数列知识点常用结论

数列知识点常用结论
数列知识点常用结论

数列知识点及常用结论

一、等差数列

(1)等差数列的基本公式

①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差) ()n m a a n m d =+- (从第m 项m a 开始为等差)

()n m n m n m a a nd a a n m d a a d n m -=??

=+-??-=?-?

②前n 项和公式:11()(1)22

n n n a a n n S na d +-=

=+ (2)证明等差数列的法方

①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)?{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )?{}n a 为等差数列 ③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ?{}n a 为等差数列 即:通项公式位n 的一次函数,公差d p =,首项1a p q =+

④前n 项和公式法:2

n S pn qn =+ (p , q 为常数) ?{}n a 为等差数列

即:关于n 的不含常数项的二次函数

(3)常用结论

①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列.

②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +. 特别的,当n+m=2k 时,得n m a a +=2k a

③在等差数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等差数列,且公差为(k+1)d(例如:1a ,4a ,7a ,10a ??????仍为公差为3d 的等差数

列)

④若数列{}n a 为等差数列,则记12k k S a a a =++??????+,2122k k k k k S S a a a ++-=++??????+,3221223k k k k k S S a a a ++-=++??????+,则k S ,2k k S S -,32k k S S -仍成等差数列,且公差为2k d

⑤若n S 为等差数列{}n a 的前n 项和,则数列{}n

S n

也为等差数列. ⑥ 11,(1)

,(2)

n n n S n a S S n -=?=?

-≥? 此性质对任何一种数列都适用

⑦求n S 最值的方法:

I: 若1a >0,公差d<0,则当10

k k a a +≥??≤?时,则n S 有最大值,且k S 最大;

若1a <0,公差d>0,则当10

k k a a +≤??

≥?时,则n S 有最小值,且k S 最小;

II :求前n 项和2

n S pn qn =+的对称轴,再求出距离对称轴最近的正整数k ,

当n k = 时,k S 为最值,是最大或最小,通过n S 的开口来判断。

二、等比数列

(1)等比数列的基本公式

①通项公式:1

1n n a a q -= (从第1项1a 开始为等比)

n m

n m a a q -= (从第m 项m a 开始为等差)

②前n 项和公式:1(1)

,(1)1n n a q S q q

-=

≠-,1,(1)n S na q == (2)证明等比数列的法方

①定义法:对任意的n ,都有1(0)n n n a qa a +=≠?

1

n n

a q a +=(q ≠0) ?{}n a 为等比数列

②等比中项法:2

11n n n a a a +-=(11n n a a +-≠0)?{}n a 为等比数列 ③通项公式法:1

(,0n n a aq a q -=是不为的常数)?{}n a 为等比数列

(3)常用结论

①若数列{}n a ,{}n b 为等比数列,则数列1

{

}n a ,{}n k a ,2{}n a ,21{}n a -,{}n n a b {}n n

a b (k 为非零常数) 均为等比数列.

②若m+n=p+q (m , n , p , q ∈*N ),则n m a a =p q a a .

特别的,当n+m=2k 时,得n m a a =2

k a

③在等比数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等比数列,且公比为1

k q

+ (例如:1a ,4a ,7a ,10a ??????仍为公比3

q 的等比数列)

④若数列{}n a 为等差数列,则记

12k k S a a a =++??????+,2122k k k k k S S a a a ++-=++??????+,3221223k k k k k S S a a a ++-=++??????+,

则k S ,2k k S S -,32k k S S -仍成等比数列,且公差为k

q

三、求任意数列通项公式n a 的方法

(1)累加法:若n a 满足a n+1=a n +f(n)利用累加法求:n a

12132431()()()()n n n a a a a a a a a a a -=+-+-+-+??????+-

例题:若11=a ,且12+=+n n a a n ,求:n a

练习题:若数列n a 满足1120++--=n n n a a ,且10=a

(2)累乘法:若n a 满足1()+=?n n a f n a 利用累乘法求:n a

324

11231

(

)()()()n n n a a a a a a a a a a -=?????? 例题:在数列{a n }中,1111

,2++==n n n a a a n

,求:n a .

练习题:在数列{a n }中,11a =且1n n a na +=,求:n a (提示:123......!n n ???=)

(3)递推公式中既有n S ,又有n a ,用逐差法

11n n n S a S S -?=?

