重庆中考数学21题专题训练

合集下载

2021年重庆中考数学第21题数据统计分析综合试题集

2021年重庆中考数学第21题数据统计分析综合试题集

2021年重庆中考数学第21题数据统计分析综合试题集数学试题1(育才2021级初三上定时训练二)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5 a7 45%八年级7.5 8 b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?2(育才2020级初三下中考模拟5月份)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).3(育才2020级初三下中考模拟二)甲、乙两校各有200名体训队队员,为了解这两校体训队员的体能,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个学校各随机抽取20名体训队员.进行了体能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据:按如下分数段整理、描述这两组样本数据:成绩x人数40≤x≤49 50≤x59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤10 甲校0 0 1 11 7 1乙校 1 0 0 7 10 2(说明:成绩80分及以上为体能优秀,70~79分为体能良好,60~69分为体能合格,60分以下为体能不合格)分析数据:两组样本数据的平均数、中位数、众数如表所示:学校平均数中位数众教优秀率甲78.3 77.5 b40%乙78 a81 c问题解决:(1)本次调查的目的是;(2)直接写出a,b,c的值;(3)得出结论:通过以上数据的分析,你认为哪个学校的体训队学生的体能水平更高,并从两个不同的角度说明推断的合理性.4(育才2020级初三下中考模拟三)炎热的夏天来临之际.为了调查我校学生消防安全知识水平,学校组织了一次全校的消防安全知识培训,培训完后进行测试,在全校2400名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.【收集数据】男生15名学生测试成绩统计如下:68,72,89,85,82,85,74,92,80,85,76,85,69,78,80女生15名学生测试成绩统计如下:(满分100分)82,88,83,76,73,78,67,81,82,80,80,86,82,80,82按如下分数段整理、描述这两组样本数据:组别频数65.5~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5男生 2 2 4 5 1 1女生 1 1 5 6 2 0 【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差男生80 x80 45.9女生80 82 y24.3 在表中:x=.y=;(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中消防安全知识合格的学生有人;(3)通过数据分析得到的结论是女生掌握消防安全相关知识的整体水平比男生好,请从两个方面说明理由.5(育才2019级初三下中考模拟一)为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中D部分的圆心角是度;请补全条形统计图;(2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?6(育才2020级初三下中考模拟二练习)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 10080 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 7080 95 75 100 90整理数据成绩x(分)60≤x≤70 70<x≤80 80<x≤90 90<x≤100甲小区 2 5 a b乙小区 3 7 5 5分析数据统计量平均数中位数众数甲小区85.75 87.5 c乙小区83.5 d80应用数据(1)填空:a = ,b = ,c = ,d = ;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.7(双福育才2020级初三下中考模拟一)重庆双福育才中学初中语文组深知人生最具好奇心和幻想力、创造力的时期是中学时代,经研究,为我校每一个初中生推荐一本中学生素质教育必读书《朝花夕拾》.经过一学期的阅读和学习,为了了解学生阅读效果,我们从初一、初二的学生中随机各选20名,对《朝花夕拾》此书阅读效果做测试.通过测试,我们收集到20名学生得分的数据如下:通过整理,两组数据的平均数、中位数、众数和方差如表:某同学将初一学生得分按分数段6070,7080,8090,90100x x x x ≤<≤<≤<≤<,绘制成频数分布直方图,初二同学得分绘制成扇形统计图,如图(均不完整)请完成下列问题:(1)初一学生得分的众数m=______;初二学生得分的中位数n=______;(2)补全频数分布直方图;扇形统计图中,70≤x<80所对用的圆心角为______度;(3)经过分析______学生得分相对稳定(填“初一”或“初二”);(4)你认为哪个年级阅读效果更好,请说明理由.8(育才2020级初三下入学测试)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取一部分学生进行测试.整理测试成绩,得到如下频数分布表和频数分布直方图:成绩(分)频数频率A组:75<x≤80 6 0.15B组:80<x≤85 a0.2C组:85<x≤90 16 0.4D组:90<x≤95 6 0.15E组:95<x≤100 4 b其中最低分为76分,满分率为5%,C组成绩为:89 89 86 88 89 89 89 86 89 90 89 89 88 88 89 87回答下列问题:(1)学校共抽取了名同学进行测试,他们的成绩的中位数为,众数为,极差为;(2)其中频数分布表中a= ,b= ,并补全频数分布直方图;(3)若成绩大于85分为优秀,估计该校七年级1500名学生中,达到优秀等级的人数.9(育才2020级初三上第二次月考)为了让师生更规范地操作教室里的多媒体设备,重庆八中现教中心制作了“教室多媒体设备培训”视频,并在电视课期间进行播放。

2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)

2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)

2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.2(育才2020级初三下中考模拟5月份)为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.(1)该同学最多可购买多少个甲型小元件?(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.3(育才2020级初三下中考模拟二)为满足社区居民健身的需要,区政府准备采购若干套健身器材免费提供给社区,经考察,康乐公司有甲,乙两种型号的健身器材可供选择.(1)康乐公司2017年每套甲型健身器材的售价为2万元,经过连续两年降价,2019年每套售价为1.28万元,求每套甲型健身器材售价的年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装康乐公司甲,乙两种型号的健身器材共80套,采购专项经费总计不超过95万元,采购合同规定:每套甲型健身器材售价为1.28万元,每套乙型健身器材售价为1.4(1﹣n)万元.①甲型健身器材最多可购买多少套?②按照甲型健身器材购买最多的情况下,安装完成后,若每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,区政府计划支出9万元进行养护,问该计划支出能否满足一年的养护需要?4(育才2020级初三下中考模拟三)随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24元/千克,芒果的售价为20元/千克,总销售额为4320元.(1)求水果店第一次售出苹果和芒果各多少千克;(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.5(育才2019级初三下中考模拟一)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.6(育才2020级初三下中考模拟二练习)每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值7(双福育才2020级初三下中考模拟一)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国蔓延。

