聚类分析-模糊聚类分析解析
模糊聚类分析PPT课件

A∪Ac U, A∩Ac .
模糊集不再具有“非此即彼”的特点,
这正是模糊性带来的本. 质特征.
12
例:设论域U = {x1, x2, x3, x4, x5}(商品集), 在U上定义两个模糊集: A =“商品质量好”, B =“商品质量坏”,并设
A = (0.8, 0.55, 0, 0.3, 1).
言,需要选取不同的置信水平 (0 1) 来确
定其隶属关系。截集就是将模糊集转化为普
通集的方法。模糊集A 是一个具有游移边界的
集合,它随值的变小而增大,即当1 <2时,
有A1∩A2。
.
14
模糊集的-截集A是一个经典集合,由隶属 度不小于的成员构成.
例:论域U={u1, u2, u3, u4 , u5 , u6}(学生集), 他们的成绩依次为50,60,70,80,90,95,A=“学 习成绩好的学生”的隶属度分别为 0.5,0.6,0.7,0.8, 0.9,0.95,则
并:A∪B的隶属函数为
(A∪B)(x)=A(x)∨B(x);
交:A∩B的隶属函数为
(A∩B)(x)=A(x)∧B(x);
余:Ac的隶属函数为
Ac (x) =. 1- A(x).
10
模糊集的并、交、余运算性质
幂等律:A∪A = A, A∩A = A;
交换律:A∪B = B∪A,A∩B = B∩A;
结合律:(A∪B)∪C = A∪(B∪C),
射,而对于模糊子集的运算,实际上可以转换称为对隶属函数的运算:
AAx 0,AU Ax 1 ABAxB x,ABAx B x AA x 1Ax
ABCC x maxAx, B x ABDDx minAx, B x
.
模糊聚类分析

模糊聚类分析模糊聚类分析,也被称为模糊聚类或者软聚类,是一种数据分析的方法。
与传统的硬聚类不同,模糊聚类可以将每个观测对象划分到不同的聚类中心,从而更好地反映对象与聚类中心之间的相似性。
模糊聚类的思想源于模糊集理论,该理论引入了概率的概念,使得划定边界变得模糊化。
在传统的硬聚类方法中,每个对象只能属于一个聚类,而在模糊聚类中,每个对象的隶属度被划分为一个实数,表示对象属于每个聚类的程度。
模糊聚类的基本原理是通过最小化目标函数来优化聚类结果。
常见的目标函数包括模糊熵和模糊轮廓系数。
模糊熵用于衡量聚类的混乱程度,值越小表示聚类更好。
模糊轮廓系数则用于评价每个对象的聚类紧密度和分离度,系数范围为[-1, 1],越接近1表示聚类结果越好。
模糊聚类的算法有多种,其中最常用的是模糊C均值(FCM)算法。
FCM算法首先随机初始化聚类中心,然后迭代更新对象的隶属度和聚类中心,直到满足终止条件。
在更新过程中,对象的隶属度和聚类中心根据距离度量进行调整。
模糊聚类在各个应用领域都有广泛的应用。
例如,在市场细分中,模糊聚类可以根据消费者的购买偏好将其划分为不同的细分市场,有助于制定更准确的营销策略。
在医学影像分析中,模糊聚类可以帮助医生根据患者的病情将其归类为不同的疾病类型,有助于做出更准确的诊断。
当然,模糊聚类也存在一些问题和挑战。
首先,模糊聚类的计算复杂度高,特别是在处理大规模数据时。
其次,模糊聚类对初始参数的敏感性较高,不同的初始化可能导致不同的聚类结果。
此外,模糊聚类的结果通常难以解释和理解,需要结合领域知识进行进一步分析。
