模拟式控制器

合集下载

REX-C100 系列 模拟式温度控制器 说明书

REX-C100 系列 模拟式温度控制器 说明书

Notes:Make sure that this Instruction Manual is always readily available to personnel who use the REX-C100 series.The contents of the Instruction Manual are subject to change without notice. If you have any questions regarding the manual,contact one of our sales people, our nearest sales office, or the place where you have purchased the controller.1.PRODUCT CHECKCheck whether the delivered product is as specified by referring to the following model code list.OModel codeC100 QQQ - Q ~ QQÎ Ï Ð Ñ Ò ÓÎControl actionÓSecond alarm [ALM2]F : PID action [Reverse action]N : No second alarmD : PID action [ Direct action]A : Deviation high alarm *2B : Deviation low alarm *2ÏInput typeC : Deviation high / low alarm *2See input range table “Model code” page 9D : Band alarmE : Deviation high alarm *3ÐInput rangeF : Deviation low alarm *3See input range table “Model code” page 9G : Deviation high / low alarm *3H : Process high alarm *2ÑControl output [OUT]J : Process low alarm *2M : Relay contact K : Process high alarm *3V : Voltage pulseL : Process low alarm *38 : Current 4 to 20mA DCP : Heater break alarm (CTL-6)G : Trigger (for triac driving) *1S : Heater break alarm (CTL-12)R : Control loop break alarm *4ÒFirst alarm [ALM1]N : No first alarm*1When control output is trigger output A : Deviation high alarm *2for triac driving, only the first alarm isB : Deviation low alarm *2available.C : Deviation high / low alarm *2*2Without hold action.D : Band alarm*3With hold actionE : Deviation high alarm *3*4As control loop break alarm, only eitherF : Deviation low alarm *3the first alarm or second alarm is G : Deviation high / low alarm *3selected.H : Process high alarm *2J : Process low alarm *2CConfirm that power supply voltage is alsoK : Process high alarm *3the same as that specified when ordering.L : Process low alarm *3R : Control loop break alarm *4Accessories C Mounting brackets (2 pcs.)CInstruction manual(1 copy)REX-C100SERIESINSTRUCTION MANUALFig. 1Fig. 22.MOUNTING •DimensionsUnit : mm (inch)* Dimensions in inches are shown for reference•Mounting proceduresThickness of panel board:1 to 5mm or 5 to 9mm (0.04 to 0.20 inch or 0.20 to 0.35 inch)uWhen the controllers are mounted on panel with 1 to 5mm in thickness ÎMake a rectangular cutout corresponding to thenumber of controllers to be mounted on panel by referring to the panel cutout dimensions.ÏSince the mounting brackets are already installed onthe controller, insert the controller into the panel from the panel front without removal of the brackets (Fig. 1).uWhen the controllers are mounted on panel with 5 to 9m in thickness ÎRemove the mounting brackets from the controllerwith a slotted screwdriver.ÏEngage each mounting bracket with holes markedwith “5.9" on the housing (Fig. 2) and then insert the controller into the panel from the panel front.OCautions for mountingMo untingbracketAvoid the following location where the controller is mounted.C Location where ambient temperature is more than 50E C (122E F) or less than 0E C (32E F).C Location where humidity is high.C Location where corrosive gas is generated.C Location where strong vibration and shock exist.C Location where flooding and oil splash exist.C Location where much dust exists.CLocation where inductive disturbance is large and otherlocation where bad influence is exerted on electric instrument.3.WIRING•Rear terminalsNotes1.Terminals which are not used according to the controller type are all removed.2.For thermocouple input, no metal piece is attached to terminal No. 10. Instead, the temperature compensationelement in the internal assembly is projected through a hole at terminal No. 10.Do not damage the above temperature compensation element when the internal assembly is removed from the case.O Cautions for wiring(1)Conduct input signal wiring away from instrument, electric(3)For wiring, use wires conforming to domesticequipment power and load lines as such as possible to avoid standard of each country.noise induction.(4)About 5 to 6 sec. are required as the(2)Conduct instrument power wiring so as not to be influenced preparation time of contact output duringby noise from the electric equipment power.power ON. Use a delay relay whenthe outputIf it is assumed that a noise generation source is located near line, is used for an external interlock circuit.the controller and the controller is influenced by noise, use anoise filter (select the filter by checking instrument power(5)The figures below show the REX-C100 circuit supply voltage.)configuration. When connecting wires, notethat the power, input, MCU and output circuitsC Sufficient effect may not be obtained depending on the are isolated independently, while the inside offilter. Therefore, select the filter by referring to its the input and outputcircuits are not isolated.frequency characteristic, etc.