2021学年初中数学三年全国经典中考题21统计与概率(含答案解析)

2021学年初中数学三年全国经典中考题21统计与概率(含答案解析)

专题21统计与概率学校:___________姓名:__________班级:___________考号:___________一、单选题1.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.42.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变3.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5 B.5,4 C.5,5 D.5,64.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144 B.众数是141 C.中位数是144.5 D.方差是5.4 5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:那么一周内该班学生的平均做饭次数为()A.4 B.5 C.6 D.76.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A.92分,96分B.94分,96分C.96分,96分D.96分,100分7.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定8.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()A.甲B.乙C.丙D.丁9.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,310.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多11.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.1612.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.1213.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.1314.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101二、填空题15.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.16.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18.从1-,2,3-,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数abyx=,则这些反比例函数中,其图象在二、四象限的概率是______.19.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.20.如图,在44⨯的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.22.某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).(1)统计表中,a=________, b =________;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.23.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5; ②图1和图2是两幅不完整的统计图. 根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整; (2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.24.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤,并绘制出如下不完整的统计图.(1)求被抽取的学生成绩在C :18090x ≤<组的有多少人; (2)所抽取学生成绩的中位数落在哪个组内;(3)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人. 25.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=______,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?26.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.27.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.28.某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?29.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜(1)请利用表格分别求出小伟、小梅获胜的概率(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性30.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了多少名学生? (2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为12A A 、),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的3本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.31.某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=__________;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是__________分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.32.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.33.某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.34.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表x<1.62.02.0 2.4x<x<2.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;x<范围内的有(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8多少人?35.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)参考答案1.D2.C3.C4.B5.C6.B7.D8.C9.A10.C11.C12.C13.A14.D15.14.16.乙17.2 518.2 319.1 320.1 621.这个游戏对双方公平,理由见解析22.(1)96,96;(2)3 523.(1)40人,补全图形见解析;(2)480人;(3)5 624.(1)24人;(2)C组;(3)150人.25.(1)12,补全频数分布图见解析;(2)480只;(3)该村贫困户能脱贫.26.(1)120,12,36;(2)详见解析;(3)62527.(1)200名;(2)见解析;(3)树状图见解析,4528.(1)200 ;(2)图见解析;(3)25,36; (4)3000人 29.(1)P (小伟胜)=23,P (小梅胜)=13;(2)游戏不公平;修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜. 30.(1)200;(2)见解析;(3)约1008名;(4)16. 31.(1)见解析;(2)20%;(3)84.5分;(4)672人 32.(1)80;(2)见解析;(3)72º;(4)图表见解析,5933.(1)50,36%;(2)见解析;(3)能获奖.理由见解析;(4)2334.(1)8a =,20b =;(2)2.0 2.4x <;(3)详见解析;(4)240人 35.(1)176,164;(2)157.4°。