为了克服这些问题,研究者们一直在不断改进模糊聚类算法。
例如,一些研究探索了基于深度学习的模糊聚类方法,利用神经网络来提高聚类的准确性和效率。
此外,还有一些研究致力于开发新的目标函数和距离度量方法,以更好地满足实际问题的需求。
综上所述,模糊聚类是一种基于模糊集理论的数据分析方法,可以更好地刻画对象之间的相似性。
模糊聚类的分析

模糊聚类的分析模糊聚类分析是一种在统计分析领域中的方法。
它的主要思想是将客观数据更好地分类和分析。
模糊聚类是一种简单的数据挖掘技术,它可以从客观数据中挖掘出有价值的信息,以帮助我们分析和探索数据。
模糊聚类分析的本质是根据相似度度量算法来确定数据点之间的相似性,并将它们聚类为一个或多个类别。
它可以用于更好地加深对数据挖掘结果的理解,分析和发现数据中的结构和关系。
模糊聚类的优点1、可以更好地发现数据挖掘的结果和有价值的信息。
2、可以用于分析和发现客观数据中的结构和关系。
3、可以很好地分析大数据集。
4、可以使数据分类更有效率。
模糊聚类的应用1、金融领域:模糊聚类可用于金融分析,如风险识别、客户分析、金融监管等,可以显著提高对金融市场的了解,并帮助金融市场制定更有效的策略。
2、医学领域:模糊聚类可以更好地理解大量的临床资料,并为医生提供更有效的诊断建议。
它还可以应用于医疗和病理图像分析,以有效管理和指导患者的治疗过程。
3、气象领域:模糊聚类可以有效地识别气象 sensor卫星数据中的关键结构和特征,并用于气象研究和气象预报中。
4、人工智能:模糊聚类可以作为机器学习算法的基础,用于建模不同环境和情景。
它还可以用于自然语言处理,提供更有意义的信息,例如情感分析。
模糊聚类的局限性1、模糊聚类的结果很大程度上取决于人为干预,且模糊聚类的结果可能会受到相似度测量的影响,这可能会导致结果的不稳定性。
2、除此之外,由于模糊聚类是基于数据预处理后的假设来实施的,所以对数据预处理的要求较高,对数据准备质量和格式有较高的要求,这也是模糊聚类的一大局限性。
模糊聚类的发展前景模糊聚类分析技术在各个领域的应用及其发展前景均越来越广泛。
模糊聚类技术在人工智能、机器学习、大数据和自动化领域等方面都有广泛的应用,而且随着 AI 、Bigdata术的发展,模糊聚类在预测建模、数据挖掘和自然语言处理等方面也都有了重要的应用。
此外,模糊聚类技术还可以应用于声学识别、计算机视觉和实时处理等领域,进一步拓展模糊聚类技术的应用前景。
模糊聚类分析ppt课件

k 1
1 2
m k 1
(
xik
x jk )
m
( xik x jk )
rij
k 1 m
xik .x jk
k 1
5. 求模糊等价矩阵
用上述方法建立起来的模糊矩阵 R ,一般说来只 满足自反性和对称性,不一定满足传递性,即 R 不一 定是模糊等价关系,需要将 R改造成模糊等价矩阵R,
然后再在适当的阈值上进行截取,便可得所需分类。
根据需要可同时选择不同准则分别进行聚类分析,然后 通过综合取交的方法,以做到兼顾多目标,使分类结果更科学。
3、建立数据矩阵
设论域U { x1, x2 ,, xn }为被分类对象, 每个对象又由m 个指标表示其性状:
xi { xi1, xi2 ,, xim } (i 1,2,, n) 则得到原始数据矩阵为 X ( xij )nm .
