反激式开关电源变压器是这么计算的
反激式开关电源变压器设计

1.11 计算变压器铜损 1)按照选取的磁芯,估算出变压器平均绕组长度MLT。 例如对EE型磁芯MLT估算方法如下: MLT=E+D+(E-D)+2C=2E+2C
其它型号磁芯估算MLT可依此方法类推。 2)按下试计算各绕组铜损 Pcun=(Nn*MLT*Rn)In2 式中:Pcun —— 第n绕组铜损,单位为瓦 Nn —— 第n绕组匝数,单位为匝 MLT —— 平均绕组长度,单位为m Rn —— 第n绕组导线每米长电阻,单位为Ω; In2 —— 第n绕组额定电流,单位为A; n —— 绕组序号,n=1,2,3……
第二种是计算方式,首先假定变压器是单绕组,每增加一个绕组并考虑 安规要求,就需增加绕组面积和磁芯尺寸,用“窗口利用因数”来修整。 单绕组电感磁芯尺寸按下式计算: 0.68Pout dwx105 Ap=AwAe= Bmax f 式中: dw ------ 一次绕组导线截面积,单位为:cm2; Bmax ---- 最大工作磁通密度,单位为T; f ------- 工作频率,单位为Hz; Pout ---- 变压器总输出功率,单位为W。 窗口利用因数按下表计算。
1)估算总的输出功率:Po=V01xI01+V02xI02…… 2)估算输入功率:Pin= Po/η 3)计算最小和最大输入电流电压 Vin(MIN)=ACMINx1.414(DCV) Vin(MAX)=ACMAXx1.414(DCV)
4)计算最小和最大输入电流电流 Iin(MIN)=PINxVIN (MAX)
1.6 计算一次绕组所需的最大匝数Npri
Lpri Npri = AL 1.7 计算二次主绕组(输出功率最大的绕组)所需匝数Ns1 Npri(V01+VD1)(1-Dmax) NS1 = (匝) Vin(min) Dmax 1.8 计算二次其它绕组所需匝数Nsn
反激式开关电源变压器设计

技术部培训教材
反激式开关电源变压器设计(2)
1.9 检查相应输出端的电压误差 Vsn N’sn-Vsn)/Vsn)x δVsn%=(( = N’sn-Vsn)/Vsn)x100% Nsn 式中: 式中: 相应输出电压精度%; δVsn% ———— 相应输出电压精度%; 相应输出电压值; Vsn ———— 相应输出电压值; 计算的相应输出电压匝数; Nsn ———— 计算的相应输出电压匝数; 选取的整数相应输出电压匝数。 N’sn ———— 选取的整数相应输出电压匝数。 如果输出电压不能满足规定的精度,可以将主输出绕组Ns1增加一匝, Ns1增加一匝 如果输出电压不能满足规定的精度,可以将主输出绕组Ns1增加一匝, 再计算相应输出绕组匝数,看能否满足相应精度, 再计算相应输出绕组匝数,看能否满足相应精度,如果这样修改结果仍 不满足要求,只可回到开始阶段,增加一次绕组匝数, 不满足要求,只可回到开始阶段,增加一次绕组匝数,重新计算一次绕 组匝数,直到满足要求为止,但是增加一次绕组匝数, 组匝数,直到满足要求为止,但是增加一次绕组匝数,会使变压器工作磁 通密度向小的方向调整,这可能造成在较低输入电压时, 通密度向小的方向调整,这可能造成在较低输入电压时,输出无法达到额 定的电压, 定的电压,所以在变压器设计时要适当的处理好输出电压精度和额定输出 电压值的关系. 电压值的关系.
技术部培训教材
反激式开关电源变压器设计(2)
3)按下式计算变压器铜损 Pcu=Σ Pcu=Σpcun 1.12 计算变压器铁损Pc 计算变压器铁损Pc 变压器铁损可根据选取的磁芯型号、材质、 变压器铁损可根据选取的磁芯型号、材质、按照变压器工作频率和 磁通密度从磁芯手册中查得. 磁通密度从磁芯手册中查得. 1.13 验证变压器损耗是否符合设计要求 按下式计算变压器的损耗值: 根据变压器规定的效率η按下式计算变压器的损耗值: PT=Pin-PO=PO/η -PO Pcu+Pc),变压器设计合格 如果计算的(Pcu+Pc)值大于 变压器设计合格, 值大于P 若PT ≥(Pcu+Pc),变压器设计合格,如果计算的(Pcu+Pc)值大于PT 这时就要依情况调整绕组导线线径或改变磁芯尺寸或材质, 值,这时就要依情况调整绕组导线线径或改变磁芯尺寸或材质,以满 足变压器的损耗符合要求。 足变压器的损耗符合要求。
最新反激式开关变压器的通俗讲解及实例计算