专题21 图形的相似(共29题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题21 图形的相似(共29题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题21图形的相似(29题)一、单选题1.(2023·重庆·统考中考真题)如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A .4B .9C .12D .13.5【答案】B 【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF 、成位似关系,则位似中心的坐标为()A .()1,0-B .()0,0C .()0,1D .()1,0【答案】A【分析】根据题意确定直线AD 的解析式为:1y x =+,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:()()1,2,3,4A D ,设直线AD 的解析式为:y kx b =+,将点代入得:243k b k b=+⎧⎨=+⎩,解得:11k b =⎧⎨=⎩,∴直线AD 的解析式为:1y x =+,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当0y =时,1x =-,∴位似中心的坐标为()1,0-,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3.(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''' ,则顶点C '的坐标是()A .()2,4B .()4,2C .()6,4D .()5,4【答案】C 【分析】直接根据位似图形的性质即可得.【详解】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4.(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A .6.4mB .8mC .9.6mD .12.5m【答案】B 【分析】根据镜面反射性质,可求出ACB ECD ∠=∠,再利用垂直求ABC EDC ∽,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB BD ⊥,CD DE ⊥,CF BD⊥90ABC CDE \Ð=Ð=°.根据镜面的反射性质,∴ACF ECF ∠=∠,∴9090ACF ECF ︒-∠=︒-∠,ACB ECD ∴∠=∠,ABC EDC ∴ ∽,AB BC DE CD∴=. 小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,1.6m AB ∴=,2m BC =,10m CD =.1.6210DE ∴=.8m DE ∴=.故选:B.A .23B .352【答案】B 【分析】根据平行线分线段成比例得出1322CM AD ==,进而可得MB =进而在Rt BGM △中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,∴2AD BC AB AF FG ===+=∵EF AB ⊥,∴AD EF BC∥∥∴2DE AF EM FB ==,ADE CME ∽△△∴2AD DE CM EM==,则1322CM AD ==,∴332MB CM =-=,∵BC AD ∥,∴GMB GDA ∽,∴312BG MB在Rt BGM △中,2222335322MG MB BG ⎛⎫=+=+= ⎪⎝⎭,故选:B .【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6.(2023·湖北黄冈·统考中考真题)如图,矩形ABCD 中,34AB BC ==,,以点B 为圆心,适当长为半径画弧,分别交BC ,BD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 长为半径画弧交于点P ,作射线BP ,过点C 作BP 的垂线分别交,BD AD 于点M ,N ,则CN 的长为()A .10B .11C .23D .4【答案】A 【分析】由作图可知BP 平分CBD ∠,设BP 与CN 交于点O ,与CD 交于点R ,作RQ BD ⊥于点Q ,根据角平分线的性质可知RQ RC =,进而证明Rt BCR Rt BQR ≌,推出4BC BQ ==,设RQ RC x ==,则3DR CD CR x =-=-,解Rt DQR 求出43QR CR ==.利用三角形面积法求出OC ,再证OCR DCN ∽,根据相似三角形对应边成比例即可求出CN .【详解】解:如图,设BP 与CN 交于点O ,与CD 交于点R ,作RQ BD ⊥于点Q ,矩形ABCD 中,34AB BC ==,,∴3CD AB ==,∴225BD BC CD =+=.由作图过程可知,BP 平分CBD ∠,定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分CBD ∠,通过勾股定理解直角三角形求出CR .7.(2023·四川内江·统考中考真题)如图,在ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若12AC =,则DH 的长为()A .1B .32C .2D .3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE DE AD ==,BF GF CG ==,AH HF =,DH 是AEF △的中位线,易证BEF BAC ∽△△,得EF BE AC AB =,解得4EF =,则122DH EF ==.【详解】解:D 、E 为边AB 的三等分点,EF DG AC ∥∥,BE DE AD ∴==,BF GF CG ==,AH HF =,3AB BE ∴=,DH 是AEF △的中位线,12DH EF ∴=,EF AC ∥,,,BEF BAC BFE BCA ∴∠=∠∠=∠BEF BAC ∴∽△△,∴EF BE AC AB=,即123EF BE BE =,解得:4EF =,114222DH EF ∴==⨯=,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.A.36,55⎛⎫⎪⎝⎭B.【答案】D【分析】由题意可得点C在以点分别过C、M作CF OA⊥,取得最大值时,OM取得最大值,结合图形可知当最大值,然后分别证BDO【详解】解:∵点C为平面内一动点,∴点C在以点B为圆心,3 2在x轴的负半轴上取点D ⎛- ⎝∵35OA OB==,∴AD OD OA =+=952,∴23OA AD =,∵:1:2CM MA =,∴23OA CM AD AC ==,∵OAM DAC ∠∠=,∴OAM DAC ∽,∴23OM OA CD AD ==,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵35OA OB ==,OD =352,∴BD =()222235153522OB OD ⎛⎫+=+= ⎪ ⎪⎝⎭,∴9CD BC BD =+=,∵23OM CD =,∴6OM =,∵y 轴x ⊥轴,CF OA ⊥,∴90DOB DFC ∠∠==︒,∵BDO CDF ∠∠=,∴BDO CDF ∽,∴OB BD CF CD =即153529CF =,解得1855CF =,同理可得,AEM AFC ∽,∴23ME AM CF AC ==即231855ME =,解得1255ME =,A .①②B .【答案】D 【分析】根据正方形的性质和三角形全等即可证明用角平分线的性质和公共边即可证明明ADE DGE ∽△△推出DE 出AM 和CM 长度,最后通过面积法即可求证最小值,从而证明②不对.【详解】解:ABCD 为正方形,BC CD AD ∴==,ADE ∠BF CE = ,DE FC ∴=,()SAS ADE DCF ∴ ≌.DAE FDC ∠=∠∴,90ADE ∠=︒ ,90ADG FDC ∴∠+∠=︒,90ADG DAE ∴∠+∠=︒,90AGD AGM ∴∠=∠=︒.AE 平分CAD ∠,DAG MAG ∴∠=∠.AG AG = ,()ASA ADG AMG ∴ ≌.DG GM ∴=,90AGD AGM ∠=∠=︒ ,AE ∴垂直平分DM ,故①正确.由①可知,90ADE DGE ∠=∠=︒,DAE GDE ∠=∠,ADE DGE ∴ ∽,DE AE GE DE∴=,2DE GE AE ∴=⋅,由①可知DE CF =,2CF GE AE ∴=⋅.故③正确.ABCD 为正方形,且边长为4,4AB BC AD ∴===,∴在Rt ABC △中,242AC AB ==.由①可知,()ASA ADG AMG ≌,4AM AD ∴==,424CM AC AM ∴=-=-.