-≥? n=1

 n 2

特别注意:该公式对一切数列都成立。

(4)若n a 满足1,()+=+≠n n a pa q p q ,则两边加:1

=

-q

x p ,在提公因式P ,构造出一个等比数列,再出求:n a

例题:已知数列{}n a ,满足:121+=+n n a a ,且11=a ,求:n a

习题1:已知数列{}n a 满足:131+-=n n a a 且11=a ,求:n a

习题2:已知数列{}n a 满足:12a =,且n n S a n +=,求:n a

(5)若n a 满足1++=+n k n n a pa p ,则两边同时除以:1+n p ,构造出一个等差数列,

再求出:n a

例题:已知n a 满足:11=a 1122-+=+n n n a a ,求:n a 解:111122222-++=+?

=+n n n n n n n a a a a ,既有:11

222

+-=n n n n a a

所以:2??

????

n n a 是首项为:1122=a ,公差12=d 的等差数列

11(1)2222=+-?=∴n n

a n n 所以:1222

-=?=?n

n n n a n

习题1:已知1133++-=n n n a a 且11=a ,求:n a

习题2:已知1

1232n n n a a -+=+?且11a =,求:n a

(六)待定系数法:若{}n a 满足以下关系:

()1n n a ka f n +=+ 都可用待定系数法转变成一个等比数列来:

温馨提示:提k ,对()f n 待定系数

例题1:已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式. 解:11152(5)235++++?=+??=-?n n n n n n n a x a x a a x ,与原式对应得,1=-x

1

1

1155

2(5)25

++++--=-?=-∴n n n

n n n n

n a a a a 所以:{}5-n n a 是首项1151-=a ,公比2=q 的等比数列 既有:115252---=?=+n n n n n n a a

例题2:已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式. 解:11123(2)322++++?+=+?+?=+?+n n n n n n n a x y a x y a a x y ,

与原式对应得:5,2==x y

1

1

11522

52

23(

522)3

522+++++?++?+=+?+?=+?+∴n n n

n n n n

n a a a a

所以:{}522+?+n n a 是首项为:1152213+?+=a ,公比3=q 的等比数列

既有:11522133133522--+?+=??=?-?-n n n n n n a a

(七)颠倒法:若{}n a 满足:1n

n n C a a a C

+?=

+,用颠倒法;

11111n

n n

n n n n

n n n C a a C a C a a C a C a C a C a C a

++?+=

?==+=++??? 所以:

1111n n a a C +-=,所以:1{}n a 是以首项为:11a ,公差1

d C

=的等差数列

例题1:已知122

n

n n a a a +?=

+,且12a =,求:n a

例题2:已知1133n n n n a a a a ++?=-,且11a =,求:n a

(八)倒数换元法:若数列{}n a 满足:1+?=

?+n

n n A a a B a C

,则颠倒变成

111n n n n B a C C B a A a A a A

+?+==?+? 然后再用两边加:

1-q

p 或者待定系数法既可求出1??????

n a ,再颠倒就可得到:{}n a 例题:若数列{}n a 满足:123

+=

+n

n n a a a ,且11=a ,求:n a 解:1121311322++=

?=?++n n n n n a a a a a ,两边加:1得:11313

122

++=?+n n a a 111

11313

1(1)1221+++∴

+=+?=+n n n

n

a a a a , 所以:11??+?

???

n a 是首项为:1112+=a ,公比:3

2=q 的等比数列;

既有:122

121213132212()2232

--------+=??=?=-n n n n n n n n n n a a a

若用待定系数法:11121311131

()3222+++=

?=?+?+=++n n n n n n n

a a x x a a a a a

11131313112222

+++=+?=+n n n n x x x a a a a 与原式子对应得1=x ,然后的方法同上;

习题:已知1132n n n n a a a a ++?=-且11a =,求:n a

四、求前n 项和S n 的方法

(1)错位相减求和

主要适用于等差数列和等比数列乘积的数列的前n 项和;或者是等差与等比的商的前n 项和;(是商的时候,适当转变一下就变成了乘积形式)。既:设n

a 为等差数列,n

b 为等比数列,求:n n a b ?或

n n a b 的前n 项和常用此方法(n n

a

b 都转变为乘积形式)

例题1:已知数列2n n a =,数列{}n b 的前n 项和22n S n n =+,求数列{}n n a b ?的前

n 项和n T

例题2:求数列31

2n n

n a +=的{}n n a b ?的前n 项和n S

习题1:求:23124272...(32)2n n S n =?+?+?++-?

