数列知识点常用结论
高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序〞排列的,在这里,只强调有“次序〞,而不强调有“规律〞.因此,如果组成两个数列的数一样而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果数列a n的第一项〔或前几项〕,且任何一项a n与它的前一项a〔或前几项〕间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、n*a2(nN)nn156,那么在数列{}a的最大项为__〔答:n125〕;2、数列{}a的通项为nana n,其中a,b均为正数,那么a n与a n1的大小关系为___〔答:bn1aa n1〕;n23、数列{a}中,a是递增数列,XX数的取值X围〔答:3〕;ann,且{}nnn4、一给定函数yf(x)的图象在以下图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),那么该函数的图象是〔〕〔答:A〕neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学_数列知识点汇总

必修5 数列知识点小结【等差数列】1. 证明方法:①递推关系(定义):)(1*+∈=-N n d da a n n 为常数,②等差中项法:112+-+=n n n a a a )1(>n判断方法:③通项公式q pn d n a a n +=-+=)1(1(其中p,q 为常数) ④前n项和Bn An 2+=-+=+=d n n n a a a n S n n 2)1(2)(11(A,B 为常数)2. 等差中项:b A a ,,成等差数列,A 称为b a 与的等差中项(其中b a 与为任意实数, A 存在且唯一),2b a A b a A +=⇔的等差中项与为即3. 等差数列性质:(1) 任两项关系:nm a a mn a a d n m m n --=--=(其中n m ≠)(2) 任两项关系:d m n a a m n )(-+=(其中n m ≠)(3) 是递增数列;数列}a {,0d n >是递减数列;数列}a {,0d n <是常数列数列}a {,0d n =。
(4) 两和式项数相同,下标和相等,则两式相等,如:112+-+=n n n a a a (其中n>1, n n n a a a +=2) k n k n n a a a +-+=2(其中n-k>0, n n n a a a +=2)特别若q p n m a a a a q p n m +=++=+则,k q p s n m a a a a a a k q p s n m ++=++++=++则,(5) {}{}n n b a ,为项数相同的等差数列(或无穷数列),则:①:k m a +、k m a 2+、k m a 3+、k m a 4+…成等差数列(其中k m ,为常数) ②:{}k a n +、{}n n b q a p ∙+∙为等差数列,(其中q p k ,,为常数)(6) 前n 项和性质:①:成等差数列,,,232k k k k k S S S S S --②:⎭⎬⎫⎩⎨⎧n S n 是等差数列。
数列复习基本知识点及经典结论总结+练习题

数列复习基本知识点及经典结论总结1、数列的概念:数列是按一定次序排成的一列数。
数列中的每一个数都叫做这个数列的项。
数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。
数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125);(2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )A B C D递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项a n 与它的前一项a n 1-(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。
数列的前n 项和:a a a a s n n ++++=...321.已知s n 求a n 的方法(只有一种):即利用公式 a n =⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。
2.等差数列的有关概念: 1、 等差数列的定义:即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). (1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
数列极限知识点归纳总结