由图可知,DMC 和ADM △等高,设高为h ,=ADM ADC DMC S S S ∴- ,h=由④可知ADM△的高2∴=.22DN'故②不正确.综上所述,正确的是①③.故选:D.【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点10.(2023·内蒙古赤峰·统考中考真题)延长线上的点Q重合.DE=,则下列结论,①DQ EQA.①②③B.②④【答案】A【分析】由折叠性质和平行线的性质可得QDF CDF QEF ∠=∠=∠,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出4MQ AM ==,再求出BQ 即可判断②正确;由CDP BQP △∽△得53CP CD BP BQ ==,求出BP 即可判断③正确;根据EF QE DE BE≠即可判断④错误.【详解】由折叠性质可知:,5CDF QDF CD DQ ∠=∠==,∵CD AB ∥,∴CDF QEF ∠=∠.∴QDF QEF ∠=∠.∴5DQ EQ ==.故①正确;∵5DQ CD AD ===,DM AB ⊥,∴4MQ AM ==.∵541MB AB AM =-=-=,∴413BQ MQ MB =-=-=.故②正确;∵CD AB ∥,∴CDP BQP △∽△.∴53CP CD BP BQ ==.∵5CP BP BC +==,∴31588BP BC ==.故③正确;∵CD AB ∥,∴CDF BEF ∽△△.∴55358DF CD CD EF BE BQ QE ====++.∴813EF DE =.∵58QE BE =,∴EF QE DE BE≠.A.①②③④⑤B【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解: 四边形ABCDDAE ABF∴∠=∠=︒,90⊥,AF DE∴∠+∠=︒,BAF AED90,∠+∠=︒BAF AFB90∴∠=∠,AED BFA()ABF AED∴△≌△AAS∴=,故①正确,AF DE将ABF△沿AF翻折,得到BM AF∴⊥,⊥,∵AF D EBM DE ∴∥,故②正确,当CM FM ⊥时,90CMF ∠=︒,90AMF ABF ∠=∠=︒ ,180AMF CMF ∴∠+∠=︒,即,,A M C 在同一直线上,45MCF ∴∠=︒,9045MFC MCF ∴∠=︒-∠=︒,通过翻折的性质可得45HBF HMF ∠=∠=︒,BF MF =,∴HMF MFC ∠=∠,HBC MFC ∠=∠,,BC MH HB MF ∴∥∥,∴四边形BHMF 是平行四边形,BF MF = ,∴平行四边形BHMF 是菱形,故③正确,当点E 运动到AB 的中点,如图,设正方形ABCD 的边长为2a ,则AE BF a ==,在Rt AED △中,225DE AD AE a AF =+==,,45AHD FHB ADH FBH ∠=∠∠=∠=︒ ,AHD FHB ∴△∽△,122FH BF a AH AD a ∴===,22533AH AF a ∴==,90AGE ABF ∠=∠=︒ ,AGF ABF ∴△∽△,555AE EG AG a AF BF AB a ∴====,二、填空题11【答案】()3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设()1,A m n ∵ABC 与111A B C △位似,原点O 是位似中心,且113AB A B =.若()9,3A ,∴位似比为31,∴933311m n ==,,解得3m =,1n =,∴()13,1A 故答案为:()3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13.(2023·吉林长春·统考中考真题)如图,ABC 和A B C ''' 是以点O 为位似中心的位似图形,点A 在线段OA '上.若12OA AA '=::,则ABC 和A B C ''' 的周长之比为__________.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA '= ::,:1:3OA OA '∴=,设ABC 周长为1l ,设A B C ''' 周长为2l ,ABC 和A B C ''' 是以点O 为位似中心的位似图形,1213l OA l OA ∴=='.12:1:3l l ∴=.ABC ∴ 和A B C ''' 的周长之比为1:3.故答案为:1:3.【答案】52【分析】四边形ABCD 是平行四边形,则由23AE EB =进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴,AB CD AB CD = ,∴,AEF CDF EAF DCF ∠=∠∠=∠∴EAF DCF ∽,【答案】6【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽,∴BD AB PQ AQ=∵40cm 20cm 12m AB BD AQ ===,,,∴2m 120640AQ BD PQ AB ⨯⨯===,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16.(2023·四川成都·统考中考真题)如图,在ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';③以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':④过点N '作射线DN '交BC 于点E .若BDE 与四边形ACED 的面积比为4:21,则BE CE的值为___________.【答案】23【分析】根据作图可得BDE A ∠=∠,然后得出DE AC ∥,可证明BDE BAC ∽△△,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得BDE A ∠=∠,【答案】5【分析】过点D 作DF AB ⊥等腰直角三角形,可得DF =AFD ACB ,可得DF BC =12CD =,即可求解.【详解】解:过点D 作DF ∵90ACB ∠=︒,3AC =,BC∴ABB ' 是等腰直角三角形,∴45ABB '∠=︒,又∵DF AB ⊥,∴45FDB ∠=︒,∴DFB △是等腰直角三角形,∴DF BF =,∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,即=10AD DF ,∵90C AFD ∠=∠=︒,CAB FAD ∠=∠,∴AFD ACB ,∴DF AF BC AC=,即3AF DF =,又∵=10AF DF -,∴10=4DF ,∴105=10=42AD ⨯,51=3=22CD -,∴52==512AD CD ,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18.(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】2或21+【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD=又∵M 为对角线BD 的中点,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,论是解决问题的关键.19.(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【答案】3104【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=︒,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =-,证明EFM EAB ∽,则FM ME AB BE =,即2332a a -=+,解得34a =,94DN CD CN =-=,由勾股定理得22DF DN NF =+,计算求解即可.【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =-,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a -=+,解得34a =,∴94DN CD CN =-=,【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知10,AD DC CG CE ===∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=︒∠=∠∴()AAS ADJ HCJ ≌,∴5CJ DJ ==,∴1EJ =,∵GI CJ ∥,∴HGI HCJ ∽,∴25GI GH CJ CH ==,∴2GI =,∴4FI =,∴()1152EJIF S EJ FI EF =+⋅=梯形;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21.