习题2:设数列1

(21)

3

n n n a ++=,求n a 的前n 项和n S

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

数列知识点及常用结论

数列知识点及常用结论 一、等差数列 (1)等差数列的基本公式 ①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差) ()n m a a n m d =+- (从第m 项m a 开始为等差) ()n m n m n m a a nd a a n m d a a d n m -=?? =+-??-=?-? ②前n 项和公式:11()(1)22 n n n a a n n S na d +-= =+ (2)证明等差数列的法方 . ①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)?{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )?{}n a 为等差数列 ③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ?{}n a 为等差数列 即:通项公式位n 的一次函数,公差d p =,首项1a p q =+ ④前n 项和公式法:2 n S pn qn =+ (p , q 为常数) ?{}n a 为等差数列 即:关于n 的不含常数项的二次函数 (3)常用结论 < ①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列. ②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +. 特别的,当n+m=2k 时,得n m a a +=2k a ③在等差数列{}a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

数列知识点及常用结论

数列知识点及常用结论 一、等差数列 (1)等差数列的基本公式 ①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差) ()n m a a n m d =+- (从第m 项m a 开始为等差) ()n m n m n m a a nd a a n m d a a d n m -=?? =+-??-=?-? ②前n 项和公式:11()(1)22 n n n a a n n S na d +-= =+ (2)证明等差数列的法方 ①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)?{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )?{}n a 为等差数列 ③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ?{}n a 为等差数列 即:通项公式位n 的一次函数,公差d p =,首项1a p q =+ ④前n 项和公式法:2 n S pn qn =+ (p , q 为常数) ?{}n a 为等差数列 即:关于n 的不含常数项的二次函数 (3)常用结论 ①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列. ②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +. 特别的,当n+m=2k 时,得n m a a +=2k a ③在等差数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等差数列,且公差为(k+1)d(例如:1a ,4a ,7a ,10a ??????仍为公差为3d 的等差数列)

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

数列知识点及常用结论

数列知识点及常用结论 -、等差数列 (1)等差数列的基本公式 ①通项公式:a^ a i (n - 1)d (从第1项印开始为等差) a n = a m - (n- m)d (从第m项a m开始为等差) 比代二nd a n=a m+( n-m)d=仁a n-a m d = ---- — m L.n ②前n项和公式:皿且2訂务 2 2 (2)证明等差数列的法方 ①定义法:对任意的n,都有a ni -a. =d(d为常数)二{a.}为等差数列 ②等差中项法:2a n^a n■ a n 2(n,N )= {a n}为等差数列 ③通项公式法:a n=pn+q (p , q为常数且p z 0)u {a n}为等差数列 即:通项公式位n的一次函数,公差d = p,首项a^ p q 2 ④前n项和公式法:S n = p n +qn (p , q为常数)={a n}为等差数列 即:关于n的不含常数项的二次函数 (3)常用结论 ①若数列{a n}, {b n}为等差数列,则数列{a n k} , {kLa n} , {a n - b n}, {ka n b} (k , b为非零常数)均为等差数列. ②若m+n=p+q (m, n, p, q N*),贝U a. a m=a p a q. 特别的,当n+m=2k时,得a n' a m= 2a k

③在等差数列{a n}中,每隔k(k ? N*)项取出一项,按原来的顺序排列,所得的数列仍 为等差数列,且公差为(k+1)d(例如:a1, a4, a7, a10 仍为公差为3d的等差数列) ④若数列{a*}为等差数列,则记2 =6 ? a?山. 宀比,S2k -S k二a k i ? a k 2宀.... 宀a2k, 2 S3k _S2^a2k 1 a2k 2 .... ' a3k,则S k , Sk , S k 仍成等差数列,且公差为k d S ⑤若S n为等差数列{a n}的前n项和,则数列{」}也为等差数列. n f S|,( n = 1) ⑥a n二此性质对任何一种数列都适用 ! S n - S二,(n-2) ⑦求S n最值的方法: a兰0 I:若a i>0,公差d<0,则当彳时,则S n有最大值且S k最大; (A卑兰0 N _ 0 若a i<0,公差d>0,则当时,贝V S n有最小值,且S k最小; I a k i 一0 II :求前n项和S n pn ? qn的对称轴,再求出距离对称轴最近的正整数k , 当n二k时,S k为最值,是最大或最小,通过S n的开口来判断。 二、等比数列 (1)等比数列的基本公式 ①通项公式:n 1 a n =aq (从第1项a i开始为等比) a二a q (从第m项a开始为等差) ②前n项和公式: —,(q ~1),Sfq-1) (2)证明等比数列的法方 ①定义 法:对任意的n,都有a n 1 = qa n(a n = 0)= 色」=q (q = 0)= {a n}为等比数列a n