数列极限知识点归纳总结数列是数学中的一个重要概念,由一系列有序的数字组成。
数列极限是数列在无穷项处的趋势或趋近的值。
在数学分析中,数列极限是一个基本的概念,具有广泛的应用。
本文将对数列极限的相关知识进行归纳总结,并以此为标题。
一、数列的定义和性质1. 数列的定义:数列是按照一定的规律排列的一系列数字。
2. 数列的通项公式:数列中的每一项可以用一个公式来表示,这个公式称为数列的通项公式。
3. 数列的性质:数列可以是有界的或无界的,可以是递增的或递减的,还可以是周期性的或非周期性的。
二、数列的极限1. 数列的极限定义:对于一个数列,如果随着项数的增加,数列中的元素逐渐接近一个确定的值,那么这个确定的值就是数列的极限。
2. 数列极限的表示:数列极限常用符号lim表示,写作lim(an)=a,其中an为数列的第n项,a为数列的极限。
3. 数列极限的存在性:数列的极限可能存在,也可能不存在。
如果数列极限存在,则称数列收敛;如果数列极限不存在,则称数列发散。
三、数列极限的计算方法1. 直接计算法:对于一些简单的数列,可以通过对数列的通项公式进行计算,得到数列的极限。
2. 套路法:对于一些特殊的数列,可以利用一些已知的极限结果和数列运算的性质,通过一些套路求得数列的极限。
3. 夹逼准则:对于一些复杂的数列,可以通过夹逼准则来求得数列的极限。
夹逼准则指的是如果数列a(n)≤b(n)≤c(n),且lim(a(n))=lim(c(n))=a,那么lim(b(n))=a。
四、数列极限的性质1. 唯一性:如果数列极限存在,则极限值唯一。
2. 保号性:如果数列的极限为正数(负数),那么数列的项数足够大时,数列的元素大于(小于)零。
3. 有界性:如果数列的极限存在,则数列有界。
五、数列极限的应用1. 函数极限:函数极限是数列极限的推广,通过将自变量取为数列,将函数值作为数列的项,就可以研究函数的极限。
2. 数列极限在微积分中的应用:数列极限在微积分中有广泛的应用,如计算导数、积分等。
数列知识点归纳总结讲义

数列知识点归纳总结讲义数列是数学中常见的一个概念,它在各个领域都有广泛的应用。
正如其名称所示,数列是一系列按照特定规律排列的数的集合。
在学习和应用数列时,我们需要了解一些基本概念和常见的数列类型。
本文将对数列的知识点进行归纳总结,帮助读者更好地理解和掌握相关概念。
一、数列的基本概念1. 数列的定义:数列是按照一定的规律排列的一组数,用字母表示为{a₁,a₂,a₃,...}。
2. 项与序号:数列中的每个数称为项,对应的位置称为序号。
第一项为a₁,第二项为a₂,以此类推。
3. 通项公式:数列中每个项与它所在的序号之间存在着一定的关系,这种关系用通项公式来表示,通常用aₙ表示第n个项的值。
4. 数列的有穷与无穷:当数列中的项有限个时,称其为有穷数列;当数列中的项无限多时,称其为无穷数列。
二、常见的数列类型1. 等差数列:等差数列是一种最为常见的数列类型,其特点是每个项之间的差值相等。
通项公式:aₙ = a₁ + (n - 1)d其中,a₁为首项,d为公差,n为项数。
例如:2,5,8,11,14...就是一个以3为公差的等差数列。
2. 等比数列:等比数列是指数列中每个项与它前一项的比值相等的数列。
通项公式:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比,n为项数。
例如:1,2,4,8,16...就是一个以2为公比的等比数列。
3. 斐波那契数列:斐波那契数列是指从第3项开始,每个项都是前两项的和。
通项公式:aₙ = aₙ₋₂ + aₙ₋₁其中,a₁和a₂为斐波那契数列的前两项。
例如:1,1,2,3,5,8,13...就是一个斐波那契数列。
4. 平方数列:平方数列是指数列中每个项都是某个整数的平方。
通项公式:aₙ = n²其中,n表示项数。
例如:1,4,9,16,25...就是一个平方数列。
5. 等差数列与等比数列混合:有时数列中既存在等差关系,又存在等比关系,称其为等差数列与等比数列混合数列。
数列的相关知识点总结

数列的相关知识点总结一、数列的定义数列是按照顺序排列的一组数字。
数列中的每个数字称为这个数列的项,通常用字母来表示数列的项,例如a₁, a₂, a₃, …, aₙ。
其中n代表数列的项数,称为数列的长度或者规模。
数列通常用一个通用公式来表示,这个公式描述了数列中每一项与前一项的关系,通常用递推公式或者递归公式来表示。
例如,斐波那契数列就是一个典型的递推数列,它的通用公式为Fn = Fn-1 + Fn-2,其中F₁ = 1, F₂ = 1。
二、常见的数列类型1. 等差数列:等差数列是指数列中相邻两项的差值是一个常数的数列,这个常数称为公差。
等差数列的通用公式为an = a1 + (n-1)d,其中a₁为第一项,d为公差,n为项数。