ÎFor instrument power wiring, if it is assumed that noiseexerts a bad influence upon the controller, shorten thedistance between twisted power supply wire pitches.(The shorter the distance between the pitches, the moreeffective for noise reduction).ÏInstall the noise filter on the panel which is alwaysgrounded and minimize the wiring distance between thenoise filter output side and the controller power terminals.Otherwise, the longer the distance between output sideand instrument power terminals, the less effective for REX-C100 circuit configurationnoise.ÐDo not install fuses and / or switches on the filter outputsignal since this may lessen filter effect.WIRING AND NAME OF PARTS•Wiring exampleREX-C100F GG-M*-~2N-HA OF PARTSÑSet-value increment keyC Used when the number needs to be increasedfor set-value change.ÒMeasured-value (PV) display unit [Green]C Displays measured-value (PV)C Displays a parameter symbol in the parametersetting mode.ÓSet-value (SV) display unit [Orange]C Displays set-value (SV)C Displays set-value corresponding to theparameter symbol displayed on the measured-value (PV) display unit.ÎSet (SET) keyC The set-value thus changed is enteredÔControl output (OUT) lamp [Green]C Parameters in the parameter setting mode are C Lights up when the control output is turnedON.selected in due order.C Can select PV / SV display mode, SV settingÕAuto-tuning (AT) lamp [Green]mode, and parameter setting modes.C Flashes during auto-tuning.ÏSetting digit shift keyÖFirst alarm (ALM1) lamp [Red]C Used when the cursor (brightly lit) is moved to C Lights up when the first alarm is turned ON.the digit whose number needs to be changed for C When a control loop break alarm (LBA) is set-value change.selected as the first alarm, this lamp lights up.ÐSet-value decrement key×Second alarm (ALM2) lamp [Red]C Used when the number needs to be decreased C Lights up when second alarm is turned ON.for set-value change.C When either a heater break alarm (HBA) orcontrol loop break alarm (LBA) is selected asthe second alarm, this lamp lights up.5.OPERATION•Calling-up procedure of each mode:Press the key.Input type code / input range displayThis controller, with the power turned ON, displaysautomatically the input type code on the measured-value (PV)display unit and the input range, on the set-value (SV) displayunit, respectively.Example : For a controller with the K thermocouple inputtype and input range from 0 to 1372E C.ÎDisplays the input type code.: Indicates input abbreviation.unit. ( : E F)input type code table).ÏDisplays the input range.< Input type code >Code Input Type Code Input typeRSBW5Re/W26RePLIIPt100JPt100PV / SV display modeC Displays measured-value (PV) on the measured-value(PV) display unit and set-value (SV) on the set-value (SV)display unit. Usually the control is set to this modeexcepting that the set-value (SV) and/or the parameter set-value are changed.PV / SV display modeC Pressing the key lights the least significant digit onvalue (SV).In order to register the value whose setting was changed,always press the key after the value is changed.sec. in the PV / SV display or SV setting mode, thecontroller is set to the parameter setting mode.C Parameters in the parameter setting mode changes in dueorder every time the key is pressed (See page 6).and keys are pressed.C In order to register the value whose setting was changed,press the key after change to shift to the nextsec.•When no key is operated for more than 1 minute.