确定隶属函数的几种主要方法
第4章_隶属函数的确定方法

第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
模糊数学教程第6章确定隶属函数的方法

模糊数学教程第6章确定隶属函数的方法确定隶属函数是模糊数学中的一项重要任务,它决定了模糊集合如何描述和应用。
本文将介绍几种常用的确定隶属函数的方法。
基于专家经验的方法是最常见的确定隶属函数的方法之一、通常,一些领域的专家会通过自己的经验和知识来确定隶属函数的形状和参数,以达到最佳的模糊集合描述效果。
例如,在模糊控制系统中,专家可以通过对系统的分析和调试来确定隶属函数的形状,从而实现对系统的精确控制。
基于数据分析的方法是一种较为客观的确定隶属函数的方法,它通过对已有数据的统计分析来确定隶属函数的形状和参数。
通常,需要收集一定数量的数据样本,并对这些数据进行分析,确定隶属函数的形状和参数。
例如,在模糊分类问题中,可以通过对已有分类数据的统计分析来确定隶属函数,从而实现对未知样本的分类。
基于模糊聚类的方法是一种将隶属函数与模糊聚类相结合的方法,它通过对数据样本进行聚类分析来确定隶属函数的形状和参数。
通常,需要先对数据进行模糊聚类,确定聚类结果,然后使用聚类结果来确定隶属函数。
例如,在模糊图像分割中,可以通过对图像像素进行模糊聚类,确定图像的不同区域,然后使用聚类结果来确定图像的隶属函数,从而实现图像分割。
基于优化算法的方法是一种通过优化算法来确定隶属函数的形状和参数的方法。
通常,需要将需要确定的隶属函数作为优化目标函数,利用其中一种优化算法来求解最优解,从而确定隶属函数的形状和参数。
例如,在模糊最优化问题中,可以将需要确定的隶属函数作为目标函数,使用遗传算法或粒子群算法等优化算法来求解最优解,从而确定隶属函数。
以上是一些常用的确定隶属函数的方法,不同的方法适用于不同的问题和场景。
在实际应用中,可以根据具体情况选择适合的方法来确定隶属函数,以达到最佳的模糊集合描述效果。
第七讲 隶属函数的确定方法

中间型隶属函数
1.矩形 2.尖型 3.正态型 4.柯西型 5.梯形
µA1 ( x) =
ɶ
1, a − b < x ≤ a + b 0, 其他 exp[ k (x − a)] , x ≤ a (k > 0) exp[ −k ( x − a)] , x > a
−1
µA2 ( x) =
参数法是指利用已知形状的隶属函数作为样板, 通过确定函数参数的方式来给出隶属函数的方 法。 常用隶属函数
偏小型 偏大型 中间型
偏小型隶属函数
x≤a 1, µ A ( x) = ɶ f ( x), x > a
1.降半矩阵型 2.降半伽马型 3.降半正态型 4.降半柯西型 5.降梯形 6.降岭形 7.k次抛物线
隶属函数的确定方法
模糊统计法 参数法
模糊统计法
通过模糊统计实验来确定隶属函数的方法 四要素
① 论域X ② 试验所要处理的论域X的固定元素x0 ③ 论域X的可变动的子集A*,它作为模糊集 A 的有可塑性 ɶ 边界的反映,可由它得到每次试验中x0是否符合模糊集A ɶ 所刻划的模糊概念的一个判决 ④ 条件集C,它限制着A*的变化
ɶ ɶ
µA3 ( x) = exp −k ( x − a)2 , (k > 0) µA4 ( x) = 1+ α ( x − a)β (α > 0, β是非负偶数)
(a2 + x − a) /(a2 − a1), a − a2 < x ≤ a − a1 1, a − a1 < x ≤ a + a1 µA5 ( x) = ɶ (a2 − x + a) /(a2 − a1), a + a1 < x ≤ a + a2 0, 其他 0.5 + 0.5sin [π /(b − a)( x + (b + a) / 2)] , −b < x ≤ −a 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b µA6 ( x) = ɶ −a < x ≤ a 1, 0, 其他
模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法模糊控制是一种基于模糊逻辑的控制方法,其中隶属度函数是模糊控制的重要组成部分。
隶属度函数的作用是将输入信号映射到隶属度空间,为控制器提供输入参数。
确定合适的隶属度函数能够提高模糊控制器的精度和稳定性。
本文将介绍几种常用的隶属度函数的确定方法。
一、试验法试验法是最基本的隶属度函数确定方法,即通过试验的方式逐步调整隶属度函数,直到达到最佳效果。
该方法适用于控制系统较简单、规模较小的场景。
试验法需要较多的实验数据和多次改进,且缺乏理论和数学基础支持。
二、专家法专家法是利用经验和判断力,根据被控对象和控制目标的特点,设计隶属度函数。
专家法相对于试验法具有更高的效率和准确性,适用于大规模、复杂的控制系统。
但是,该方法需要控制领域的专家评估隶属度函数的质量,并征询其他领域的专家意见,所以其设计具有一定的主观性。
三、数学建模法数学建模法是利用系统建模方法对控制对象进行数学描述,从而确定隶属度函数的方法。
该方法需要掌握数学建模技术和数学分析方法,运用数学软件工具进行系统的建立和分析。
该方法较为科学,可以系统的分析控制对象,而且不依赖于控制领域的专家知识和经验。
四、经验法经验法是使用过往的经验数据和样本数据来确定隶属度函数的方法。
该方法适用于控制对象特征类似的场景,具有低成本的优势。
经验法需要提取出具有代表性的样本集,并根据样本集的特点进行隶属度函数的设计。
该方法缺点是其适用性相对较弱,需要额外的数据处理方法来提取有用的特征。
五、混合法混合法是将多种方法结合使用来确定隶属度函数,以尽可能综合各种方法的优点,提高确定隶属度函数的准确性。
混合法需要根据具体情况,结合试验法、专家法、数学建模法、经验法等多种方法进行综合性分析和处理,提出最终的隶属度函数。
混合法确定隶属度函数的准确性和实用性较为综合,但需要在方法融合的过程中考虑不同方法的权重和影响因素,难度较高。
综上所述,确定隶属度函数的方法因系统的复杂性、预测的精确度和需要的优化目标等多种因素而异。
模糊数学教程第6章确定隶属函数的方法

主观经验法主要依赖于专家的专业知识和经验,通过专家对模糊概念的深入理 解和主观判断,来确定隶属函数的形状、参数和阈值等。这种方法简单易行, 但受限于专家知识和经验的局限性。
统计学习法
总结词
基于数据样本和统计学习理论来确定隶属函数的方法。
详细描述
统计学习法利用已知数据样本,通过统计学习理论和方法,如回归分析、决策树、支持向量机等,来拟合和优化 隶属函数。这种方法客观、科学,但需要足够的数据样本和计算资源。
VS
详细描述
连续性是指隶属函数在定义域内的任何一 点都存在明确的隶属度值,没有跳跃或中 断。连续的隶属函数能够更好地描述模糊 现象,因为模糊现象本身也是连续变化的 。
单调性
总结词
隶属函数应该是单调的,以反映模糊集合的 单调性质。
详细描述
单调性是指随着输入值的增大或减小,隶属 度值也相应增大或减小。单调递增的隶属函 数表示随着输入值的增加,隶属度也逐渐增 加;单调递减的隶属函数则表示随着输入值 的增加,隶属度逐渐减小。
经济效益评价
在经济效益评价中,隶属函数可以用于将各 评价指标的量纲统一,通过计算隶属度来评 价项目的经济效益。
在模糊聚类分析中的应用
模糊聚类算法
隶属函数在模糊聚类算法中起到关键作用,通过计算样本点对各个聚类的隶属度,实现样本点的软分 类。
聚类效果的评估
在模糊聚类分析中,隶属函数可以用于评估聚类效果,通过计算样本点对各个聚类的隶属度分布情况 ,判断聚类的质量和稳定性。
模糊数学教程第6章确定隶属函数 的方法
目 录
• 引言 • 确定隶属函数的方法 • 隶属函数的特性 • 隶属函数的优化 • 隶属函数的应用 • 总结与展望
01 引言
直觉方法-隶属函数的确定方法

虽然直觉的方法非常简单,也很直观,但它却包含着对象的背 景、环境以及语义上的有关知识,也包含了对这些知识的语言学描 述。因此,对于同一个模糊概念,不同的背景、不同的人可能会建 立出不完全相同的隶属函数。例如,模糊集A = “很冷”的隶属函 数。不同性别、不同生活环境的人所得出的曲线方法
1、直觉方法
直觉的方法就是人们用自己对模糊概念的认 识和理解,或者人们对模糊概念的普遍认同来建立 隶属函数。这种方法通常用于描述人们熟知、有共 识的客观模糊现象,或用于难于采集数据的情形。
例 1 考虑描述空气温度的模糊变量或“语言”变量,
我们取之为“很冷”、“冷”、“正好”、“热”和 “很热”,则凭借我们对“很冷”、“冷”、“凉 爽”、“适宜”和“热”这几个模糊概念的认知和理 解,规定这些模糊集的隶属函数曲线如图1 所示。
确定隶属函数的几种主要方法

③中间型
0 xa
x b
a a
k
axb 1
A( x) 1 b x c
d d
x c
k
cxd 0a b
cd
x
0
dx
(3)抛物型分布
①偏小型
1
xa
1
A(
x)
b b
x a
k
0
a xb b x
0
ab
x
②偏大型
0
xa
A(
x)
x b
a a
k
a xb
1
1
b x
0 ab
A(
x)
1
1 ( x a)
③中间型
xa
x a( 0, 0)
A(
x
)
1
(
1 x
a
)
( 0, 正偶数)
(6)岭形分布
①偏小型
1
A(
x
)
1 2
1 2
sin
a2
a1
x
a1
2
a2
0
②偏大型
x a1 a1 x a2
a2 x
0
A(
x
)
1
2
1 2
sin
a2
a1
x
a1
2
a2
1
其中P ( x)和P ( x)分别是随机变量和的概率密度,即
A2( x) 1 A1( x) A3( x) 按概率方法计算,得
A1(
x
)
1
x
a1
1
A3 (
x)
x a2
2
从而
这里
A2 (
第6章确定隶属函数的方法