2. 等比数列:等比数列是指数列中相邻两项的比值是一个常数的数列,这个常数称为公比。
等比数列的通用公式为an = a₁ * rⁿ⁻¹,其中a₁为第一项,r为公比,n为项数。
3. 斐波那契数列:斐波那契数列是一个非常特殊的数列,它的每一项都等于前两项的和。
这个数列的通用公式为Fn = Fn-1 + Fn-2,其中F₁ = 1, F₂ = 1。
三、数列的性质1. 数列的有界性:如果数列中的所有项都不大于一个常数M,那么这个数列就是有上界的;如果数列中的所有项都不小于一个常数N,那么这个数列就是有下界的。
如果一个数列既有上界又有下界,则称其为有界数列。
2. 数列的单调性:如果数列中任意相邻两项的大小关系保持不变,那么这个数列就是单调数列。
如果数列中的每一项都大于前一项,那么这个数列就是严格递增的;如果数列中的每一项都小于前一项,那么这个数列就是严格递减的。
3. 数列的极限性质:数列的极限是指数列中的项随着项数趋向于无穷大时的极限值。
如果一个数列存在有限的极限,则称其为收敛数列;如果数列的项随着项数趋向于无穷大时趋向于无穷大或者无穷小,则称其为发散数列。
四、数列的求和公式1. 等差数列的求和公式:等差数列的前n项和可以通过以下公式来计算:Sn = n/2 * (a₁ + an),其中Sn表示前n项和,a₁表示第一项,an表示第n项。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
数列知识点归纳总结

数列是数学中的一个重要概念,它是由一系列按照一定规律排列的数组成的。
数列知识点归纳总结如下:一、数列的定义1. 数列是由有限个或无限个数字组成的序列。
2. 数列中的数字按照一定的顺序排列。
3. 数列中的每个数字都有一个对应的位置或项数。
二、数列的分类1. 按项数分类:有限数列和无限数列。
2. 按项的性质分类:整数数列、实数数列、复数数列等。
3. 按项的规律分类:等差数列、等比数列、斐波那契数列等。
三、等差数列1. 等差数列是指从第二项起,每一项与它的前一项的差都相等的数列。
2. 等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。
3. 等差数列的求和公式为:Sn = n/2 * (a1 + an),其中Sn表示前n项和。
四、等比数列1. 等比数列是指从第二项起,每一项与它的前一项的比都相等的数列。
2. 等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比。
3. 等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。
五、斐波那契数列1. 斐波那契数列是指从第三项起,每一项都是前两项之和的数列。
2. 斐波那契数列的前几项为:1, 1, 2, 3, 5, 8, 13, ...3. 斐波那契数列没有通项公式,但可以用递归或循环的方式生成。
六、递推关系与通项公式1. 递推关系是指数列中相邻两项之间的关系。
2. 递推关系可以用来推导出数列的通项公式。
3. 通项公式是用来表示数列中任意一项的公式。
4. 通项公式可以通过递推关系、图形法、矩阵法等方式推导得出。
七、数列的应用1. 数列在数学中有广泛的应用,如级数求和、概率计算、线性方程组求解等。
2. 数列在自然科学、经济学、计算机科学等领域也有重要的应用。
八、数列的极限1. 数列的极限是指当项数趋向无穷大时,数列的项趋向于一个确定的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列知识点及常用结论一、等差数列(1)等差数列的基本公式①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差)()n m a a n m d =+- (从第m 项m a 开始为等差)()n m n m n m a a nd a a n m d a a d n m -=⎧⎪=+-⇒⎨-=⎪-⎩②前n 项和公式:11()(1)22n n n a a n n S na d +-==+ (2)证明等差数列的法方①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)⇔{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )⇔{}n a 为等差数列③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ⇔{}n a 为等差数列即:通项公式位n 的一次函数,公差d p =,首项1a p q =+④前n 项和公式法:2n S pn qn =+ (p , q 为常数) ⇔{}n a 为等差数列即:关于n 的不含常数项的二次函数(3)常用结论①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列.