•Parameter typesThe following parameter symbols are displayed one by one every time the key is pressed.Current transformer input (CT)Setting is not possible.Set heater break alarm value byreferring to this value.Display input value from thecurrent transformerCTSecond alarm Set alarm set-value of second alarm.AL2Control loopbreak alarm (LBA)0.0 to 200.0 min.Set control loop break alarmset-value.Cannot be set to “0.0".8.0LbAAuto-tuning (AT)0 : Auto-tuning end or stop1 : Auto-tuning startTurns the auto-tuningON/OFF.ATUIntegral time (I)1 to 3600 sec.Eliminates offset occurringcontrol is performed. I actionturns OFF with I set to “0".240IAnti-reset windup (ARW)1 to 100% of proportional band.Prevents overshoot and/orundershoot caused by integralaction. I action turns OFFwith this action set to “0".100ArSet data lock 0100 : No set data locked (Allparameters changeable)0101 : Set data locked (All parametersnot changeable)0110 : Only the set-value (SV) ischangeable with the set data locked.Performs set data changeenable / disable.0100LCK* The second alarm (or first alarm), heater break alarm, control loop break alarm parameter symbols are not simultaneously displayed. * Heater break alarm is not available on a current output.C Parameter setting procedure Setting set-value (SV)Following is an example of setting the set-value (SV) to 200E C. (PV : 30E C)Î Set to the set modeÏ Shift of the digit brightly litÐ Set-value increase or decrease ÑSet-value entryPress the key to Press the key to shift Press the key to set “2".After finishing the setting,enter the SV setting mode.the digit which lights brightlypress thekey. All ofController returns to the PV/SV display mode.Example : When a temperature of 199E C is changed to 200E C.Set-value increase or decreasePress the key to shift the digit brightly lit to the least significant digit. Press the key to change “9" to “0", therebyobtaining 200E C. The same applies to set-value decrease.Example : For changing 200 to -100.Minus (-) value settingPress the key to shift the digit brightly lit to the hundreds digit. Press the key to decrement figures in order of÷ 0 ÷ -1.Setting parameters other than set-value In the PV/SV display modeIn the parameter setting modeKey operational cautions CFor this controller, the value whose setting was changed is not registered. It is registered for the first time it is shifted to the next parameter by pressing the key.setting mode, set data lock is activated.In this case, change the “” parameter set-value to “0100".the parameter setting mode.Press thekey by the required number of times untilkey after the setting is finished in the parameters).When no parameter setting is required, return the controller to the PV/SV display mode.¬Pay attention to the following when the parameters described below are set.Auto-tuning (AT)C Prior to starting the auto-tuning function, end all the parameter settings other than PID and control loop break alarm(LBA).Heater break alarm (HBA)C Set heater break alarm set-value to a value about 85% current transformer input value. However, when power supplyvariations are large, set the alarm to a slightly smaller value.In addition, when two or more heaters are connected in parallel, set the alarm to a slightly larger value so that it is activated even with only one heater is broken. (However, within the value of a current transformer input value).C When the heater break alarm set-value is set to “0.0" or the current transformer is not connected, the heater breakalarm is turned ON.Control loop break alarm (LBA)C Usually set the set-value of the LBA to a value twice the integral time (I).O Set data locking procedureThis controller is provided with a set data locking function which disables each set-value change by the front key and also the auto-tuning function. Use this function for malfunction prevention at the end of each setting.C Press the key by the required number of(PV) display unit.C Press the , and keys to set the•Display at error occurrence< Heater break alarm >Display CauseMeasure(Lights)C Controlled object trouble (No power supply,incorrect wiring, etc).C Sensor trouble (Sensor disconnected, shorted, etc).C Actuator trouble (Weld relay contact, incorrectwiring, relay contact not closed, etc).C Output circuit trouble (Weld internal relay contact,relay contact not opened or closed, etc).C Input circuit trouble (The measured-value does notchange even if input changes, etc).Control system check(Error cause cannot bespecified)Check whether there is no effectby disturbances (Other heatsource, etc).LBA set time check< Overscale, Underscale >Input type Input display rangeTCK-30 to +1372E C -30 to +2502E F J-30 to +1200E C -30 to +2192E F R, S-30 to +1769E C -30 to +3216E F B-30 to +1820E C -30 to +3308E F E-30 to +1000E C -30 to +1832E F T-199.9 to +400.0E C -199.9 to +752.0E F N-30 to +1300E C -30 to +2372E F PLII-30 to +1390E C -30 to +2534E F L-30 to +800E C -30 to +1600E F U-199.9 to +600.0E C -199.9 to +999.9E F W5Re/W26Re-30 to +2320E C -30 to +4000E FRTDPt100JPT100-199.9 to +649.0E C Pt100-199.9 to +999.9E F。