(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,52EA ED ==.(1)ADE V 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.【答案】3;13【分析】(1)过点E 作EH AD ⊥,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到ADE V 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明()ASA ABF KEF ≌,得到EK 的长,进而得到KH 的长,再证明AHK ADG △∽△,得到KH AH GD AD=,进而求出GD 的长,最后利用勾股定理,即可求出AG 的长.【详解】解:(1)过点E 作EH AD ⊥,正方形ABCD 的边长为3,3AD ∴=,ADE 是等腰三角形,52EA ED ==,EH AD ⊥,1322AH DH AD ∴===,【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22.(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE PF +取得最小值时,AP PC的值是___________.【答案】27【分析】作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',此时PE PF +取得最小值,过点F '作AD 的垂线段,交AC 于点K ,根据题意可知点F '落在AD 上,设正方形的边长为a ,求得AK 的边长,证明AEP KF P '''△∽△,可得2KP AP '=',即可解答.【详解】解:作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',过点F '作AD 的垂线段,交AC 于点K ,由题意得:此时F '落在AD 上,且根据对称的性质,当P 点与P '重合时PE PF +取得最小值,设正方形ABCD 的边长为a ,则23AF AF a '==, 四边形ABCD 是正方形,45F AK '∴∠=︒,45P AE '∠=︒,2AC a=F K AF ''⊥ ,【答案】97 3【分析】过点A作AH⊥根据勾股定理求出AH6CE BC==,证明CD226 DE CE CD=+=【详解】解:过点A作则90AHC AHB ∠=∠=︒,∵5,6AB AC BC ===,∴132===BH HC BC ,∴224AH AC CH =-=,∵ADB CBD CED ∠=∠+∠,2ADB CBD ∠=∠,∴CBD CED ∠=∠,∴DB DE =,∵90BCD ∠=︒,∴DC BE ⊥,∴6CE BC ==,∴9EH CE CH =+=,∵DC BE ⊥,AH BC ⊥,∴CD AH ∥,∴~ECD EHA ,∴CD CE AH HE =,即649CD =,解得:83CD =,∴22228297633DE CE CD ⎛⎫=+=+= ⎪⎝⎭,∵CD AH ∥,∴DE CE AD CH=,即297633AD =,三、解答题(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 【答案】(1)见解析(2)185BD =【分析】(1)根据三角形高的定义得出角B B ∠=∠,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵BAC ∠∴90ADB ∠=︒,B C ∠+∠=∴90B BAD ∠+∠=︒,∴BAD C∠=∠∴23618105AB BD CB ===.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25.(2023·湖南·统考中考真题)如图,,CA AD ED AD ⊥⊥,点B 是线段AD 上的一点,且CB BE ⊥.已知8,6,4AB AC DE ===.(1)证明:ABC DEB ∽△△.(2)求线段BD 的长.【答案】(1)见解析(2)3BD =【分析】(1)根据题意得出90,90A D C ABC ∠=∠=︒∠+∠=︒,90ABC EBD ∠+∠=︒,则C EBD ∠=∠,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵,AC AD ED AD ⊥⊥,∴90,90A D C ABC ∠=∠=︒∠+∠=︒,∵CE BE ⊥,∴90ABC EBD ∠+∠=︒,∴C EBD ∠=∠,∴ABC DEB ∽△△;(2)∵ABC DEB ∽△△,∴AB AC DE BD=,∵8,6,4AB AC DE ===,∴864BD=,解得:3BD =.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26.(2023·四川眉山·统考中考真题)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长(1)求证:AF AB=;(2)点G是线段AF上一点,满足∠【答案】(1)见解析(2)6 5【分析】(1)根据平行四边形的性质可得即可解答;(2)通过平行四边形的性质证明AGH DCH△∽△,利用对应线段比相等,列方程即可解答.【详解】(1)证明: 四边形ABCDAB CD∴∥,AB CD=,EAF D∴∠=∠,AGH DCH ∴△∽△,GH AG CH DC∴=,设HG x =,则6CH CG GH x =-=-,可得方程268x x =-,解得65x =,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27.(2023·四川凉山·统考中考真题)如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB CB =,从而可证四边形ABCD 是菱形,即可得证;(2)可求6OB =,再证EBO BAO ∽ ,可得EO BO BO AO=,即可求解.【详解】(1)证明:CAB ACB ∠=∠ ,AB CB ∴=,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AC BD ∴⊥.(2)解: 四边形ABCD 是平行四边形,128OA AC ∴==,AC BD ^ ,BE AB ⊥,(1)求证:四边形AMCN 是平行四边形;(2)若AMCN 的面积为4,求ABCD Y 【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形四边形,进而得到:,AM CN AN ∥∥(2)连接,,HG AC EF ,推出ANH ANC S S ()1122ANH FMC ANC AMC S S S S S +=+=【详解】(1)证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点,∴11,22AE AB CD CG AE CG ===∥,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;(2)解:连接,,HG AC EF ,∵,H G 为,AD CD 的中点,∴1,2HG AC HG AC =∥,∴HNG CNA ∽,∴12HN HG CN AC ==,∴12ANH ANC S HN S CN == ,同理可得:12FMC AMC S S = ∴()11222ANH FMC ANC AMC AMCN S S S S S +=+== ,∴246AFCH ANH FMC AMCN S S S S =++=+= ,∵12AH AD =,∴212ABCD AFCH S S == .【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29.(2023·上海·统考中考真题)如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】见解析【分析】(1)先根据平行线的性质可得DAE ∠然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC ∠=∠得ABF CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.(2)证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠AFB CED ∠=∠⎧【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。