②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +.特别的,当n+m=2k 时,得n m a a +=2k a③在等差数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等差数列,且公差为(k+1)d(例如:1a ,4a ,7a ,10a ⋅⋅⋅⋅⋅⋅仍为公差为3d 的等差数列)④若数列{}n a 为等差数列,则记12k k S a a a =++⋅⋅⋅⋅⋅⋅+,2122k k k k k S S a a a ++-=++⋅⋅⋅⋅⋅⋅+,3221223k k k k k S S a a a ++-=++⋅⋅⋅⋅⋅⋅+,则k S ,2k k S S -,32k k S S -仍成等差数列,且公差为2k d ⑤若n S 为等差数列{}n a 的前n 项和,则数列{}n S n 也为等差数列. ⑥ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩ 此性质对任何一种数列都适用 ⑦求n S 最值的方法:I: 若1a >0,公差d<0,则当100k k a a +≥⎧⎨≤⎩时,则n S 有最大值,且k S 最大; 若1a <0,公差d>0,则当100k k a a +≤⎧⎨≥⎩时,则n S 有最小值,且k S 最小; II :求前n 项和2n S pn qn =+的对称轴,再求出距离对称轴最近的正整数k ,当n k = 时,k S 为最值,是最大或最小,通过n S 的开口来判断。
二、等比数列(1)等比数列的基本公式①通项公式:11n n a a q -= (从第1项1a 开始为等比)n m n m a a q -= (从第m 项m a 开始为等差)②前n 项和公式:1(1),(1)1n n a q S q q-=≠-,1,(1)n S na q == (2)证明等比数列的法方①定义法:对任意的n ,都有1(0)n n n a qa a +=≠⇔1n na q a +=(q ≠0) ⇔{}n a 为等比数列②等比中项法:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列③通项公式法:1(,0n n a aq a q -=是不为的常数)⇔{}n a 为等比数列(3)常用结论①若数列{}n a ,{}n b 为等比数列,则数列1{}n a ,{}n k a ,2{}n a ,21{}n a -,{}n n a b {}n n a b (k 为非零常数) 均为等比数列.②若m+n=p+q (m , n , p , q ∈*N ),则n m a a =p q a a .特别的,当n+m=2k 时,得n m a a =2k a③在等比数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等比数列,且公比为1k q + (例如:1a ,4a ,7a ,10a ⋅⋅⋅⋅⋅⋅仍为公比3q 的等比数列) ④若数列{}n a 为等差数列,则记12k k S a a a =++⋅⋅⋅⋅⋅⋅+,2122k k k k k S S a a a ++-=++⋅⋅⋅⋅⋅⋅+,3221223k k k k k S S a a a ++-=++⋅⋅⋅⋅⋅⋅+,则k S ,2k k S S -,32k k S S -仍成等比数列,且公差为k q三、求任意数列通项公式n a 的方法(1)累加法:若n a 满足a n+1=a n +f(n)利用累加法求:n a 12132431()()()()n n n a a a a a a a a a a -=+-+-+-+⋅⋅⋅⋅⋅⋅+- 例题:若11=a ,且12+=+n n a a n ,求:n a练习题:若数列n a 满足1120++--=n n n a a ,且10=a(2)累乘法:若n a 满足1()+=⋅n n a f n a 利用累乘法求:n a 32411231()()()()n n n a a a a a a a a a a -=⋅⋅⋅⋅⋅⋅ 例题:在数列{a n }中,1111,2++==n n n a a a n,求:n a .练习题:在数列{a n }中,11a =且1n n a na +=,求:n a (提示:123......!n n ⨯⨯⨯=)(3)递推公式中既有n S ,又有n a ,用逐差法11n n n S a S S -⎧=⎨-≥⎩ n=1 n 2特别注意:该公式对一切数列都成立。