单元二(任务二)DDZ-Ⅲ型电动调节器的组成和使用解读

单元二(任务二)DDZ-Ⅲ型电动调节器的组成和使用解读

上海石化工业学校
(二)单元组合式控制仪表的发展阶段
SPA
DDZ-Ⅰ型:电子管组成 DDZ-Ⅱ型:晶体管组成 DDZ-Ⅲ型:集成电路组成
DDZ是“电动单元组合”的汉语拼音首字母。 D---电动(Diandong)
第二个 D---单元(Danyuan)
Z----组合(Zuhe)
上海石化工业学校
1.DDZ型电动调节器
能和使用要求,将整个仪表划分成能独立实现某种功能
的若干单元,各单元之间用统一信号联系。各单元不同 组合,构成复杂程度各异的自动检测和控制系统。 ③组装式:它是在单元组合式仪表的基础上发展起来的 成套仪表装置,它的基本组件是一块块具有不同功能的 功能模件。所谓功能模件是指各种线路构成的标准电路 板,每种电路板具有一种或数种功能,并有同一规格尺
(2)按结构原理分类:
①基地式:基地式仪表是将传感器、控制器、显示器、记录
仪及其辅助装置组装在一个壳体内,形成能独立测量、显示、
控制和记录的仪表。它具有结构简单、可靠、经济性好等优点。 但其通用性差,控制范围窄,在使用中受到很大的限制。
上海石化工业学校
SPA
②单元组合式:根据控制系统中各个控制环节的不同功
1-双针垂直指示器 2-外给定指示灯
3-内给定设定轮
4-自动—软手动—硬手动 切换开关 5-硬手动操作杆 6-输出指示器
7-软手动操作扳键
DDZ-Ⅲ 型调节器自动-软手动-硬手动切换开关;2—双针垂直指示器;3—内外给定设定 轮;4—输出指示器;5—硬手动操作杆;6—软手动操作键;7—外给定指 示灯;8—阀位指示器;9—输出记录指示;10—位号牌;11—输入检测插 孔;12—手动输出插孔
上海石化工业学校
SPA

模拟式控制器

模拟式控制器

将变速器送来的1-5V.DC的测量信号,与1-5V.DC的给 定信号进行比较得到偏差信号,然后再将其偏差信号 进行PID运算,输出4-20mA.DC信号,传递给执行器, 实现对过程参数的自动控制。
5.3 DDZ—Ⅲ型电动控制器的组成与操作 Ⅲ
图4-3-13 DTL-3110型调节器正面图 1—自动-软手动-硬手动切换开关;2—双针垂直指示器;3—内给定设定轮; 4—输出指示器;5—硬手动操作杆;6—软手动操作板键;7—外给定指示 灯;8—阀位指示器;9—输出记录指示;10—位号牌;11—输入检测插孔; 12—手动输出插孔
13
5.3 模拟式控制仪表
(3)Ⅲ型仪表统一由电源箱供给24V DC电源,并有蓄电 型仪表统一由电源箱供给24V DC电源 电源, 池作为备用电源。 池作为备用电源。
优点
各单元省掉了电源变压器,没有工频电源进入 单元仪表,既解决了仪表发热问题,又为仪表的 防爆提供了有利条件。 在工频电源停电时备用电源投入,整套仪表在 一定时间内仍可照常工作,继续进行监视控制作 用,有利于安全停车。
12
5.3 模拟式控制仪表
(2)广泛采用集成电路,可靠性提高,维修工作量减少。 广泛采用集成电路,可靠性提高,维修工作量减少。
优点
由于集成运算放大器均为差分放大器,且输入 对称性好,漂移小,仪表的稳定性得到提高。 由于集成运算放大器有高增益,因而开环放大 倍数很高,这使仪表的精度得到提高。 由于采用了集成电路,焊点少,强度高,大大 提高了仪表的可靠性。
15
DDZ-II型仪表 - 型仪表 调节器) (包括调节器) 包括调节器
DDZ一III型仪表 一 型仪表 调节器) (包括调节器) 包括调节器
III型仪表优点 型仪表优点