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

数列知识点总结及题型归纳总结

数列知识点总结及题型归纳总结

高三总复习----数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数 列; 数列中的每个数都叫这个数列的项。记作n a ,在数 列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… 数列①的通项公式是n a = n (n ≤7,n N + ∈), 数列②的通项公式是n a = 1n (n N + ∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表 示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,1.4,

1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一 个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常 数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系: 1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和3 22+=n s n ,求数列}{n a 的通

数列知识点总结及题型归纳

数 列 一、数列的概念 (1 项叫第1项(或首项)第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a (1)(2)2010(2例如:①:1 ,2 ,②:4131211,,,说明: ①{}n a 表示数列,n a 的通项公式; ② 同一个数列的(1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一 个数集的映射。从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 n a 来代替()f n ,其图象是一 . 有穷数列和无穷数、 … … 和n S 与通项n a 的关系: 322 +=n ,求数列}{n a 的通项公式 2项起,每一项与它的d 表示。用递推公式表示为1)。 = (1)n d +-; d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64

2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B ) 3.等差数列,12-=n a n 题型三、等差中项的概念: 定义:如果a ,A ,b 2 a b A += a ,A , b 成等差数列?A (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a A .120 B .D .75 2.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B.2 C.4 D.8 题型四、等差数列的性质: ()n m a a n m d =+-, 且m n p q +=+,则 n 。 ) 127...a a a +++= (D )n n n 项和,已知23a =, 611a =,则7S 等于( )

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

数列全章知识点总结

数列知识点题型方法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n = ∈+,则在数列{}n a 的最大项为__(125); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为___(n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数 列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是(A ) A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = 210n +;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 8 33 d <≤ 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2n n n S na d -=+。如(1)数列 {}n a 中,*11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和15 2n S =-,则13a =-,10n =; (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答:2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、 d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率 为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数 列。

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

高中数列知识点总结(很实用!!)

第二章 数列 复习要点 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列, 公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组1 00n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由100 n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1 +=n n a a S S 偶奇 .

三角数列知识点梳理

三角函数知识点总结 1. 角的概念的推广 (1) 终边相同的角:所有与α角终边相同的角(连同α角在)可以用式子k ?360?α,k ∈Z 来表示。 与α角终边相同的角的集合可记作:{β|β k ?360?α,k ∈Z}或{β|β2k πα,k ∈Z}。 ※ 角的集合表示形式不是唯一的;终边相同的角不一定相同,相同的角一定终边相同。 (2) 象限角:角的顶点与坐标轴原点重合,角的始边与x 轴的非负半轴重合,角的终边落在第几象限,就称这个角为第几象限的角。 象限角 集合表示 象限角 集合表示 第一 象限 ??????∈+<

坐标轴 ? ?????∈=Z k k x x ,π21 2. 弧度制 (1) 1弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。 (2) 度数与弧度数的换算: ①180? π弧度; ②180 1π = ?弧度; ③1弧度 O ?? ? ??π180。 (3) 有关扇形的一些计算公式: ①R =α; ②R S 2 1 = ; ③221 R S α=; ④C (α2)R ; ⑤)sin (2 1 2αα-=-=?R S S S 扇形 弓。 3. 同角三角函数的基本关系 (1) 商数关系: αα αtg =cos sin ;(2) 平方关系:sin 2αcos 2 α1, 4. 三角函数的诱导公式:“奇变偶不变(2 π 的奇数倍还是偶数倍),符号看象限(原三角函数名)”。 5. 两角和与差的三角函数公式 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; β αβ αβαtg tg tg tg tg 1)(±= ± (变形:)1()(βαβαβαtg tg tg tg tg ?±=±)。 6. 倍角、半角公式 (1) 二倍角公式: sin2α2sin αc os α,c os2αc os 2αsin 2α2c os 2α112sin 2α,α -α = α2 tg 1tg 22tg ; 7. 倍角、半角公式的功能 (1) 并项功能:1±sin2α(sin α±c os α)2 (类比:1c os2α2c os 2α,1c os2α2sin 2α); (2) 升次功能:c os2αc os 2αsin 2α2c os 2α1 1 2sin 2α; R

相关文档
最新文档