初中数学精品试题:中考专项第21、22、23题训练(1)

初中数学精品试题:中考专项第21、22、23题训练(1)

1.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.2.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.3.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,AD3BC4,求CF的长.4.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.6.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.8.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.9.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.10.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?11.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.12.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.13.小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?14.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.15.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为12时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.16.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.参考答案:1.解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,∴该三角形周长为偶数的概率是.2.解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,的对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.3.(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。

专题21不等式与不等式组(1) 中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)  中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·广东中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤2.(2020·广西河池中考真题)不等式组1224x x x +>⎧⎨-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.(2020·辽宁朝阳中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .94.(2020·辽宁铁岭中考真题)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .55.(2020·黑龙江鹤岗中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-6.(2020·内蒙古呼伦贝尔中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .77.(2020·内蒙古赤峰中考真题)不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( )A .B .C .D .8.(2020·内蒙古鄂尔多斯中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)9.(2020·云南中考真题)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-10.(2020·江苏宿迁中考真题)若a >b ,则下列等式一定成立的是( ) A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |11.(2020·辽宁沈阳中考真题)不等式26x ≤的解集是( ) A .3x ≤B .3x ≥C .3x <D .3x >12.(2020·云南昆明中考真题)不等式组1031212x x x +>⎧⎪⎨+-⎪⎩,的解集在以下数轴表示中正确的是( )A .B .C .D .13.(2020·四川眉山中考真题)不等式组121452(1)x x x x +≥-⎧⎨+>+⎩的整数解有( )A .1个B .2个C .3个D .4个14.(2020·四川雅安中考真题)不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .15.(2020·重庆中考真题)若关于x 的一元一次不等式组()21321? 2x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .016.(2020·重庆中考真题)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为( ) A .5 B .4C .3D .217.(2020·吉林长春中考真题)不等式23x +≥的解集在数轴上表示正确的是( ) A .B .C .D .18.(2020·湖南益阳中考真题)将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .19.(2020·海南中考真题)不等式21x -<的解集是( ) A .3x <B .1x <-C .3x >D .2x >20.(2020·广西玉林中考真题)把二次函数2(0)y ax bx c a =++>的图象作关于x 轴的对称变换 ,所得图象的解析式为2(1)4y a x a =--+,若()10m a b c -++≤,则m 的最大值为( )A .4-B .0C .2D .621.(2020·内蒙古中考真题)下列命题正确的是( )A .若分式242x x --的值为0,则x 的值为±2. B .一个正数的算术平方根一定比这个数小. C .若0b a >>,则11a ab b ++>. D .若2c ≥,则一元二次方程223x x c ++=有实数根.22.(2020·湖北黄石中考真题)不等式组13293x x -<-⎧⎨+≥⎩的解集是( )A .33x -≤<B .2x >-C .32x -≤<-D .3x ≤-23.(2020·四川宜宾中考真题)不等式组20211x x -<⎧⎨--≤⎩的解集在数轴上表示正确的是( )A .B .C .D .24.(2020·四川宜宾中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种25.(2020·山西中考真题)不等式组26041x x ->⎧⎨-<-⎩的解集是( )A .5x >B .35x <<C .5x <D .5x >-二、解答题26.(2020·西藏中考真题)解不等式组:122(1)6x x +<⎧⎨-⎩并把解集在数轴上表示出来.27.(2020·甘肃金昌中考真题)解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.28.(2020·江苏淮安中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-. ……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.29.(2020·辽宁抚顺中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?30.(2020·江苏苏州中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.31.(2020·广西河池中考真题)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg ;乙店的香蕉价格为5元/kg ,若一次购买6kg 以上,超过6kg 部分的价格打7折.(1)设购买香蕉xkg ,付款金额y 元,分别就两店的付款金额写出y 关于x 的函数解析式; (2)到哪家店购买香蕉更省钱?请说明理由.32.(2020·辽宁铁岭中考真题)某中学为了创设“书香校园”,准备购买,A B 两种书架,用于放置图书.在购买时发现,A 种书架的单价比B 种书架的单价多20元,用600元购买A 种书架的个数与用480元购买B 种书架的个数相同.(1)求,A B 两种书架的单价各是多少元?(2)学校准备购买,A B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?33.(2020·江苏泰州中考真题)(1)计算:11()602π-⎛⎫-+︒ ⎪⎝⎭(2)解不等式组:311442x x x x -≥+⎧⎨+<-⎩34.(2020·黑龙江鹤岗中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.35.(2020·内蒙古赤峰中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天36.(2020·江苏镇江中考真题)(1)解方程:23xx+=13x++1;(2)解不等式组:427 3(2)4x xx x+>-⎧⎨-<+⎩37.(2020·内蒙古鄂尔多斯中考真题)(1)解不等式组3(1)52(1)237(2)22x xxx-<+⎧⎪⎨--⎪⎩,并求出该不等式组的最小整数解.(2)先化简,再求值:(2211-211aa a a--+-)÷22a a-,其中a满足a2+2a﹣15=0.38.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.39.(2020·四川绵阳中考真题)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?40.(2020·江苏南通中考真题)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.41.(2020·辽宁营口中考真题)先化简,再求值:(41xx--﹣x)÷21xx--,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·山东烟台中考真题)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?43.(2020·黑龙江大庆中考真题)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%?至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.44.(2020·四川雅安中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)45.(2020·山东威海中考真题)解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩46.(2020·湖南永州中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元. (1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?47.(2020·湖北荆州中考真题)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(0m15<≤且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.48.(2020·湖北荆州中考真题)先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;49.(2020·宁夏中考真题)解不等式组:53(1)?21511?32x xx x--⎧⎪⎨-+-<⎪⎩①②50.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b定义为[]n b如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?51.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1140元;如果购买A 种物品45件,B 种物品30件,共需840元. (1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7000元,那么A 种防疫物品最多购买多少件?52.(2020·贵州毕节中考真题)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?53.(2020·内蒙古呼和浩特中考真题)(1)计算:22|1|3-⎛⎫- ⎪⎝⎭;(2)已知m是小于0的常数,解关于x的不等式组:41713142x xx m->-⎧⎪⎨-<-⎪⎩.54.(2020·湖南郴州中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案55.(2020·广东广州中考真题)解不等式组:212541 x xx x-+⎧⎨+<-⎩.56.(2020·广东深圳中考真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?57.(2020·内蒙古通辽中考真题)某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B 型打七五折,那么该专卖店至少需要准备多少货款?58.(2020·内蒙古通辽中考真题)用※定义一种新运算:对于任意实数m 和n ,规定23m n m n mn n =--※,如:2121212326=⨯-⨯-⨯=-※.(1)求()2-(2)若36m ≥-※,求m 的取值范围,并在所给的数轴上表示出解集.59.(2020·黑龙江穆棱朝鲜族学校中考真题)某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案? (3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.60.(2020·湖南娄底中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?61.(2020·陕西中考真题)解不等式组:362(5)4x x >⎧⎨->⎩62.(2020·江苏盐城中考真题)解不等式组:21134532x x x -⎧≥⎪⎨⎪-<+⎩.63.(2020·湖北省直辖县级单位中考真题)(1)先化简,再求值:22244422a a a a a a-+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.三、填空题64.(2020·四川攀枝花中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.65.(2020·湖南湘西中考真题)不等式组13121xx ⎧-⎪⎨⎪+≥-⎩的解集为______________.66.(2020·辽宁大连中考真题)不等式5131x x +>-的解集是______.67.(2020·辽宁鞍山中考真题)不等式组21321x x -≤⎧⎨-<⎩的解集为________.68.(2020·黑龙江鹤岗中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______.69.(2020·山东滨州中考真题)若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.70.(2020·四川绵阳中考真题)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.71.(2020·四川绵阳中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本) 72.(2020·江苏宿迁中考真题)不等式组120x x >⎧⎨+>⎩的解集是_____.73.(2020·四川凉山中考真题)关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是________________.74.(2020·广西中考真题)如图,数轴上所表示的x 的取值范围为_____.75.(2020·吉林中考真题)不等式317x +>的解集为_______.76.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件: (1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.77.(2020·宁夏中考真题)若二次函数22y x x k =-++的图象与x 轴有两个交点,则k 的取值范围是_____.78.(2020·贵州毕节中考真题)不等式362x x -<-的解集是_______.79.(2020·青海中考真题)分解因式:2222ax ay-+=________;不等式组24030xx-⎧⎨-+>⎩的整数解为________.。

