VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论
ACTRAN AERO-Acoustics_Theory_complete-ACTRAN气动声学理论完整版

半经验模型:不依赖于非定常的流体计算。
6
Copyright Free Field Technologies
20
Copyright Free Field Technologies
主控方程
两个定义, 没有假设:
A0是声源区之外静止流体的声速 a = - 0 其中0大气密度 0 是个常数:
得到(L1):
(L1)
如果观察点不在声源区,也没有均匀流动,那么, a = 声场密度
11
Copyright Free Field Technologies
混合方法
积分方法:
Lighthill, Curle, FW-H, Farassat, ... 都基于NS方程的方法 在声场内求解关于声学的显式方程以及计算声源对胜场内任何一点的贡献率 需要Green function
局限
声源项的不准确性(声源的统计) 对声学特性的预测相当困难 数值计算的成本不容忽视(大量的涡=大量的计算)
13
Copyright Free Field Technologies
Analogy concept
声类比理论
Copyright Free Field Technologies
压力 粘性应力 (2)
经过变换,方程(2)可以写成如下的形式:
常数 Lighthill应力张量
Lighthill应力张量T如下:
(T)
19
10-Actran在换能器及声学分析中的应用

0m
海水 分层 状态 分四层介质声场分布 100m
低声速
高声速
高声速
低声速
空间声传播分析
• 应用模块
– actran Acoustic
• 分析模型
– 声波在介质中传播受障碍物影响 – 几何结构——3D实体模型
• 分析目的
– 接收点受障碍物影响其声接收指向性与障碍物关系
模型解释
上下障碍物 水声换能器分为标量-矢量两种 标量换能器仅对声压差敏感; 矢量换能器对接收点附近介质的振速敏 感,因此具有8字形指向性 矢量水听器附近的障碍物对矢量水听 器的8字形指向接收性有何影响? 模型分析了点声源、平面波声源以中间接收点 为中心,从0°到180°半空间范围内不同方向 对接收点进行声辐射 分析接收点上下两端平均的振速变化 模型障碍物与接受点均采用在实体球中扣除的 3D实体模型
• 在本模型中主要考察半片换能器在自由状态、底 边约束、侧边约束状态下的影响规律,通过 Actran仿真分析,通过对比不同约束状态下的换 能器固有频率相对关系,可以获得对换能器固有 频率的提高具有关键作用的约束!
压电陶瓷换能器声辐射分析
• 应用模块
– actran Vibro-Acoustic
• 分析模型
Hypermesh中网格划分
导出 Nastran格式的 *.BDF网格文件 赋予材料参数及边界 条件 提交分析
压电陶瓷材料参数需要在 DAT文件中单独修改
云图显示
PLT曲线
后处理云图声辐射
• 不同频率下换能器的声辐射状态
– 可以获得最佳指向性及对应的频点
5000Hz
7000Hz
9000Hz
11000Hz
半片结构中,上下位移约束 与左右位移约束,哪种约束
噪声分析软件Actran航空发动机声学问题解决方案

5.1.1 发动机的基本情况................................................................................................21 5.1.2 优化声衬的工况参考点........................................................................................22 5.1.3 ACTRAN 模型 .....................................................................................................22 5.1.4 阻抗优化方法........................................................................................................25 5.1.5 插入损失与优化的阻抗结果................................................................................27 5.1.6 ACTRAN 在声衬设计方面的应用.......................................................................30 5.2 排气噪声应用案例...........................................................................................................30 5.2.1 模型参数................................................................................................................32 5.2.2 计算结果................................................................................................................35 六、ACTRAN 应用前景 ...............................................................................................................40
actran振动噪声技术点

actran振动噪声技术点
actran振动噪声技术点可以包括以下几个方面:
1. 振动分析模型:使用有限元分析(FEA)等方法构建精确的振动分析模型,以模拟结构的振动响应和传播路径。
2. 材料特性模型:确定材料的声学特性,包括密度、弹性模量、泊松比等参数,以评估材料对振动和噪声的响应。
3. 噪声源建模:根据实际情况建立噪音源的几何模型、振动激励和频谱特性,例如发动机、电机或机械设备等。
4. 噪声辐射模型:通过辐射传输损失的计算,分析振动能量如何从源头传播至周围环境,并预测接收器的声压级。
5. 振动和噪声优化:通过在模型中引入改进设计、材料或减振措施,寻求减少或消除振动和噪声问题。
6. 噪声控制措施:通过模拟噪声控制措施的效果,如降噪材料、隔音罩或振动减振器等,评估其对振动和噪声的影响。
7. 后处理和结果分析:使用各种图表和分析工具,对模拟结果进行评估和解释,为进一步改进设计提供参考。
这些技术点通常能够帮助工程师预测和优化结构的振动和噪声性能,从而改善产品的质量和用户体验。
领先的法国汽车供应商信赖 Actran 声学软件

领先的法国汽车供应商信赖Actran 声学软件MSC Software 的子公司Free Field Technologies(FFT)日前宣布,Plastic Omnium 公司已经部署了Actran软件的声学与振动声学模块,用于仿真在汽车中广泛所采用的塑料面板及其他零部件的声衰减特性。
在汽车工业中,Plastic Omnium 是以创新著称的车身模块和燃油系统领先供应商。
在设计过程初期,Actran 软件的使用对仿真轻量化的汽车零部件的声学特性至关重要,并且可以确保符合OEM所规定的声学传递损失要求。
