB的中点,∴AC=3,则此时AP=AC=t=3,∴t=3.(3) 0≤t≤3时,PC=3−t,3<t≤6时,PC=t−3.(4) 53或73.【解析】(1) 由题AP=t.(4) AP=t,BQ=2t,P与Q在t=2时相遇,①则0≤t≤2时,PQ=6−3t=1,则t=53符合条件,② 2<t≤3时,PQ=3t−6=1,则t=73符合条件,故t=53或73.【知识点】行程问题、绝对值的几何意义、线段中点的概念及计算、线段的和差24. 【答案】(1) 2x−3=11,解得x=7,∵2x−3=11与4x+5=3k是同解方程,∴把x=7代入4x+5=3k中可得k=11.(2) 3[x−2(x−k3)]=4x,3(x−2x+23k)=4x,−3x+2k=4x,7x=2k,x=27k,3x+k 12−1−5x8=1,2(3x+k)−3(1−5x)=24,6x+2k−3+15x=24,21x=27−2k,x=27−2k21,∵原方程为同解方程,∴27k=27−2k21,6k=27−2k,8k=27,k=278.(3) 2x−3a=b2,x=b2+3a2,4x+a+b2=3,x=3−a−b24.∵原方程为同解方程,b2+3a2=3−a−b24,4b2+12a=6−2a−2b2,6b2+14a=6,14a2+6ab2+8a+6b2=(14a+6b2)+8a+6b2=6a+8a+6b2=14a+6b2= 6.【知识点】含参一元一次方程的解法、解常规一元一次方程25. 【答案】(1) 分三种情况计算:①设购进甲种电视机x台,乙种电视机(50−x)台.1500x+2100(50−x)=90000.解得x=25.则50−x=50−25=25.故购进甲种电视机25台,乙种电视机25台.②设购进甲种电视机y台,丙种电视机(50−y)台.1500y+2500(50−y)=90000.解得y=35.则50−y=15.故购进买甲种电视机35台,丙种电视机15台.③设购进乙种电视机z台,丙种电视机(50−z)台.2100z+2500(50−z)=90000.解得z=87.5.则50−z=−37.5(不合题意,舍去).故有以下两种进货方案:①甲、乙两种型号的电视机各购进25台;②购进甲种电视机35台,丙种电视机15台.(2) 方案一:25×150+25×200=8750(元).方案二:35×150+15×250=9000(元).故购进甲种电视机35台,丙种电视机15台获利最多.【知识点】利润问题、方案决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档