1, 2,..., m
构造下列形式的F统计量,
r
i
2
ni x x /(r 1)
F i1 r ni
xij
i
x
2
/(n r)
i1 jn1
x x 其中, 为 i x x
m
i
(xk
xk )2
i
与
的距离, xij x i
i 为第
k 1
类中样本
xij 与
i
x 的距离。
F 统计量分子表征类与类之间的距离, 分母表示类内样本间距离,因此 F 值越大,说
改造的方法是将 R 自乘得 R R R2,再自 乘 R2 R2 R4 ,如此继续下去,得 R8 , R16 ……,至某 一步出现 R2k Rk 为止。则 Rk便是一个模糊等价关系。 这个方法是由所谓“传递闭包”理论而来,我们在此 拿来直接应用,不再作详细介绍。
模糊聚类的分析

模糊聚类的分析
模糊聚类是一种聚类分析的算法,它采用模糊的方法将数据点归类到不同的类别中,以减少聚类的误差。
模糊聚类是机器学习领域的一种流行的算法,它利用每个数据点的模糊属性来衡量其分布在不同类别中的相似度,使得它能够更加准确的进行聚类分析。
模糊聚类的基本原理是把数据点归类到不同的类别中,每个类别都有一系列模糊属性,每个数据点在不同类别中的分布由它们在每个属性上的值来决定。
模糊聚类的最终目标是找到类别与数据点之间的最佳拟合,从而得到最佳聚类结果。
模糊聚类的实现是通过计算每个数据点与每个类别的模糊相似
度来完成的,模糊相似度是基于数据点和每个类别的模糊属性,通过计算每个数据点与每个类别的模糊相似度,可以找到一个最佳的类别,把每个数据点归入该类别,这样就可以得到最优聚类结果。
模糊聚类方法可以用来解决多维数据集聚类分析的问题,它能够更准确的表示多维数据的特征,这使得它能够更准确的对数据进行聚类分析。
此外,模糊聚类方法还能够处理非均匀分布的数据,它能够有效的处理因类别数量和混乱的环境而难以聚类的数据。
模糊聚类的缺点主要在于它的计算速度较慢,因为它需要计算每个数据点与每个类别的模糊相似度,而这需要大量的计算,模糊聚类也无法用于对超大型数据集进行聚类分析,因为它的计算效率较低。
因此,模糊聚类是一种聚类分析算法,它利用模糊性来更准确的表示数据的特征,能够有效的处理多维和复杂的数据。
但是它的计算
效率较低,也不能用于对超大型数据集进行聚类分析,因此,在使用模糊聚类进行聚类分析时,需要考虑其效率和应用限制。
模糊聚类分析

模糊聚类分析壹、何谓聚类分析聚类分析是研究事物分类的一种多元分析方法。
在日常生活中,我们时常要把所接触到的事物(样本),按其性质、用途等进行分类,这种分类过程我们称为聚类分析。
(阙颂廉,民83)贰、聚类分析的应用模糊聚类分析是当前在模糊数学中应用最多的几个方法之一,可以将研究的样本进行合理的分类,如产品的分类就常常用聚类分析来进行,另聚类分析也可用来进行判别分析和预测(林杰斌等。
民76)。
所以,也被广泛地应用于天气预报、地震预测、地质探勘、运动员心理素质分类、河川水质污染程度等方面。
参、普通的等价关系在谈聚类分析之前,应先介绍相似关系和等价关系:一.自反性对任意Uu∈,都有Ru,u(∈,即集合中任一个元素u都)与自身有某相同性质的关系,则称R是自反关系,相对应的矩阵称为自反矩阵。
另数学表示意义为:A中的元素关于R具有”自反性”,即。
例:若U 为同一种族的集合,而集合中每一个人u ,皆与自身有同一种族之关系,这种性质则称为自反性。
二. 对称性如果ji ,R )u ,u (,R )u ,u(i j j i≠∈∈必有。
即u i 与u j 有存在某种关系,若将两个元素之位置对调,则即u j 与u i 也必有符合这层关系,则称R 有对称关系,相对应的矩阵为对称矩阵。
另数学表示意义为:A 中的元素关于R 具有”对称性”,即yRx xRy ,A y ,x 且若∈∀。
例:若甲和乙是同学关系,则乙和甲必也是同学关系,这种关系则称为对称性。
三. 传递性如果能由R)w u (R )w v (R )v u (∈∈∈,,推導出,及,。
即u与v 有存在某一关系,而v 与w 也有这同一种关系存在,则即u 与w 也必有符合这层关系存在,则称R 有传递关系,相对应的矩阵为传递矩阵。
另数学表示意义为:A 中的元素关于R 具有”传递性”,即。
例:若甲和乙是同一种族关系,而乙和丙也是同一种族关系,则甲和丙必有同一种族关系,这种则称为具有传递性关系。
模糊聚类分析

1 2 m
x11 x21 xm1
x12 x22 xm 2
x1n x2 n xmn
2 .模糊聚类分析的一般步骤
实际问题中,不同的数据可能有不同的量 纲。为了使不同量纲的数据也能进行比较,需 要对数据进行适当的变换。根据模糊矩阵的要 求将数据压缩到区间 【0,1】。通常使用平移极差标准化: xik min{xik } 1im xik (k 1,2,, n) max{xik } min{xik }
取=0.8,得 :
~ R0.8 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
X分为4类:{X1,,X3},{X2},{X4 }, { X5 }。
2 .模糊聚类分析的一般步骤
取=0.5,得 :
~ R0.5 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1
3 .应用实例
通过聚类分析,该矿决定在房柱法的基础 上增加采矿费用的投入,采用无底柱上向干式 充填采矿法。
谢
谢!