3.2 模拟及数字控制器

3.2 模拟及数字控制器

它吸收了整体式和模块式PLC的优点,其基本单元、扩展 单元等高等宽,它们不用基板,仅用扁平电缆连接,紧密拼装 后组成一个整齐的体积小巧的长方体,而且输入、输出点数的 配置也相当灵活。
按功能分类:
低档PLC,中档PLC,高档PLC
特点:
• 可靠性高、抗干扰能力强。 • 编程简单、使用方便。 • 功能完善、通用型强。 • 设计安装简单、维护方便。 • 体积小、质量轻、能耗低。
二、数字式控制器的基本构成
1.硬件电路
图4-19 数字式控制器的硬件电路
(1)主机电路 主机电路是数字式控制器的核心,用于实现仪表数据运算
处理及各组成部分之间的管理。 (2)过程输入通道
过程输入通道包括模拟量输入通道和开关量输入通道,模拟量输 入通道用于连接模拟量输入信号,开关量输入通道用于连接开关量输 入信号。 (3)过程输出通道
当低于液位下限时,下限开关与上限开关均断开,0.00与0.01常闭 触点闭合,使输出继电器10.00导通,注水电磁阀打开;一旦超过下限 液位,虽然0.01触点断开,但由于10.00触点的自锁作用,仍保证注水 阀打开,直至上限检测开关闭合,0.00的常闭触点断开,输出继电器 10.00断开,注水阀关闭。
三、XMGA5000/XMGA6000系列数字控制器
可以接收四个模拟输入 信号,两个模拟量输出信号, 1个开关量输入,三个继电器 输出和先进的专家自整定PID 控制算法。
XMGA5000/XMGA6000的外形图
优点
功能强大;
能用于单回路的简单控制系 统与复杂的串级控制系统;
控制精度高、使用方便灵活;
小型PLC分为C120和C200H两种,C120最多可扩 展256点I/O,是紧凑型整体结构。

工业自动化仪表与过程控制

工业自动化仪表与过程控制

您的位置:考核练习〉〉习题浏览选择题1一、单项选择题1、由于节流装置造成流束局部收缩,在流束截面积最小处的静压力()(分数:1分)A. 最高B。

最低C. 为平均压力D. 无关正确答案:B2、定值调节系统是一个()调节系统(分数:1分)A. 开环B. 闭环C. 随动D。

比值正确答案:B3、在热电阻的测量电路里,有热电阻和测量仪表,在对于接线的二线制、三线制、四线制的说法里,不正确的是()。

(分数:1分)A. 在二线制里,导线不宜过长B. 二线制电路连接仪表与三线制无误差区别C。

在三线制里测量精度比二线制高D。

在高精度测量的场合,采用四线制方式正确答案:B4、若设计Smith补偿控制,则Smith补偿器模型的取决于(分数:1分)A. 扰动通道的传递函数B。

被控过程的数学模型C。

控制器的模型D. A和B正确答案:D5、下面说法正确的是(). (分数:1分)A。

定值控制系统是按扰动量的大小进行调节的B. 采用前馈-反馈调节的优点是利用前馈调节的及时性和反馈调节的静态准确性C。

定值控制系统是开环调节,前馈调节是闭环调节D. 前馈调节是按测量与给定的偏差大小进行调节的正确答案:B6、。

用一台量程为0~1Mpa、精度为1。

5级的压力表来测量锅炉的蒸汽压力,工艺要求其测量误差不超过0.011 Mpa,此仪表精度显然不符合要求,应该选为精度为( )的另一台仪表. (分数:1分)A. 2.0B. 1。

5C。

1。

0D. 2。

57、根据对象特性来选择控制规律时,对于控制通道滞后小,负荷变化不大,工艺参数不允许有余差的系统,应当选用()控制。

(分数:1分)A。

比例B. 比例积分C。

比例微分D. 微分正确答案:B8、常见的被控参数包括流量、()、压力、温度等。

(分数:1分)A. 液位B。

转速C。

偏差D. 锅炉正确答案:A9、在控制流程图里,T作为被检测量时,一般表示() (分数:1分)A. 液位B。

温度C。

压力D. 流量正确答案:B10、下列哪项不属于过程控制系统的常见被控对象(分数:1分)A。

[第4讲]-自动化仪表及过程控制-第四章-过程控制仪表

[第4讲]-自动化仪表及过程控制-第四章-过程控制仪表

第四章过程控制仪表⏹本章提要1.过程控制仪表概述2.DDZ-Ⅲ型调节器3.执行器4.可编程控制器⏹授课内容第一节概述✧过程控制仪表---是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。