(4)若n a 满足1,()+=+≠n n a pa q p q ,则两边加:1=-q x p ,在提公因式P ,构造出一个等比数列,再出求:n a 例题:已知数列{}n a ,满足:121+=+n n a a ,且11=a ,求:n a习题1:已知数列{}n a 满足:131+-=n n a a 且11=a ,求:n a习题2:已知数列{}n a 满足:12a =,且n n S a n +=,求:n a(5)若n a 满足1++=+n k n n a pa p ,则两边同时除以:1+n p ,构造出一个等差数列,再求出:n a例题:已知n a 满足:11=a 1122-+=+n n n a a ,求:n a解:111122222-++=+⇒=+n n n n n n n a a a a ,既有:11222+-=n n n n a a 所以:2⎧⎫⎨⎬⎩⎭n n a 是首项为:1122=a ,公差12=d 的等差数列11(1)2222=+-⨯=∴n n a n n 所以:1222-=⋅=⋅n n n n a n习题1:已知1133++-=n n n a a 且11=a ,求:n a习题2:已知11232n n n a a -+=+⋅且11a =,求:n a(六)待定系数法:若{}n a 满足以下关系:()1n n a ka f n +=+ 都可用待定系数法转变成一个等比数列来:温馨提示:提k ,对()f n 待定系数例题1:已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式. 解:11152(5)235++++⋅=+⋅⇒=-⋅n n n n n n n a x a x a a x ,与原式对应得,1=-x1111552(5)25++++--=-⇒=-∴n n nn n n n n a a a a 所以:{}5-n n a 是首项1151-=a ,公比2=q 的等比数列既有:115252---=⇒=+n n n n n n a a例题2:已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解:11123(2)322++++⋅+=+⋅+⇒=+⋅+n n n n n n n a x y a x y a a x y ,与原式对应得:5,2==x y11115225223(522)3522+++++⋅++⋅+=+⋅+⇒=+⋅+∴n n n n n n n n a a a a所以:{}522+⋅+n n a 是首项为:1152213+⋅+=a ,公比3=q 的等比数列既有:11522133133522--+⋅+=⋅⇒=⋅-⋅-n n n n n n a a(七)颠倒法:若{}n a 满足:1n n n C a a a C+⋅=+,用颠倒法; 11111n n n n n n nn n n C a a C a C a a C a C a C a C a C a ++⋅+=⇒==+=++⋅⋅⋅ 所以:1111n n a a C +-=,所以:1{}n a 是以首项为:11a ,公差1d C=的等差数列例题1:已知122n n n a a a +⋅=+,且12a =,求:n a例题2:已知1133n n n n a a a a ++⋅=-,且11a =,求:n a(八)倒数换元法:若数列{}n a 满足:1+⋅=⋅+n n n A a a B a C ,则颠倒变成111n n n n B a C C B a A a A a A+⋅+==⋅+⋅ 然后再用两边加:1-q p 或者待定系数法既可求出1⎧⎫⎨⎬⎩⎭n a ,再颠倒就可得到:{}n a 例题:若数列{}n a 满足:123+=+n n n a a a ,且11=a ,求:n a 解:1121311322++=⇒=⋅++n n n n n a a a a a ,两边加:1得:11313122++=⋅+n n a a 111113131(1)1221+++∴+=+⇒=+n n n na a a a , 所以:11⎧⎫+⎨⎬⎩⎭n a 是首项为:1112+=a ,公比:32=q 的等比数列; 既有:122121213132212()2232--------+=⋅⇒=⇒=-n n n n n n n n n n a a a 若用待定系数法:11121311131()3222+++=⇒=⋅+⇒+=++n n n n n n na a x x a a a a a11131313112222+++=+⇒=+n n n n x x x a a a a 与原式子对应得1=x ,然后的方法同上;习题:已知1132n n n n a a a a ++⋅=-且11a =,求:n a四、求前n 项和S n 的方法(1)错位相减求和主要适用于等差数列和等比数列乘积的数列的前n 项和;或者是等差与等比的商的前n 项和;(是商的时候,适当转变一下就变成了乘积形式)。