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

押中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)专题诠释:实数、整式与三视图是中考必考题型。

在历年的中考中,主要以选择题的形式出现,内容较为简单,因此是中考数学中必须做对的题型。

考法上上主要以识记和理解的考察为主,区分不同的定义和运算规律,练出手感,保证全对!知识点一:锐角三角函数〖押题冲关〗1.(2023·山东济宁·统考二模)酒驾猛于虎,但很多人不以为是,为了加强人们对酒驾危害的认识,交警部门加大了对酒驾的检查力度,某市交警在2023年2月28日这天对本市各大主要交通路口进行车辆检查,如图,AC是该市解放路的一段,AE,BF,CD都是南北方向的街道,与解放路AC的交叉路口分别是A,B,C.已知出警点D位于点A的北偏东45∘方向、点B的北偏东30∘方向上,BD=2km,∠DBC=30∘.(1)求A、B的距离;(2)第一组交警负责路口A,求该组从出警点D到路口A的路程(行驶路线为D−C−B−A).(结果保留根号)2.(2023·湖北襄阳·统考模拟预测)小军与小明放学后看见楼前的小广场上有一架无人机正在定点拍摄小区全景,此时如图所示,小军在一楼B处测得无人机C的仰角∠CBE=60°,在楼顶A处的小明测得无人机C的仰角∠CAD=28°,他们所在的楼高约为120米,求此时无人机C离地面BE的高度.(参考数据:√3≈1.73,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(1)求点B到点C之间的距离(结果保留根号);5.(2023·浙江绍兴·统考一模)某次科学实验中,小王将某个棱长为10cm正方体木块固定于水平木板OM上,OB=50cm,将木板OM绕一端点O旋转40°至OM′(即∠MOM′=40°)(如图为该操作的截面示意图).(1)求点C到C′竖直方向上升高度(即过点C,C′水平线之间的距离);(2)求点D到D′竖直方向上升高度(即过点D,D′水平线之间的距离).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,(1)(2)题中结果精确到个位)6.(2023·河南新乡·统考二模)图1是一款摆臂遮阳篷的实物图,图2是其侧面示意图.如图2,点A,O为墙壁上的固定点,AO=1.5m,摆臂OB可绕点O旋转,旋转过程中遮阳篷AB可自由伸缩,篷面始终保持平整,当摆臂OB与墙壁垂直时,身高为1.65m的同学(MN=1.65m)站在遮阳篷下距离墙角1.2m(EN=1.2m)处,刚好不被阳光照射到,测得此时AB与摆臂OB的夹角∠ABO=45°,光线与水平地面EF的夹角∠BNF=71°,求AE的高度.(结果精确到0.1m.参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90,√2≈1.41)7.(2023·四川成都·统考二模)如图是一座人行天桥的示意图,已知天桥的高度CD=6米,坡面BC的倾斜角∠CBD=45°,距B点8米处有一建筑物NM,为了方便行人推自行车过天桥,市政府决定降低坡面BC的坡度,把倾斜角由45°减至30°,即使得新坡面AC的倾斜角为∠CAD=30°.若新坡面底端A处与建筑物NM之间需要留下至少3米宽的人行道,那么该建筑物是否需要拆除?请说明理由.(结果精确到0.1米;参考数据:√2≈1.14,√3≈1.73)8.(2023·江苏宿迁·统考二模)如图,在坡角α为30°的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为18米,求大树AB的高.(结果精确到0.1米,√2≈1.414,√3≈1.732)9.(2023·四川成都·统考二模)如图,为了测量河对岸A,B两点间的距离,数学综合实践小组在河岸南侧选定观测点C,测得A,B均在C的东偏北60°方向上,沿正东方向行走60米至观测点D,测得B在D的西偏北30°方向上,A在D的西偏北69°方向上.求A,B两点间的距离是多少米(精确到个位)?(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,sin51°≈0.78,cos51°≈0.63,tan51°≈1.23,√3≈1.73)10.(2023·安徽滁州·统考二模)某学校数学活动小组决定利用所学的解直角三角形知识测量校园内一棵树AB的高度.如图,他们在地面上C处测得树顶A的仰角为30°,再往树的方向前进20m至D处,测得仰角为60°,点C,D,B在同一直线上,求树高AB.(身高忽略不计,结果保留根号)知识点二:反比例和一次函数综合模块二〖押题冲关〗(1)求一次函数的表达式:(1)求一次函数和反比例函数的解析式;(1)求m,n的值及反比例函数的解析式;(1)求直线和双曲线的解析式及点B的坐标;(1)求m的值;(1)求k的值;(2)求△ODE的面积.(x<0)上,点B在x轴上.将7.(2023·四川南充·统考二模)如图,点A(m,1)在双曲线y=kx线段AB平移到CD,点C仍在双曲线上,点D在y轴上,OB=2OD=2.(1)求m和k的值;(2)直线AC与x轴交于E,与y轴交于F.求证:OE=2OF.8.(2023·河南洛阳·东方二中校考二模)如图,在平面直角坐标系中,一次函数y=k1x+b的的图象的两个交点为A(−1,3)和B.图象与反比例函数y=k2x(1)求反比例函数的关系式;=2;(2)若一次函数y=k1x+b与x轴交于点C,且ABBC①求出k1与b的值;的解集为__________;②直接写出不等式k1x+b>k2x(3)若点F是直线OA上一点,F点的横坐标为m,连接AF,BF,△ABF的面积记为S,当S=2时,请直接写出m值__________.9.(2023·江苏苏州·校考一模)如图,在平面直角坐标系中,直线y1=k1x+b与反比例函的图象交于A、B两点,已知A(1,3m−4),B(m,1).数y2=k2x(1)求k1与k2的值;(2)直线DE在直线AB的下方且与AB平行,与x轴、y轴分别交于点D、E,点P是直线AB上的一动点,当△PDE的面积为1时,求直线DE的解析式.0.(2023·河南安阳·统考二模)如图,在平面直角坐标系中,一次函数y=kx+2(k≠0)的(x>0)的图象交于点A(a,3),与x轴交于点B(−4,0),与y轴交图象与反比例函数y=mx于点C.求:(1)k,m的值;(2)直线OP过原点,交反比例函数于点P,且OP∥AB,△PAC的面积.。

2024年重庆市中考数学真题(B卷)及答案

2024年重庆市中考数学真题(B卷)及答案

[机密]2024年6月13日11:00前重庆市2024年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A 1- B. 0 C. 1 D. 22. 下列标点符号中,是轴对称图形的是( )A.B. C. D. 3. 反比例函数10y x =-的图象一定经过的点是( )A. ()1,10 B. ()2,5- C. ()2,5 D. ()2,84. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A 35︒ B. 45︒ C. 55︒ D. 125︒..5. 若两个相似三角形相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:166.+的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 268. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C. D. 125的10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023-+=______.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd ++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均中位众的数数数七年级8687b 八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米. 1.41≈ 1.73≈ 2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?25. 如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求PD +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC PD +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.26. 在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:AM CN =;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.[机密]2024年6月13日11:00前重庆市2024年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】13【13题答案】【答案】8【14题答案】【答案】()22001401x +=【15题答案】【答案】2【16题答案】【答案】12【17题答案】【答案】 ①. 203##263②. 83##223【18题答案】【答案】 ①. 3456 ②. 6273三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)42a -试题11(2)2xx +【20题答案】【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【21题答案】【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元. (2)甲每小时粉刷外墙面积是25平方米.【23题答案】【答案】(1)()()124606063y x x y x x=<≤=<≤, (2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【24题答案】【答案】(1)2.5千米(2)甲选择的路线较近【25题答案】【答案】(1)215322y x x =-- (2)PD PE 最大值为152;()5,3P -; (3)4N ⎝或1⎛+ ⎝⎭【26题答案】【答案】(1)证明见解析(2)证明见解析 (3的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2019中考21题专题训练
1.为了“打造教育高地,办区域内最好教育”,我市部分学校开展数学小班教学,某校对“数学小班教学”
的喜爱情况进行了随机凋查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;
(2)补全条形统计图;
(3)若该校共有学生2800人,请根据上述调查结果,估计该校学生中A类有人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树状图或列表法求出被抽到的两个学生性别相同的概率.
2.(10分)为了让学生有更好的就餐体验,某学校食堂推出A、B、C、D、E五种新套餐,某天中午开放给一
部分同学进行试吃(每个同学只能任选一份套餐),每种套餐均准备了100份。

试吃结束后,学校膳食中心根据食堂窗口提供的信息绘制了条形统计图,同时根据后厨反馈的信息绘制了扇形统计图(均不完整)。

请根据图中信息,解答下列问题:
(1)参加试吃的同学共有______人,请补全条形统计图。

(2)学校共有学生2160人,请根据参加试吃同学的选择情况,估计正式推出后,每天中午选择D套餐的学
生人数。

(3)卫生监督部门检查食品卫生状况,从装有2份A套餐、2份B套餐、1份C套餐的留样柜里随机取走2
份套餐,求恰好取走1份A套餐、1份B套餐的概率。

4.语言是一种沟通手段,其社会交际作用是其根本的作用,英语教育的根本目标就是养成同学们利用英语展开沟通的水平,这是英语学习的出发点和归宿。

我校历来就是十分重视学生英语口语能力的培养,取得
了非常优异的成绩。

为了了解同学英语口语考试得分情况,从甲、乙两班各随机抽取了名同学的口语成绩(该项满分分,学生得分均为整数)。

甲班名同学成绩(单位:分)分别为:、、、、、、、、、、、、、、、、、、、
乙班名同学成绩的条形统计图如图所示:
经过对两个班名同学成绩的整理,得到分析数据如下表:
班级极差平均分中位数
(1)表中,,;
(2)口语成绩得分及以上即为优秀,甲班共有名同学,请估算甲班口语成绩为优秀的人数;(3)根据以上数据,你觉得班的口语成绩更好,请说明理由(一条即可)。

相关文档
最新文档