模糊聚类分析步骤可以分为:数据标准化、建立 模糊相似矩阵、聚类
2 .模糊聚类分析的一般步骤
2.1 数据标准化 设论域 X {x , x ,, x } 为被分类的对象,每个对像 又由n个指标表示其性状,即:xi (xi1, xi2 ,, xin ) (i 1,2,, m) 于是,得到原始数据矩阵为:
rij
m in (x
k 1
n
ik
, x jk )
1 2
(x
k 1
n
ik
模糊聚类分析

模糊聚类。
FCM(Fuzzy C-Means)算法是一种模糊聚类算法,属于软聚类,即一个样本点可以属于多个类。
与层次聚类、均值聚类和密度聚类不同,一个样本只能属于一个类,也可以不属于一个类。
模糊聚类引入了隶属度值的概念,即每个样本使用[0,1](相似概率或概率值)的隶属度值来确定其对每个聚类的隶属程度。
当您的成员资格值仅设置为0或1时,它实际上是K均值聚类。
同时,模糊聚类有一个约束条件,即每个聚类样本的隶属度值之和等于1。
聚类的思想是,一个簇中样本点之间的差异越小,簇之间的差异就越大。
模糊聚类中的C与K-Means中的K的含义相同,K指的是聚类的数量。
除了这个C之外,在模糊聚类中还有一个参数M。
其中,C用来控制聚类数,参数M用来控制算法的灵活性,这会影响聚类的准确性。
如果M太小,采样点的分布会分散,会产生很大的噪声(离群值)影响。
如果取值过大,样本点会密集分布,对主流偏斜度的样本点控制程度较弱。
通常,m的值是2(r中的默认值是2)。
模糊聚类算法通过迭代计算目标函数的最小值来判断算法的运行情况。
算法大致如下:1.随机生成c个聚类中心(或随机生成一些隶属度值);
2.计算隶属度矩阵(或计算聚类中心);
3.利用隶属度矩阵(或聚类中心)重新计算聚类中心(或隶属度矩阵);
4.计算目标函数;
5.如果判断目标函数达到最小值或趋于不再有较大波动,则停止操作,确定最终聚类结果;否则,将重新计算隶属度矩阵(或聚类中心)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊方阵的幂
定义:若A为 n 阶方阵,定义A2 = A ° A,A3 = A2 ° A,…,Ak = Ak-1 ° A.
0.1 0.4
0.3
3
0.3
0.7 0.4
0.3 0.7
0.1 0.4
00..73
0.3 0.4
模糊矩阵间的关系及并、交、余运算
设A=(aij)m×n,B=(bij)m×n都是模糊矩阵,定义 相等:A = B aij = bij; 包含:A≤B aij≤bij; 并:A∪B = (aij∨bij)m×n; 交:A∩B = (aij∧bij)m×n; 余:Ac = (1- aij)m×n.
模糊关系的矩阵表示
对于有限论域 X = {x1, x2, … , xm}和Y = { y1, y2, … , yn},则X 到Y 模糊关系R可用m×n 阶模糊 矩阵表示,即
R = (rij)m×n, 其中rij = R (xi , yj )∈[0, 1]表示(xi , yj )关于模糊关 系R 的相关程度.
R2≤R ( ∨{(rik∧rkj) | 1≤k≤n} ≤ rij) .
当<时, R的分类是R分类的加细.当由1变
ቤተ መጻሕፍቲ ባይዱ到0时, R的分类由细变粗,由模糊等价关系R确定 的分类所含元素由少变多,逐步归并,最后成一类, 这个过程形成一个动态聚类图,称之为模糊分类.
00..73
模糊矩阵的转置
定义 设A = (aij)m×n, 称AT = (aijT )n×m为A的转置 矩阵,其中aijT = aji.
转置运算的性质:
性质1:( AT )T = A; 性质2:( A∪B )T = AT∪BT,
( A∩B )T = AT∩BT; 性质3:( A ° B )T = BT ° AT;( An )T =( AT )n ; 性质4:( Ac )T = ( AT )c ; 性质5:A≤B AT ≤BT .