在自动控制系统中,过程检测仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。

过程控制仪表包括调节器(也叫控制器)、执行器、操作器,以及可编程调节器等各种新型控制仪表及装置。

过程控制仪表的分类:●按能源形式分类:液动控制仪表、气动控制仪表和电动控制仪表。

●按结构形式分类:基地式控制仪表、单元组合式控制仪表、组件组装式控制仪表、集散控制装置等。

[基地式控制仪表]以指示、记录仪表为主体,附加某些控制机构而组成。

基地式控制仪表特点:—般结构比较简单、价格便宜.它不仅能对某些工艺变量进行指示或记录,而已还具有控制功能,因此它比较适用于单变量的就地控制系统。

目前常使用的XCT系列动圈式控制仪表和TA系列简易式调节器即属此类仪表。

[单元组合式控制仪表]将整套仪表划分成能独立实现一定功能的若干单元,各单元之间采用统一信号进行联系。

使用时可根据控制系统的需要,对各单元进行选择和组合,从而构成多种多样的、复杂程度各异的自动检测和控制系统。

特点:使用灵活,通用性强,同时,使用、维护更作也很方便。

它适用于各种企业的自动控制。

广泛使用的单元组合式控制仪表有电动单元组合仪表(DDZ型)和气动单元组合仪表(QD2型)。

[组件组装式控制仪表]是一种功能分离、结构组件化的成套仪表(或装置)。

它以模拟器件为主,兼用模拟技术和数字技术。

整套仪表(或装置)在结构上由控制柜和操作台组成,控制柜内安装的是具有各种功能的组件板,采用高密度安装,结构紧凑。

这种控制仪表(或装置)特别适用于要求组成各种复杂控制和集中显示操作的大、中型企业的自动控制系统。

单元二(任务二)DDZ-Ⅲ型电动调节器的组成和使用

单元二(任务二)DDZ-Ⅲ型电动调节器的组成和使用

上海石化工业学校
SPA
1
上海石化工业学校
SPA
三、控制仪表经历三个发展阶段
(一)基地式控制仪表:以指示、记录仪表为主体。 (二)单元组合式仪表中的控制单元:各单元不同
组合,构成复杂程度各异的自动检测和控制系统。
(三)以微处理器为基元的控制装置
四、控制仪表的分类:
上海石化工业学校
SPA
一、按信号形式分:模拟式控制仪表,数字式控制仪表 1.模拟式控制仪表(使用模拟信号进行工作) (1)按能源形式分类:气动式、电动式、液动式。
上海石化工业学校
SPA
五、 控制仪表(调节器)的特点
1. 作用:对检测仪表的测量信号进行控制,以便控制 生产过程的自动地正常进行,使被控变量达到预期的 要求。
2.发展趋势:
与计算机技术相结合,数字化、集成化、模块化、
表格化、通信功能和自诊断功能,方便控制大规模连
续自动化生产。
六、模拟式控制器
上海石化工业学校
SPA
(1) DDZ-Ⅲ型仪表的特点
①采用国际电工委员会(IEC)推荐的统一标准信号。 输出信号为4-20mA DC,控制室联络信号为1-5V DC,信号 电压和电流间转换电阻为250欧。 ②广泛采用集成电路,可靠性提高,维修工作量减少。 ③Ⅲ型仪表统一由电源箱供给24V DC电源,并有蓄电池作 为备用电源。 ④整套仪表可构成安全火花型防爆系统。 ⑤自动和手动的切换以双向无扰动的方式进行的。
SPA
在模拟式控制器中,所传送的信号形式为连续的模拟信 号。目前应用的模拟式控制器主要是电动控制器。
(一)基本构成原理及部件
1.比较环节
将给定信号与测量信号 进行比较,产生一个与它们 的偏差成比例的偏差信号。