反激式开关变压器的通俗讲解及实例计算反激式开关变压器的通俗讲解及实例计算咱先看下在理想情况下的VDS波形上面说的是指变压器和开关都是理想工作状态!从图上可以看出Vds是由VIN和VF组成,VIN大家可以理解是输入电压,那VF呢?这里我们引出一个反激的重要参数:反射电压即VF,指次级输出电压按照初次级的砸比反射到初级的电压。
可以用公式表示为VF=VOUT/(NS/NP),(因分析的是理想情况,这里我们忽略了整流管的管压降,实际是要考虑进去的)式中VF为反射电压;VOUT为输出电压;NS为次级匝数;NP为初级匝数。
比如,一个反激变换器的匝比为NP:NS=6:1,输出电压为12V,那么可以求出反射电压VF=12/(1/6)=72V。
上边是一个连续模式(CCM模式)的理想工作波形。
下面咱在看一个非连续模式(DCM模式)的理想工作波形从图上可以看出DCM的Vds也是由VIN和VF组成,只不过有一段时间VF为0,这段时候是初级电流降为0,次级电流也降为0。
那么到底反激变化器怎么区分是工作在连续模式(CCM)还是非连续模式(DCM)?是看初级电感电流是否降到0为分界点吗,NO,反激变换器的CCM和DCM分界点不是按照初级电感电流是否到0来分界的,而是根据初次级的电流是否到0来分界的。
如图所示从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);只要初级电流和次级电流同时为零,便是不连续模式(DCM);介于这俩之间的是过度模式,也叫临界模式(CRM)。
以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。
类似于下图这个图是一个48V输入的反激电源。
从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。
这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。
反激式变压器计算

单端反激开关电源变压器设计单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。
下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。
1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。
2、计算在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。
反激电压由下式确定:V f=V Mos-V inDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。
所以确定了反激电压之后,就可以确定原、副边的匝比了。
N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin•D Max=V f•(1-D Max)设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。
若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。
由能量守恒,我们有下式:1/2•(I p1+I p2)•D Max•V inDCMin=P out/η一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max•V inDCMin/f s•ΔI p对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。
可由A w A e法求出所要铁芯:A w A e=(L p•I p22•104/B w•K0•K j)1.14在上式中,A w为磁芯窗口面积,单位为cm2A e为磁芯截面积,单位为cm2L p为原边电感量,单位为HI p2为原边峰值电流,单位为AB w为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4K j为电流密度系数,一般取395A/cm2根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。
开关电源反激变压器DCM计算

Ip Ton * T 3
Toff Np * T Irms(次级)= Ip * Ns 3
ቤተ መጻሕፍቲ ባይዱ2015-11-17
Po 1 Vin min*ton max 2 ∵Pin= = * Lp * Ip ,Ip= 2 Lp
∴Lp=
(Vin min*ton max)2 * 2 * T * Po
4、 初/次级匝数确定
Lp * Ip B * Ae Np Ns= n
Np= 5、 初/次级电流有效值确定 Irms(初级)=
(Vo 1) *
故联立①②得 tonmax=
Np *T Ns
注:1、Np 为初级绕组匝数,Ns 为次级绕组匝数;
(Vin min 1) (Vo 1) *
3、 初级电感确定
Np Ns
2、Vmos 为 MOS 最大耐压值,1 为整流管压降,Vl 为漏感电压,Vl=100V,Vmos 选取遵循的原则:开关 关断瞬间, 加在 MOS 上电压值为 Vmos 的 25% (或 30V) 时,应留有 50V 的裕度。
前提:电路处于 DCM 模式,取频率为 f。buck-boost 电路中,最低电压为其最恶劣情况 1、 确定初/次级匝数比
Np (Vo+1)+Vl Ns Np (Vmos Vin max 80 100 ) ∴初/次级匝数比 n= = Ns Vo 1
∵Vmos=Vinmax+ 2、 保证磁芯不饱和且始终工作在 DCM 模式 由伏秒平衡知(Vinmin-1)*ton=(Vo+1)*toff ---①(设 MOS、整流管正向导通压降为 1V) 为保证电路工作于 DCM 模式,应使 ton+toff=0.8T-----------②(设计 20%T 的死区时间)
反激变压器的详细公式的计算