Plastic Omnium 的汽车分公司将全球领先的车身零部件及模块厂商Plastic Omnium Auto Exterior 与全球领先的燃油系统供应商Inergy 的汽车系统专业知识整合到一起。
该公司总部位于法国Levallois,其开发的创新解决方案可满足减轻重量、降低排放、回收利用性以及行人保护方面日益增长的需求。
Plastic Omnium 的研发项目经理Philippe Gilotte,Actran软件主要使用者表示:“我们的车身零部件和模块可以帮助汽车厂商制作更清、更洁净并且更耐冲击的车辆。
”该公司的工程师们所面临的挑战是:证明用塑料零部件替代钣金件不会对车身的声学隔声特性造成不利影响。
OEM 厂商倾向于把具体要求的测试和验证责任转移给供应商。
Philippe Gilotte 指出:“我们需要仿真面板的声音隔声特性,在不需要大量创建物理样机的前提下,更深入地了解其物理特性。
Actran软件的声学和振动声学模块提供了一整套完整的工具,可以快速进行此类分析,能让我们在过程初期优化并验证设计模型。
”FFT 全球营销主管Alain Genard 表示:“汽车厂商倾向于越来越多地用塑料零部件来替代钣金件,以减轻车辆的重量,同时减少污染物排放。
对于开发这些零部件的供应商来说,这是个重要的机遇。
声学仿真软件Actran新功能展示-BCA

声学仿真软件Actran新功能展示12, 09, 2018•FFT公司成立于1998年,2011年并入MSC软件公司•公司总部:比利时布鲁塞尔;•公司分部:北京,图卢兹,东京,底特律•公司业务:•Actran声学软件开发•工程咨询项目,软件技术支持,培训及方法论开发•声学CAE科研Free Field TechnologiesActran Across Industries Transport & Vehicles Aeronautics Automotive Railway Ship Building Aerospace Heavy Machinery Consumer Goods Factory Equipment Industrial Machinery Power toolsDomestic appliance Audio Consumer Electronics Hearing Aids Machinery for FactoryActran软件功能模块Actran基础声学模块Actran振动声学模块Actran气动声学模块Actran TM模块Actran for Trimmed bodyDMPActran SNGR模块ActranVIActran DGM模块目录⏹振动辐射噪声新功能⏹扬声器模拟新功能⏹虚拟统计能量法新功能⏹旋转机械气动噪声新方法⏹SNGR方法及其应用⏹DGM新功能3. Post Processing and Analysis: Actran 2. Acoustic radiation: Actran in Frequency or Time Domain1. Structural Analysis: MSC Nastran, Adams/Flex, Marc, Actran, etc.MapsStructure surfacevibrationFRF Waterfall ElementscontributionAcoustic directivity Time domain pressure Sound fileAnimation•辐射噪声仿真流程预览•声学网格生成•专业、易用的声辐射网格生成功能•方便结构工程师从零基础学习声辐射建模•更多丰富的网格生成和更改功能(1)Actran 振动辐射噪声新功能:更高的计算效率•频率自适应网格的自动生成•频率网格自适应(H-Adaptivity )•可选用声学无限元或APML 方法•建模时无需准备声学网格,大大降低模型建立难度•可通过API 进行脚本化操作,进行自动化计算流程或优化计算流程708Hz ~ 850Hz 2539Hz ~ 3047Hz……Frequency (Hz)时间节省63% 自适应网格计算时间Actran API。
噪声软件Actran在列车声学设计中的应用_唐车

3
Copyright hnologies
ACTRAN软件背景
FFT和ACTRAN创立的背景
两位教授开发的Sysnoise被LMS收购后,1998年选择离开! 11家大公司于1999~2001年组成了ACTRAN联盟,资助两位教授开发ACTRAN,并 成为第一批客户 • 雷诺、宝马、标致、菲亚特、通用汽车等 整车企业 • 立达(Rieter)、哈金森(Hutchinson)汽车配件公司 • 空客 航空 • 壳牌石油、Glaverbel能源、材料 • 德国劳埃德船级社船舶
高性能求解器与并行处理
扬声器 侧窗声传递 壳体振动辐射噪声
11
Copyright Hi-keyTechnologies
ACTRAN AeroAcoustics
流致噪声仿真工具 特性:
支持大多数的CFD软件,并经过大量实验验证; Lightill 声类比、Möhring 声类比; 在有限元网格上可以定义边界条件:
• 任何边界条件都可使用 !!! • 这是与其他处理方法(如Curle, FWH or BEM)相比,最大的优势!
可以与VibroAcoustics联合计算,进行振动/流动声学一体化分析
客户:
Daimler, BMW, VW, Delphi, Visteon, John Deere, Brothers, PSA...
ACTRAN Vibro-Acoustics
ACTRAN Aero-Acoustics
ACTRAN TM
ACTRAN Acoustics ACTRAN VI 9
Copyright Hi-keyTechnologies
ACTRAN Acoustics
声学仿真工具 典型应用
WS_VIBRO_1b_Ski_Cabin_Modal_Extraction

Frequency Range
12
Copyright Free Field Technologies
Specify p y the Frequency q y Range g of Interest
The analysis parameters are specified in the properties of the analysis As the largest element of this linear mesh is 9 cm, the smallest bending wavelength accurately modeled is : 6 * 0.09 = 0.54 m (based on 6 elements per wavelength criterion) The bending wavelength of a simply supported steel plate (5 mm thick) at 150 Hz is 0.56m
Their dimensions (0D to 3D) Their interpolation orders
9
Copyright Free Field Technologies
Create an Element Set for the Support pp Point
Create a 0D element set for the displacement p boundary y condition
13
Copyright Free Field Technologies
Create the Cabin Component p