2模拟控制器AnalogControllers

2模拟控制器AnalogControllers

气阻R (a)固定气阻
(b) 可调电阻
(b)可调气阻
关系式 R=U/I 传递函数 U(s)/I(s)=R 式中 U——电阻两端电压;
I——流过电阻的电流。
关系式 R=△P/M 传递函数 R=△P(s)/M(s) 式中 △P——气阻两端压降
M——气体的质量流量
检测控制仪表与装置
—控制仪表—
电容C
基本元件
力 矩 平 衡 式 PI 调 节器原理图
检测控制仪表与装置
—控制仪表—
力矩平衡式PI调节器方框图
检测控制仪表与装置
—控制仪表—
Mi( s ) AlH ( Pm( S ) PS ( S )
l0k
P0 (S )
C
M i (s)
1 Al H
1 (
Rf
R f RP
RP R f RP

1
)
1
RAM 存放输入数据、显示数据、运算的中间值和结果值。
CTC的定时功能用来确定控制器的采样周期,并产 生串行通信接口所需的时钟脉冲;
计数功能主要用来对外部事件进行计数。
检测控制仪表与装置
—控制仪表—
I/O接口是CPU同过程输入、输出通道等进 行数据交换的器件, 它有并行接口和串行接口 两种:
并行接口具有数据输入、输出双向传送和位 传送的功能,用来连接过程输入、输出通道,或 直接输入、输出开关量信号。
·上限幅和上限幅
·四则运算 ·逻辑运算 ·开平方运算
·折线逼近法函数运算 ·一阶惯性滞后处理 ·纯滞后处理
·取绝对值运算
·移动平均值运算
·脉冲输入计数与积算脉冲输出 ·控制方式切换
检测控制仪表与装置
—控制仪表—
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K I -积分增益
KD -微分增益
➢ P运算规律
具有比例控制规律的控制器称为P控制器,其输出信号 与∆输y入偏差 (当ε给定值不变时,偏差就是被控变量测量 值的变化量)之间成比例关系。
y Kp 或 W (s) Kp
1. 比例度
在实际调节器中常用比例度(或称比例带)δ来表示比 例作用的强弱。
max min 100%
变化范围是相等的,因此,控制精度可以表示为:
1 100% KPKI
控制精度是控制器的重要指标,表征控制器消除余差的能 力。KI(或K )愈大,控制精度愈高,控制器消除余差的 能力也愈强。
➢ PD运算规律
具有比例微分控制规律的控制器称为PD控制器。对PID控 制器而言,当积分时间TI→∞时,控制器呈PD控制特性。
出之和。其中
K Pε
∆yI= ∆yP ∆yP
比例作用输出
0
t
TI
积分作用输出
图1-3 理想PI控制器的阶跃响应特性
yP KP
yI
KP
TI
t
✓ 积分时间TI的意义
TI愈短,积分速度愈快,积分作用就愈强。
✓ 积分时间TI的测定
当积分作用输出与比例作用输出相等时,
yI yP

KP
TI
t
KP
可得 TI t
s
lim y(t) y() lim s W (s) x(s) lim s W (s) lim W (s)
t
s0
s0
s
s0
其中 x 为阶跃输入时,其传函为 。
s
1 1
响应曲线初值和终值为:
y(0)
lim
s
W
(s)
lim
s
K
P
1
TI s 1
KP
1 1
K ITI s
y()
lim
s0
W
给定值 xs 偏差∆ε 控制器 ∆y
测量值
xi
变送器
扰动 对象
被控变量
图1-1 单回路控制系统方框图
控制器的运算规律和组成方式
一、概述
控制器的运算规律是指控制器的输出信号 ∆y 和输入偏 差之间 ∆ε 随时间变化的规律。
对输入偏差 ∆ε 而言,由于其初值为零,因此∆ε =ε
习惯上称 ε> 0 为正偏差; ε< 0 为负偏差 ε> 0 时 ∆y> 0 称控制器为正作用; ε> 0 时 ∆y< 0 为反作用
(s)
lim
s0
K
P
1
TI s 1
lim
s0
K
P
KITI s K I KITI s 1
KPKI
K ITI s
✓ 积分增益KI
在阶跃偏差信号作用下,实际PI输出变化的最终值 (假定偏差很小,输出值未达到控制器的输出限幅 值)与初始值(即比例输出值)之比:
KI
y() y(0)
当积分增益KI为无穷大时,可以证明实际PI控制器 的输出就相当于理想输出。实际上,PI控制器的KI 一般都比较大,可以认为实际PI控制器的特性是接 近于理想PI控制器特性的。
✓ 控制点偏差和控制精度
当控制器的输出稳定在某一值时,测量值与给定值之间 存在的偏差通常称为控制点偏差。当控制器的输出变化 为满刻度时,控制点的偏差达最大,其值可以表示为:
max
ymax ymin KPKI
控制点最大偏差的相对变化值即为控制器的控制精度
(∆)。考虑到控制器输入信号(偏差)和输出信号的
3. P控制器一般用于干扰较小, 允许有余差的系统中。
➢ PI运算规律
具有比例积分控制规律的控制器称为PI控制器。对PID控 制器而言,当微分时间TD=0时,控制器呈PI控制特性。
1. 理想PI控制器的特性
y
KP
(
1 TI
t
dt)
0