单端反激开关电源变压器设计单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。
下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结.1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。
2、计算在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V).反激电压由下式确定:V f=V Mos-V inDCMax—150V反激电压和输出电压的关系由原、副边的匝比确定。
所以确定了反激电压之后,就可以确定原、副边的匝比了。
N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin•D Max=V f•(1—D Max)设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。
若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。
由能量守恒,我们有下式:1/2•(I p1+I p2)•D Max•V inDCMin=P out/η一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max•V inDCMin/f s•ΔI p对于连续模式,ΔI p=I p2—I p1=2I p1;对于断续模式,ΔI p=I p2 .可由A w A e法求出所要铁芯:A w A e=(L p•I p22•104/B w•K0•K j)1.14在上式中,A w为磁芯窗口面积,单位为cm2A e为磁芯截面积,单位为cm2L p为原边电感量,单位为HI p2为原边峰值电流,单位为AB w为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0。
反激式开关电源变压器参数的计算

反激式开关电源变压器参数的计算反激式开关电源变压器的参数计算与正激式开关电源变压器的参数计算相比,除了变压器初级线圈的匝数和伏秒容量,变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率以外,还需要特别注意考虑变压器初级线圈的电感量。
反激式开关电源变压器对初级线圈的电感量要求,与正激式开关电源变压器对初级线圈的电感量要求,几乎完全不同。
对于正激式开关电源变压器对初级线圈电感量的要求,如果不考虑变压器初级线圈本身的电阻损耗,以及变压器的体积和成本,则初级线圈的匝数是越多越好,电感量也是越大越好;而反激式开关电源变压器对初级线圈的电感量要求,则要求变压器在满足伏秒容量的前提下,对变压器初级线圈电感的大小也有特别要求,就是求变压器初级线圈电感存储的能量必须满足向负载提供功率输出的要求。
关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
1-7-3-2-1.反激式开关电源变压器初级线圈匝数的计算反激式开关电源变压器初级线圈匝数的计算与正激式开关电源变压器初级线圈匝数的计算方法基本相同,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1变压器初级线圈匝数的计算”章节中的内容。
反激式开关电源变压器初级线圈的最少匝数与(1-95)式完全相同,即:式中,N1 为变压器初级线圈N1 绕组的最少匝数,S 为变压器铁心的导磁面积(单位:平方厘米),Bm 为变压器铁心的最大磁感应强度(单位:高斯),Br 为变压器铁心的剩余磁感应强度(单位:高斯),Br 一般简称剩磁,τ=Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒),一般τ取值时要留预留20%以上的余量,Ui 为工电压,单位为伏。
式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS 单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。
反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=输入平均电流: Iୟ୴ൌሺౣሻ同左边占空比D୫ୟ୶=୲=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:Iൌכሺౣሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>כଵలଶככ౩כౣכஔכౣכౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1IୋൌP୧V୧୬୫୧୬IൌIୟ୴D୫ୟ୶כ2T୭୬ൌଵD୫ୟ୶(uint:µs)1S=106µsLൌౣכ୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌౌכ୍ౌేככ10L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭Vୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶NaൌሺVୟVୟୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶L =ሺౣሻכୈ୍ౌేכ౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=ሺౣሻ=౩౦4. 计算初级匝数初级电感:L ୮ൌሺౣሻכ୲୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A 值是在磁芯上绕1000匝测得(美国)则N ൌ1000ටౌై此式中L 单位为mH变压器次级圈数:Ns>୬כ୍౦כ౦ୗכౣ*10其中S 为磁芯截面积,B୫值为3000Gs若A 值是用100匝测得且单位是nH/N ଶ,则N ൌ100ටౌై此式中L 单位为mH,A 单位为mH/N ଶ,在计算时要将A 的值由nH 转换为mH 后再代入式中计算;例如:某A 值为1300 nH/N ଶ, L 值为2.3mH,则A =1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N 为133T 初级匝数为:Np=౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=౩ౌ=ሺౣሻ晶体管的基极电流I =୍౦୦ూు6. 次级绕组匝数N ୱ=N *n N ୱଵ=౦כሺାౚሻכሺଵିୈౣ౮ሻሺౣሻכୈౣ౮多路输出时N ୱ୶=ሺ౮ାౚ౮ሻכ౩భభାౚభ其中x 代表几路I ୰୫ୱൌI √27. 原边供电绕组N ୟ=N ୱכ在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A=A ୣכA ୵ൌכଵలଶככ౩כౣכஔכౣכౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式开关电源变压器是这么计算的
于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候,
其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把
磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径,
一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来
确定,而不是平均值。
上面已经算得了有效值,所以就来选线,用0.25 的线就
可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。
若是电流很大,最好
采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。
第六步,确定次级绕组的参数、圈数和线径。
原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的,
看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原
边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF)
/VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流
的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原
边峰值电流大数倍。
第七步,确定反馈绕组的参数。
反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP。