展开与折叠(二)
七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。
2展开与折叠

2展开与折叠【知识与技能】1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;2.了解圆柱、圆锥的侧面展开图.【过程与方法】经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.【情感态度】在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。
【教学重点】在操作活动中,发展空间观念、积累数学活动经验,掌握和识别棱柱、圆柱、圆锥等几何体的展开图.【教学难点】根据几何体的展开图判断能折叠成什么样的几何体.一、情境导入,初步认识在生活中,我们经常见到正方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.1.正方体有多少个面?多少条棱?多少个顶点?2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.二、思考探究,获取新知1.正方体的展开图问题1将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.【归纳结论】将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.141型(共6种)231型(共3种)33型(1种)222型(1种)问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生分组进行讨论,得出结论.【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.2.平面图形的折叠问题2下图中的图形经过折叠能否围成一个正方体?【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.【归纳结论】若是正方体11种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.3.圆柱、圆锥的侧面展开图问题3教材第10页“做一做”的内容【教学说明】学生动手操作,能直观地得出结论.【归纳结论】圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形. 三、运用新知,深化理解1.上图中经过折叠能围成棱柱的是(填序号).2.画出下面棱柱的一种展开图.【教学说明】学生自主完成,加深对新学知识的掌握和理解.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(2)(4)2.四、师生互动,课堂小结1.正方体的展开图,圆柱、圆锥的侧面展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.1.布置作业:从教材“习题1.3,1.4”中选取.2.完成练习册中本课时的相应作业.本节课通过学生自己动手操作,感受正方体的展开与折叠,了解圆柱、圆锥的侧面展开图,进而了解其他几何体的展开与折叠,学生积极性较高.。
初中数学展开与折叠 学案

展开与折叠(2)策略与反思纠错与归纳【学习目标】1.能将一个正方体的表面沿某些棱剪开,展成一个平面图形。
2.通过展开与折叠、制作模型的过程,发展空间观念,积累数学活动经验。
【重点难点】重点:能将一个正方体的表面沿某些棱剪开,展成一个平面图形。
难点:尽可能多的将一个正方体展成一个平面图形。
【使用说明与学法指导】1.阅读课本8-9页并制2.每位同学准备正方体的展开图【自主学习】1.正方体有个面,条棱,个顶点,每个顶点处有条棱,每个面都是形。
2.提示:“展成一个平面图形”是指“正方体的6个面展开后所成的6个正方形中的每一条边与其他的正方形的某条边重合”,即“相连”【合作探究】1.将一个正方体的表面沿某些棱剪开,展成一个平面图形。
回答下列问题:(1)你能得到哪些平面图形?与同伴进行交流,提供尽可能多的展图形;并将其画出来;将一个正方体沿某些棱展开,至少要剪几条棱?(2)在你们的所示结果中,有如下的平面图形吗?(3)下图中的图形经过折叠能否围成一个正方体?能说说理由吗?2.把圆柱、圆锥的侧面展开,会得到什么图形?想一想,试一试!3.如右图是一多面体的展开图,每个面内都标注了字母,请根据要求回答问题(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?从右面看是面C,面D在后面,那么哪一面会在上面?【当堂训练】1.在下面的图形中,()是正方体的表面展开图.2.下面的图形经过折叠不能围成一个长方体的是()3.如图1–10所示的立方体,如果把它展开,可以是下列图形中的()4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的________.5.如图是一个正方体的平面展开图,那么3号面相对的面是______号面;6.下面10个图形中哪些可以折成没有盖子的五个面的小方盒?请指明.程前你祝似锦。
展开与折叠 2原创

1 5
4 1 2 4
6 1
2
2.(2012·广安中考)如图是一个正方体的表面展开图,则原正 方体中与“建”字所在的面相对的面上标的字是( )
(A)美
(B)丽
(C)广
(D)安
5.如图所示,在正方体的三个面上写上数1,2,3,而在展开图 中也分别写上了两个或一个指定的数,请你在展开图的其他面 上写上适当的数,使得相对的面上两数的和等于7.
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
拓展1:你有办法将图形(1)、(3)修改后使能折叠成棱柱?
拓展2:图形(2)、(4)是不同的平面图形,折叠出同 样的棱柱,从中你得到了什么启示?
把下面的正三角形沿虚线折叠后 的几何体是什么?
想一想:下列的图形都是正方体的展开图吗?
(1) (2) (3)
(√)
(4) (5)
(√)
(6)
(√)
(√)
(×)
(×)
1 2 3 4
1
2
3 4
(1)
1
(2)
想一想哪个正方 体中的小动物可 以吃到自己喜欢 的食物?为什么? 1
2
3 4
2
3
4
(3)
(5)
考考你
如果“你”在前面,那么谁在后面?
了
太 你 们 棒
体是否为圆锥.
2.(眉山·中考)下列四个图中是三棱锥的表面展开图的是(
).
(A)
(B)
(C)
(D)
【解析】选B.可通过实际折叠四个展开图尝试获解.事实上,图形A是一个
展开与折叠(2)课件 2022—2023学年苏科版数学七年级上册

5.3 展开与折叠(2) 第2课时 折叠
学习目标
学习目标
1.进一步感受立体图形与平面图形之间的关系,能根 据表面展开图判断、制作简单几何体;
2.感受正方体表面展开图中各个面之间的关系,会确 定正方体的对应面;
3.理解表面展开图中各个面之间的关系,会利用表 面展开图进行计算;
④
新知归纳
如果表面展开图由6个正方形组成,那么立体图形是正方体; 如果由3个或3个以上的三角形与1个多边形组成,那么立体图形是棱锥; 如果由3个或3个以上的长方形与2个形状、大小都相同的多边形组成, 那么立体图形是棱柱.
复习巩固
数学实验
3.如图,纸板上有10个无阴影的小正方形,从中选出1个,使 它与图中5个有阴影的正方形一起制作成一个正方体包装盒. 先想一想,再折一折,验证你的想法.
蚊子
●
你有何 高招?
壁虎 ● ●
壁 虎
拓展延伸
小壁虎的难题: 如图:如果圆桶改为正方体了呢?有多少条路径?哪条路径最短?
B
壁虎 ● A
B
●
蚊子
展开
B
A
B A 这样的路径有几条?
解:(1)这个包装盒是一个长方体. (2)此包装盒的表面积为2·b2+4·ab=2b2+4ab,体积为b2·a=ab2.
还原几何体是解答此类题的关键,动手操作是还原几何体的一个有效方法.
拓展延伸
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃
到蚊子,应该走哪条路径?
● 蚊子
A
BCD
BCD
F
A
E
F
E
课堂小结
本节课你有什么新的收获!
1.2.2展开与折叠(2)

课题:1.2展开与折叠(2)课型:新授课学习目标:1.通过展开与折叠活动,了解三棱柱、四棱柱、五棱柱、圆柱、圆锥的侧面展开图;能根据展开图判断和制作简单的立体模型.(重点)2.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法.(难点)3.初步获得动手制作的乐趣及制作成功后的成就感;在制作实验的过程中感受生活中立体图形的美.教学内容分析:本节是从学生周围熟悉的物体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解多面体可由平面图形围成,而且立体图形可按不同方式展开成平面图形,更重要的是让学生通过观察、思考和自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
本节分为两个课时,第一课时通过正方体的展开图,了解正方体展开图的基本特征.而第二课时的教学任务旨在进一步认识棱柱的展开图;了解一些特殊几何体的展开图,能根据展开图判断立体模型.同时,七年级学生具有好奇心、求知欲较强的特点,学生间相互评价、相互提问的积极性高,因此,参与有关展开与折叠的实践探究活动的热情应该是比较高的.教法与学法:以我校“自主探究,当堂评价”的教学模式为基础,努力打造“小组学习”的学生自主课堂,因为本章的内容相对抽象,学生的空间想象力教弱,所以本节课老师去设计尽可能的多的学生活动,学生在操作实践中认识图形、学习新知,也在实践中逐步发展学生的空间观念.而老师的教,重点可以放在课堂组织、知识串联和对学生的启发上,通过设置疑问,引导学生动手实验,引导学生思考问题和分析问题.最后,整堂课要发挥学习小组的能动作用,组长组织--小组讨论--交流总结—学习评价,培养学生合作学习习惯,增强学习数学兴趣和信心.教学准备:学生:收集三棱柱、长方体、五棱柱纸质模型,收集圆柱形纸盒和圆锥形模型,剪刀.教师:三棱柱、长方体、五棱柱、圆柱、圆锥的纸质模型.教学过程:一.创设情景,导入课题师:有人说,手工折纸是一种智慧游戏,小小的一张纸通过我们的折叠可以折出形态各异的物体来,在折叠的过程中,我们手脑并用,培养我们的观察力、想象力和动手能力。
数学:1.2《展开与折叠》课件2(北师大版七年级上)

安宫牛黄丸与行军散共有的药是A.火硝B.山栀C.朱砂D.硼砂E.麝香 不利于合成氨N2+3H22NH3+92.4kJ的条件是。A、加正催化剂B、升高温度C、增大压强D、不断地让氨气分离出来,并及时补充氮气和氢气 委托贷款属于我行业务。A、资产业务B、负债业务C、中间业务D、理财业务 基孔制的基准孔,其下偏差等于。A、0B、1C、2D、3 关于脑出血,最确切的诊断依据是。A.60岁以上发病B.均有偏瘫C.脑脊液血性D.突然偏瘫、头部CT见底节附近高密度影E.均有脑膜刺激征 目前在建筑材料与装饰材料中最引起人们关注的物质是()A.甲醇和氡B.甲醛和氡C.甲醇和氨D.甲醛和氨E.氨和氡 直流电检查时其极性规律()A.阳通>阴通>阳断>阴断B.阴通>阳通>阴断>阳断C.阴通>阳通>阳断>阴断D.阳通>阴通>阴断>阳断E.阳断>阴断>阳通>阴通 以下哪类患者不适合进行心理治疗A.重性精神病急性发作期B.人格障碍C.心身疾病D.进食障碍E.各类神经症 下列关于财务目标的表述中,正确的有()。A.如果假设投入资本相同、利润取得的时间相同,利润最大化是一个可以接受的观念B.假设股东投资资本不变,则股价最大化与增加股东财富具有同等意义C.假设股东投资资本和债务价值不变,则企业价值最大化与增加股东财富具有相同意义D.股东财富 不是心力衰竭代偿机制的是A.Frank-Starling机制B.心肌肥厚C.交感神经兴奋性增强D.RAS激活E.心肌耗氧增加 辐射通量密度 下岗女工王某开办了一个商品经销部,按规定享有一定期限的免税政策,她认为,既然免税就不需要办理税务登记,分析王某的观点是否正确。A.正确B.错误 对于患肝疾病出血和手术出血的病人应该输注的是()A.白蛋白B.红细胞C.白细胞D.血小板E.凝血酶原复合物 根据《文物保护法》规定,以下不属于国家文物保护范围的是()
5.3展开与折叠(2)

各组先给自己剪 开的正方体的各 个面编号, 想象折 叠后的情况, 再进 行活动, 验证自己 的想象。 观察演示过程, 发 挥自己的想象力。
教师组织学生汇报自己小组的学
出示练习图(4)用线段将几何体与 能围成它们的平面图形连结起来。
习成果,并评出优胜小组给予鼓 励。 是如何想出所设计的方案的? 先剪下中间的部份,折叠,发现 缺个盖,在与盖相连的四个正方 形上做好记号,展开还原到原来 的位置,再找到与之相连的满足 条件的正方形
课时编号 备课时间 课 题 5.3 展开与折叠(2)----( 教案) 1、 了解简单几何体的表面展开图形。 能想象并画出简单几何体的表面展开图形, 能根据表面展开图形想象并制作简单的几何体。 2、经历展开与折叠的过程,感受立体图形与平面图形的关系,体验图形的变化 过程,积累数学学习的经验。 3、经历合作与探索、竞赛的学习过程,养成学生研究性学习、合作学习的习惯, 培养学生的合作学习的精神,激发学生对数学的兴趣。
情境创设 1、 2、
例 1:……
例 2:……Leabharlann 习题 ………… ……
…… ……
…… ……
作业布置
课后随笔
1 3 4 5 图(1)
2 6
通过刚才的学习, 同学们一定急于施 展自己的才华了,这里有一个问题, 对于(2) ,有哪一位同学愿意谈 看哪个小组完成的最好。 (放映问题: 一下自己的想法? 如图(3)纸板上有 10 个无阴影的正 方形,从中先出一个,与图中 5 个有 同学们可能有许多自己的想法, 老师在这里也谈一下自己的做 2 3 1 法,供同学们参考。 (边讲边动画 4 演示,先图(3)后图(4)的折 5 叠的过程) 6 7 8 (1)先假定一个基准在面(不 动)(2)再考虑四周应是哪几个 , 9 10 面,从最容易确定的开始找。 (3) 最后考虑此基准面的对面是哪个 图(3) (教师边演示中间过程,边让 阴影的正方形连在一起, 折叠成一个 面。 有盖的正方体纸盒, 有哪几种不同的 学生观察思考,发挥空间想象力, 预测下一步结论) 做法?规则:①各小组发挥集体智 慧,先设计方案,再动手操作;②剪 坏的不能再用(每小组 4 张) ;③以 成功的不同方案多者为优胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
复习回顾
(1)正方体展开图有几种? 11种 (2)正方体展开需要剪几条棱? 7条
(3)下面的图形能折成正方体吗?为什么?
能 不能
不能
能
不能 能
2
棱柱的性质:
1、棱柱的上、下两底
面平行且形状相同,
大小一样;
2、棱柱的侧面形状都
是长方形;
侧面
3、棱柱的侧棱的长度
都相等。
4、棱柱侧面的个数与
(3)
7
棱柱 三棱柱
四棱柱 五棱柱 六棱柱
... n棱柱
展开图的组成 3 个长方形 2 个 三 边形
4 个长方形 2 个 四 边形 5 个长方形 2 个 五 边形 6 个长方形 2 个 六 边形
n 个长方形 2 个 n 边形 8
n棱柱展开图由 两个n边形和n个 长方形组成。
9
如果沿着红色的棱剪开,会得到什么形状 的平面图形呢?
23
感谢您的阅读收藏,谢谢!
√
√
12
棱柱的侧面展开图都是长方形
13
和2个n边形
圆锥 球
不能展开成平面图形
14
按照如图所示的方法把圆柱、圆锥的侧面展开, 会得到什么图形?先想一想,再试一试。
15
按照如图所示的方法把圆柱、圆锥的侧面展开, 会得到什么图形?先想一想,再试一试。
(1)
由两个三角形和 3个长方形组成
10
(12)如请图将,1、哪2些、图4两形个经图过形折做叠适可当以修围改成使一 个所棱得柱图?形先能想围一成想一,个再棱折柱一。折。
×
1
2×
3√
数量
×4
位置
5
√
11
×
下列哪些图形经过折叠可以围成一个棱柱? 先想一想,再折一折。
数量
位置 对应边的长短
√
动手折一折
B
C
D
19
2、如图所示,四张图中,能折成棱柱的是( )
A
B
C
D
20
3、如图,可以围成的几何体是
。
21
4、圆柱、圆锥、正方体、棱柱的展开图中有
圆的有
个。
22
5、给出下列结论,正确的是( ) (1)一个圆柱的侧面一定可以展成一个长方形; (2)一个圆柱的侧面一定可以展成一个正方形; (3)一个圆锥的侧面一定可以展成一个扇形; (4)一个圆锥的侧面一定可以展成一个半圆。 A.(1) (3) B.(2) (3) C. (2) (4) D. (1) (4)
扇形
16
名称 棱柱 圆柱 圆锥 球
侧面展开图 长方形 长方形 扇形
展开图
n个长方形 和2个n边形
一个长方形 和两个圆形
一个扇形 和一个圆形
不能展开成平面图形
17
交流归纳:
有些立体图形
展开
平面图形
有些平面图形
折叠
立体图形
18
1、如图是一个三棱柱,下列图形中,能通过折叠围 成一个三棱柱的是( )
A
底面多边形的边数相等
底面 侧棱
3
将图1-9中的棱柱沿某些棱剪开,展成一个 平面图形,你能得到哪些形状的平面图形?
(1)
(2)
(3)
图1-9
4
如果沿着红色的棱剪开,会得到什么形状 的平面图形呢?
(1)
5
如果沿着红色的棱剪开,会得到什么形状 的平面图形呢?
(2)
6
如果沿着红色的棱剪开,会得到什么形状 的平面图形呢?