W (s)
Y (s) E(s)
KP
(1
1 TI s
)
积分作用能消除余差。只要有偏差存在,积分作用的输出就 会随时间不断变化,直到偏差消除,控制器的输出才稳定下 来。
0
t
图1-4 实际PI控制器 的阶跃响应特性
也可以利用拉氏变换中的初值定理和终值定 理确定阶跃响应输出的初值和终值,从而确定阶 跃响应曲线的大致形状。阶跃响应的初值定理和 终值定理分别为:
y(t) |t0
y(0)
lim s W (s) x(s)
s
lim s W (s)
s
s
lim W (s)
积分作用一般不单独使用,而是和比例作用组合起来构成PI 控制器。由于积分输出是随时间积累而逐渐增大的,故控制 作用缓慢,造成控制不及时,使系统稳定裕度下降。
✓ 阶跃响应特性
ε
在阶跃偏差信号作用下,理想PI控制
器的输出随时间变化的表达式为:
0
t
y
KP(1 Fra bibliotekt TI
)
∆y
可表示为比例作用输出与积分作用输
基本运算规律有比例(P)、积分(I)和微分(D)三 种,各种控制器的运算规律均由这些基本运算规律组合 而成。
二、PID控制器的运算规律
➢ PID运算规律的表示形式
1. 理想PID控制器
微分方程表示法 传递函数表示法
y
KP
(
1 TI
t
dt
0
TD
d
dt
)
微分时间
比例增益
积分时间
2. 实际PID控制器
也就是说,积分作用的输出值变化到等于比例作用的输出值 所经历的时间就是积分时间。
2. 实际PI控制器的特性
实际PI控制器的传递函数为: ε
1 1
W (s) KP 1
TI s 1
0
t
K ITI s
∆y
✓ 阶跃响应特性
在阶跃信号作用下,实际PI控制 器的输出为:
K Pε
K PKεI
t
y KP[1 (KI 1)(1 e KITI )]
y ymax ymin
max min ymax ymin 1 100%
KP
δ与Kp成反比。δ越小,Kp越大,比例作用就越强。
2. P控制特性 ε
0
t
∆y
K Pε
0
t
图1-2 P控制器的阶跃响应特性
1. P控制的特点:反应快,控制 及时,但系统有余差。
2. 比例度与系统稳定性的关系: δ越小,系统控制越强,但并 不是δ越小越好。δ减小将使 系统稳定性变差,容易产生振 荡。
1 1 TD s
Y (s)
W (s)
E(s)
KPF 1
FTIs F 1 TD
s
KITIs KD
F -控制器变量之间的相互干扰系数,可表示为 F 1 TD
TI
K PF -考虑相互干扰系数后的实际比例增益 F TI -考虑相互干扰系数后的实际积分时间
T D -考虑相互干扰系数后的实际微分时间 F
第一章 模拟式控制器
第一节 控制器的运算规律和构成方式 第二节 基型控制器 第三节 特种控制器和附加单元
控制器将来自变送器的测量值与给定值相比较后 产生的偏差进行比例 (P)、积分(I) 、微分(D) 运 算,并输出统一标准信号, 去控制执行机构的动作, 以实现对温度、压力、流量、液位及其他工艺变量 的自动控制。
相关文档
最新文档