The Thin Shell component assigns the steel material to the Cab_Body domain (corresponding to the structure)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vibro-Acoustic SimulationsACTRAN Training – VIBROCopyright Free Field TechnologiesIntroductionPre-requisites - before going through this presentation, the reader should have read and understood the following presentations:1_BASICS_General_Program_Organization.pdf; Workshop_BASICS_0_Edit_an_ACTRAN_input_file.pdf.These slides present the basics materials, components and boundary conditions involved in a structural simulation in physical coordinates.2Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria3Copyright Free Field TechnologiesStructural MaterialsThe solid materials are used for describing both viscous and non viscous solids with and without different structural properties along the different axisThree different types solid materials are available:Isotropic solid material Transverse isotropic solid material Orthotropic materialComposite materials can also be defined to model the different layers of a solid material using a homogenization option – See dedicated presentation4Copyright Free Field TechnologiesThe Isotropic Solid Material (1)Isotropic materials are materials whose mechanical properties are uniform along all directionsThe properties that define an Isotropic solid material can be given using 2 set of parameters:Young modulus (E) Poisson ratio (ν) Solid density or First (λ) Lamé’s coefficient and Second (µ or G, the shear modulus) Lamé’s coefficient Solid densityAll parameters are mandatory5Copyright Free Field TechnologiesThe Isotropic Solid Material (2)Syntax in the ACTRAN input file:BEGIN MATERIAL Id ISOTROPIC_SOLID YOUNG_MODULUS value POISSON_RATIO value SOLID_DENSITY value END MATERIAL IdOrDefinition in ACTRAN/VIBEGIN MATERIAL Id ISOTROPIC_SOLID LAME1 value LAME2 value SOLID_DENSITY value END MATERIAL Id6Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (1)Transverse isotropic materials are materials whose mechanical properties are symmetric about an axis that is normal to a plane of isotropy.Unidirectional fiber composite lamina; Honeycomb components, …The properties that define a transverse isotropic solid material are:5 mechanical properties En, νn, Et, νt and G; Solid density Axis of isotropy, oriented along the fibers3 2 1 7Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (2)Their mechanical properties can be divided in different parts:Young modulus (En) and Poisson ratio (νn) when sujected to normal (along the isotropy axis) load (also named normal_E and normal_ν) Young modulus (Et) and Poisson ratio (νt) when sujected to transverse (along the isotropy plane) load (also named inplane_E and inplane_ν) Shear modulus (G) characterizing inplane shear deformations due to shear loads The isotropy axis defining the direction of the fiber in the local coordinate system8Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (3)Syntax in the ACTRAN input file: Definition in ACTRAN/VIBEGIN MATERIAL Id TRANSVERSE_ISOTROPIC_SOLID NORMAL_E_MODULUS value INPLANE_E_MODULUS value NORMAL_POISSON_RATIO value INPLANE_POISSON_RATIO value NORMAL_S_MODULUS value ISOTROPIC_AXIS value SOLID_DENSITY value END MATERIAL Id9Copyright Free Field TechnologiesThe Orthotropic Solid Material (1)Orthotropic materials are materials whose mechanical properties are different in all directions:Honeycomb components; Wood,…The properties that define an orthotropic solid material are:9 Mechanical properties E1, E2, E3, ν12, ν13, ν23, G12, G13, G23; Solid density10Copyright Free Field TechnologiesE i corresponds to the Young modulus inthe direction i expressed in the local coordinate systemG ij corresponds to the shear modulus indirection i for which the shear load relies on the plane whose normal is in direction x 2x 3x 1x 2x 3SNN/E 1-ν12 N/E 1-ν12 N/E 1j in the local coordinate system (G ij =G ji ) νij is the Poisson ratio that corresponds toa contraction in direction j when an extension is applied in direction IThe local coordinate system is defined bythe element and the component that refers to an orthotropic materialx 1S/G 13S/G 13SS/G 23S/G 23x 1x 2x 3Syntax in the ACTRAN input file: Definition in ACTRAN/VI BEGIN MATERIAL IdORTHOTROPIC_SOLIDYOUNG_1 valueYOUNG_2 valueYOUNG_3 valuePOISSON_12 valuePOISSON_13 valuePOISSON_23 valueSHEAR_12 valueSHEAR_13 valueSHEAR_23 valueSOLID_DENSITY valueEND MATERIAL IdDamping ModelAll properties in ACTRAN are defined using complex numbersDamping can be introduced using a complex Young modulus:withE’ the Young modulus, image of the stiffness"'jE E E +=E” the Loss modulus, representing internal lossesThe loss modulus is linked to the internal loss factor η(also called tg(δ)) by:()ηj E jE E E +⋅=+=1'"'ContentThe structural MaterialsThe visco-elastic and shell ComponentsThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaThe Solid component is the standardSupported topologies component for modeling visco-elastic solid parts.Points to a valid Isotropic solid materialUnknowns: solid displacement in each direction –3 dofs per node (no rotation)Syntax in the ACTRAN input file:Definition in ACTRAN/VIBEGIN COMPONENT IdSOLIDMATERIAL material_id [POWER_EVALUATION 1][INCOMPRESSIBLE 1]END COMPONENT IdPOWER_EVALUATION 1 activatesthe computation of the dissipated power in the component (optional) INCOMPRESSIBLE 1 allows to modelvisco-elastic parts with a Poisson ratio close to 0.5 (optional -check the ACTRAN Users’ Manual for more information)Choose “Solid” as typeDomainThe solid shell component is used to modelSupported topologies transverse solid element, with a thicknessdirectionOne dimension of the structure should be smallcompared to the 2 others (roughly 1/15)Thickness (and thus compression effects) areaccounted for using solid shellsIts formulation converges faster for thin structuresthan a solid componentCan point to all solid materials (isotropic,transverse isotropic, orthotropic, composite)Unknowns: solid displacement in each direction –3 dofs per node (no rotation)Syntax in the ACTRAN input file:POWER_EVALUATION 1 activates theDefinition in ACTRAN/VIBEGIN COMPONENT IdSHELL [AUTO_ORIENT]MATERIAL material_id [POWER_EVALUATION 1][REFERENCE_DIRECTION 1 0 0]END COMPONENT Idcomputation of the dissipated power in the component (optional) REFERENCE_DIRECTION allows toorient the local material coordinate system for non isotropic solid materials (default 1,0,0) AUTO_ORIENT keyword allows toautomatically reorient the transverse direction of the elementsChoose “Solid Shell” as typeDomainShell elements’ orientation is an important parameter (transverse direction)The transverse direction is dependent of the order of the nodes in the element description (input file, MESH > ELEMENT) :BEGIN ELEMENT ...212 12 112 13 14 15 27 28 29 30...END ELEMENTLower nodes Upper Nodes1213141527282930Meshes obtained by normal extrusion or normal sweeping lead to a correct numbering (lower nodes then upper nodes)Automatic detection is possible using the keyword AUTO_ORIENT .This remark is valid for all transverse elements: Solid Shell, ViscothermalAUTO_ORIENT should automatically detect the transverse direction of theshell elementDimensions close to be the same…hazardous AUTO_ORIENTThe Thin Shell Component (1)The thin shell component is used to model transverse thin elementOne dimension of the structure should be small compared to the 2 others (roughly 1/15) Thickness specification is mandatory Formulation is similar to the NASTRAN CQUADR and TRIAR Supported topologies31 243Can point to all solid materials (isotropic, transverse isotropic, orthotropic, composite)1 2Unknowns: solid displacement and rotation in each direction – 6dofs per nodeRemark: only linear elements are supported21Copyright Free Field TechnologiesThe Thin Shell Component (2)Syntax in the ACTRAN input file:BEGIN COMPONENT Id DSHELL MATERIAL material_id THICKNESS thickness [OFFSET offset] [POWER_EVALUATION 1] [LUMPED_MASS 0,1,2] [REFERENCE_DIRECTION 1 0 0] END COMPONENT IdDefinition in ACTRAN/VITHICKNESS value is mandatory, while the OFFSET can be optional POWER_EVALUATION 1 activates the computation of the dissipated power in the component (optional) REFERENCE_DIRECTION allows orienting the local material coordinate system for non isotropic solid materials (default 1,0,0)22Copyright Free Field TechnologiesDomainChoose “Thin Shell” as typeLumped Mass FormulationThe lumped mass formulation is a simplified formulation:Mass matrix only contains diagonal translational components (no rotational components) This formulation should decrease the computation time, but should converge slower than the standard formulation (this is not always true)The Lumped Mass formulation is NOT selected by default (different from NASTRAN)23Copyright Free Field TechnologiesSolid Shell Elements: Application(Glaverbel/Splintex)Glass layersPVB layer PVB24Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria25Copyright Free Field TechnologiesThe Beam Material (1)Beam_inertia materials are used to define equivalent stiffeners mechanical properties using inertia indicators Inertia indicators can usually be retrieved in external tools or from analytical solutionsThe following properties are needed:The solid density and area of the beam cross-section The elongation modulus represent the stiffness in the z’-axis The inertia XX corresponds to the inertia with respect to the rotation around the y’ axis (=I1 in Nastran) The inertia YY corresponds to the inertia with respect to the rotation around the x’ axis (=I2 in Nastran) The inertia XY corresponds to the product inertia The inertia Z corresponds to the torsionnal inertia The cg offset values represent the position of the center of gravity (neutral axis) within the local coordinate system (default = 0) The shear offset values represent the position of the shear center within the local coordinate system (default = 0) The shear factor values represent shear stiffness factors K in K*A*G. They adjust in this way the effective transverse shear cross-section area (default = 