例
设A
0.1 0.2
0.3 0.1
,
B
0.2 0.3
00..21,则
A
0.2
B
0.3
0.3
0.2
,
A
0.1
B
0.2
0.1 0.1 ,
Ac
0.9
0.8
0.7
0.9
模糊矩阵的合成
设A = (aik)m×s,B = (bkj)s×n,称模糊矩阵 A ° B = (cij)m×n,
设R,R1,R2均为从 X 到 Y 的模糊关系. 相等:R1= R2 R1(x, y) = R2(x, y); 包含: R1 R2 R1(x, y)≤R2(x, y); 并: R1∪R2 的隶属函数为
(R1∪R2 )(x, y) = R1(x, y)∨R2(x, y); 交: R1∩R2 的隶属函数为
模糊矩阵的λ-截矩阵
设A = (aij)m×n,对任意的∈[0, 1],称 A= (aij())m×n,为模糊矩阵A的 - 截矩阵, 其中
当aij≥ 时,aij() =1; 当aij< 时,aij() =0. 显然,A的 - 截矩阵为布尔矩阵.
1 0.5 0.2 0
1 1 0 0
A
0.5 0.2 0
矩阵的合成.
设X = {x1, x2, …, xm},Y = { y1 , y2 , … , ys}, Z= {z1, z2, … , zn},且X 到Y 的模糊关系R1 = (aik)m×s , Y 到Z 的模糊关系R2 = (bkj)s×n ,则X 到Z 的模糊 关系可表示为模糊矩阵的合成:
R1 ° R2 = (cij)m×n 其中cij = ∨{(aik∧bkj) | 1≤k≤s}.
模糊等价矩阵
若模糊关系R是X上各元素之间的模糊关系,且 满足:
(1)自反性:R(x, x) (2)对称性:R(x, y) (3)传递性:R2R,
=1; =R(y,
x);
I
≤R ( rii =1 ) RT=R( rij= R2≤R.
rji)
则称模糊关系R是X上的一个模糊等价关系.
当论域X = {x1, x2, …, xn}为有限时, X 上的一个 模糊等价关系R就是模糊等价矩阵, 即R满足:
1 0.1 0.3
0.1 1 0.8
001..83,
A0.3
1
0 0
1 0 1
0 1 1
1 11
模糊聚类分析
模糊关系 模糊等价矩阵 模糊相似矩阵 模糊聚类分析的一般步骤
模糊关系
与模糊子集是经典集合的推广一样,模糊关 系是普通关系的推广.
设有论域X,Y,X Y 的一个模糊子集 R 称 为从 X 到 Y 的模糊关系.
模糊聚类分析
模糊矩阵
模糊矩阵 模糊矩阵间的关系及并、交、余运算 模糊矩阵的合成 模糊矩阵的转置
模糊矩阵的λ-截矩阵
模糊矩阵
设R = (rij)m×n,若0≤rij≤1,则称R为模糊矩阵. 当rij只取0或1时,称R为布尔(Boole)矩阵. 当模糊 方阵R = (rij)n×n的对角线上的元素rii都为1时,称 R为模糊自反矩阵.
又若R为布尔矩阵时,则关系R为普通关系,即xi 与 yj 之间要么有关系(rij = 1),要么没有关系( rij = 0 ).
模糊关系的合成
设 R1 是 X 到 Y 的关系, R2 是 Y 到 Z 的关系, 则R1与 R2的合成 R1 ° R2是 X 到 Z 上的一个关系.
(R1 ° R2) (x, z) = ∨{[R1 (x, y)∧R2 (y, z)]| y∈Y } 当论域为有限时,模糊关系的合成化为模糊
(R1∩R2 )(x, y) = R1(x, y)∧R2(x, y); 余:Rc 的隶属函数为Rc (x, y) = 1- R(x, y).
(R1∪R2 )(x, y)表示(x, y)对模糊关系“R1或者 R2”的相关程度, (R1∩R2 )(x, y)表示(x, y)对模糊 关系“R1且R2”的相关程度,Rc (x, y)表示(x, y)对 模糊关系“非R”的相关程度.
模糊子集 R 的隶属函数为映射
R : X Y [0,1]. 并称隶属度R (x , y ) 为 (x , y )关于模糊关系 R 的 相关程度.
特别地,当 X =Y 时,称之为 X 上各元素之 间的模糊关系.
模糊关系的运算
由于模糊关系 R就是X Y 的一个模糊子集, 因此模糊关系同样具有模糊子集的运算及性质.