1)Offsets and inertia are oriented within the local coordinate system of the beam element26Copyright Free Field TechnologiesThe Beam Material (2)Syntax in the ACTRAN input file:BEGIN MATERIAL material_id BEAM_INERTIA ELONGATION_MODULUS value SHEAR_MODULUS value SOLID_DENSITY value AREA value INERTIA_XX value INERTIA_XY value INERTIA_YY value CG_OFFSET_X value CG_OFFSET_Y value SHEAR_FACTOR_X value SHEAR_FACTOR_Y value SHEAR_OFFSET_X value SHEAR_OFFSET_Y value INERTIA_Z value END MATERIAL material_idDefinition in ACTRAN/VI27Copyright Free Field TechnologiesThe Beam Component (1)The Beam component is used to model equivalent stiffeners on thin elementsFormulation is similar to the NASTRAN CBEAM The component allows orienting spatially a specific beam type Supported topologiesVrefCan only point to a beam_inertia materialX’Z’Unknowns: solid displacement and rotation in each direction – 6dofs per nodeRemark: only linear elements are supportedY’28Copyright Free Field TechnologiesThe Beam Component (2)Syntax in the ACTRAN input file:BEGIN COMPONENT Id BEAM MATERIAL id [REFERENCE_DIRECTION cx cy cz] [POINT_REF 1] [POWER_EVALUATION 1] END COMPONENT IdDefinition in ACTRAN/VIcx, cy and cz are defining a reference vector which defines the local x axis Point ref to one allows to define the local system by specifying the coordinates of a point (in vref) The local element coordinate system (x’,y’,z’) is defined as follows:axis z’ is defined by the two nodes on which the beam is constructed; axes x’ and y’ are defining a plane normal to axis z’ axes x’ is defined by the projection of the reference vector on this plane; axis y’ is computed in such a way that (x’,y’,z’) form a direct orthonormal system By default, without definition of vref, the normal to the shell element is taken as the x’ axisDomain29Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria30Copyright Free Field TechnologiesSpring material is the standard material for specifying stiffnesses and masses associated to node-to-ground springs, node-to-node springs or lumped masses (described by a discrete component)A free combination of stiffnesses and masses can be specified:Either in absolute coordinates (along X, Y and Z);Or in local coordinates (transverse and normal directionSyntax in the ACTRAN input file: Definition in ACTRAN/VI BEGIN MATERIAL material_idSPRINGeither[NORMAL_STIFFNESS stiff_n][TRANSVERSE_STIFFNESS stiff_t]or[X_STIFFNESS stiff_x][Y_STIFFNESS stiff_y][Z_STIFFNESS stiff_z]end eithereither[NORMAL_MASS mass_n][TRANSVERSE_MASS mass_t]or[X_MASS mass_x][Y_MASS mass_y][Z_MASS mass_z]end eitherEND MATERIAL material_idThe Discrete component is used to model node-to-ground or node-to-node springs. Additionally,they may also be used to model lumped massesThe behavior depend on the element type (1D or 0D) and the material properties Supported topologies **ttNode-to-ground (point)Syntax in the ACTRAN input file:cx , cy and cz are defining theDefinition in ACTRAN/VIBEGIN COMPONENT IdDISCRETEREFERENCE_DIRECTION cx cy cz [POWER_EVALUATION 1]END COMPONENT Idnormal direction if not straightforward (on an edge) POWER_EVALUATION 1activatesthe computation of the dissipated power in the component (optional)DomainContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaBoundary ConditionsDeterministic boundary conditions :Displacement based boundary-conditionsRotational based boundary conditionsPoint, distributed and mechanical pressure loadStochastic boundary conditions (see dedicated presentation): Diffuse sound fieldTurbulent boundary layerDelta correlated (Rain on the roof)Deterministic Boundary ConditionsDisplacement :BEGIN DISPLACEMENTNumber of fixed nodesNode number, displacement component values or FREE END DISPLACEMENTRotation :BEGIN ROTATIONNumber of fixed nodesNode number, rotation component values or FREEEND ROTATION Point load :BEGIN POINT_LOADNumber of loaded nodesNode number, load component valuesEND POINT_LOADPoint moment :BEGIN POINT_MOMENTNumber of loaded nodesNode number, load component valuesEND POINT_MOMENTDistributed load :BEGIN DISTRIBUTED_LOADNumber of loaded facesFace definition, distributed load component valuesEND DISTRIBUTED_LOADPressure load :BEGIN DISTRIBUTED_PRESSURENumber of loaded facesFace definition, distributed pressure valuesEND DISTRIBUTED_PRESSUREStructural Boundary ConditionsSolid elements:Degrees of freedom ACTRAN = displacement in 3 directions (3 dofs/node) Default: free displacementThin elements:Additionally 3 rotational dofs (Default: free rotation)Ideal cases:clampedsimply supportedSolid shellThin shellConstrained displacement Constrained rotationContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaFluid / Structure CouplingThe structural and acoustic components can be coupled to perform vibro-acoustic simulations. Three configurations are possible.Weak coupling where no retro-action of the fluid on the structure is taken into account Acoustic and structures model are 2 decoupled problems. Theacoustic model is excited from the structural results. The BC_MESH feature is used (see dedicated presentation).Strong coupling. The retro-action of the fluid is taken into account and the acoustic and structure components are in the same model. The acoustic and structure components can have compatible or incompatible meshes.In case of compatible meshes (the nodes at the interface are shared) the coupling is automatically detected by ACTRAN and taken into accountIn case of incompatible meshes the coupling must be specified by the user through an INTERFACE data block (see dedicated presentation).Output QuantitiesThe main quantities that can be output on structural components are: Local quantities (at field points or storage node)•The solid rotation (vector) codes srx,sry,srz•The solid displacement (vector) codes sux,suy,suzGlobal quantities (on domains) :•Length (scalar) code lgt•Mean Square Solid Velocity (scalar) code mv•Mean Square Solid Normal Velocity (scalar) code mnv•Mass (scalar) code mass•Squared Solid Normal Velocity (scalar) code snv•Squared Solid Velocity (scalar) code sv•Volume (scalar) code vol•Surface (scalar) code srfMeshing CriteriaAcoustic: Determine the acoustic wavelength as the ratio of the sound speed by the frequency Apply the following rule: use a minimum of • 6 linear elements per wavelength • 4 quadratic elements per wavelength The higher the frequency, the smaller the wavelength, the smaller the max min 44f c h ==λGoing FurtherThe concepts that have been presented are put in practice in the workshop Workshop_VIBRO_1a_Direct_Freq_Res.pdfThe different vibro-acoustic couplings methods are introduced in VIBRO_2_Fluid_Structure_Coupling.pdf。