这里 (x)
x
1 2
e dt
t2 2
增量法(Incremental) 例1、设论域X=[0, 200](单位:岁),又设 A F (X),
且定义 A 为老年,求其隶属函数 A(x).
解:任给x一个增量 x, 相应地 A(x)也有一个增量 A(x x) A(x), 假定
这里c为积分常数,适当选择k和c,则可完全确定
因素加权综合法
实际问题中有时会遇到这样的模糊集,它 由若干个因素相互作用而成,而每个因素由可以用 模糊集来表示,此时的论域可以表示为n个因素的 Descartes乘积,即 U U1 Un , Ai F (Ui )(i 1,....,n)
,. . . , An 复合而成. A F (U), A由A1
(1)加权平均型(Method of weighted mean)
..., An (un ) 累加成的,可令 若 A(u)是由 A1(u1 ),
A(u)= i Ai (ui ) i 1
n
其中 u (u1 ,...,un ) U,(1, 2 ,, n)是权重向量,且
(4)条件S,它联系着对模糊概念所进行的划分 过程的全部客观或心理的因素,制约者A*的运动。
Remark:
模糊统计法的基本要求是在每次实验中,对u0是 否属于 A 作出确切的判断,即要求在每次试验中, A*必须确定。 模糊统计试验的特点:在各次试验中 u0固定,A*是变的,这点不同于随机试验. 隶属度计算公式为:
1 (6)计算 m M
它情形,取 0 ei 1.
iM
m,
i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区别: 区别:
若把概率统计比喻为“变动的点” 若把概率统计比喻为“变动的点”是否 落在“不动的圈” 落在“不动的圈”内, 则把模糊统计比喻为“变动的圈” 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点” 盖住“不动的点”.
二相F统计 二相 统计: 设有二相集 P2 = { A, A } 统计
x
−∞
Pη ( x )dx
的概率密度, 其中Pξ ( x )和Pη ( x )分别是随机变量 ξ和η的概率密度,即
A2 ( x ) = 1 − A1 ( x ) − A3 ( x )
按概率方法计算,得 按概率方法计算,
x − a1 A1 ( x ) = 1 − Φ σ1 x − a2 A3 ( x ) = Φ σ2
A3 ( x )
0
a1
a2
x
数对(ξ ,η )确定映射
e(ξ ,η ) :
即
U → { A1 , A2 , A3 }
x≤ξ A1 ( x ) e(ξ ,η )( x ) = A2 ( x ) ξ < x ≤ η A ( x) x >η 3
概率P{ x ≤ ξ }是随机变量 ξ落在区间[ x , b )的可能大小.
次实验中覆盖27岁的年龄区间的次数为 若n次实验中覆盖 岁的年龄区间的次数为 , 次实验中覆盖 岁的年龄区间的次数为m, 则称m/n为27岁对于(青年人)的隶属频率。 为 岁对于 青年人)的隶属频率。 岁对于( 则称
岁对( 表2-1 27岁对(青年人)的隶属频率 岁对 青年人)
实验次数n 实验次数 隶属次数m 隶属次数 隶属频率 m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78 10 20 30 40 6 14 23 31 50 39 60 47 70 53 80 62 90 100 110 68 76 85 120 130 95 101
基本事件 ω是随机变动的. 做n次试验
“ω ∈ A”的次数 A发生的频率 = → P ( A) n
在每次试验中, 是确定的, F统计试验: 统计试验: 统计试验 在每次试验中, u0是确定的,
集合 A∗ 是随机变动的 . 做n次试验
“u0 ∈ A∗”的次数 u0 对A的隶属频率 = → A( u0 ) n
aik ( u)为元素 u在第 k次试验划归 Ai的次数 1 n k u对Ai的隶属频率 Ai ( u) = ∑ ai ( u) n k =1
1 n k 1m n k ∑ Ai ( u) = ∑ ∑ ai ( u) = ∑ ∑ ai ( u) n i =1k =1 i =1 i =1n k =1
1 n m k 1 n 1 = ∑ ∑ ai ( u ) = ∑ 1 = • n = 1 n k =1 i = 1 n i =1 n
b
x
(2)半梯形分布与梯形分布 (2)半梯形分布与梯形分布 ①偏小型 1 b − x A( x ) = b − a 0 ②偏大型
x<a a≤ x≤b b< x x<a a≤ x≤b b< x
1
0
a
b
x
0 x − a A( x ) = b − a 1
1
增大, 变小, 若x增大,则[ x , b )变小,从而落在区间 [ x , b )的可能性 也变小. 概率 P{ x ≤ ξ }的这个特性与矮个子 F集相同 .
所以有
A1 ( x ) = P { x ≤ ξ } = ∫
+∞ x
Pξ ( x )dx
类似地
A3 ( x ) = P{η < x } = ∫
c d
x
(3)抛物型分布 (3)抛物型分布 ①偏小型 1 k b − x A( x ) = b − a 0 ②偏大型 0 k x − a A( x ) = b − a 1
x<a a≤ x≤b b< x
x<a 1 a≤ x≤b b< x
c
每次F试验确定一个映射: 每次 试验确定一个映射: 试验确定一个映射
e : U → P2
c
这是对 U的一次划分 , 是两个相反的模糊概念 中竟选的结果。 在 U 中竟选的结果。隶属函 数 A ( u )与 A ( u )满足
c
∀ u ∈ U , A(u) + A (u) = 1
多相F统计 多相 统计: 设有多相集 Pm = { A1 , A2 ,⋯, Am } 统计
x ≤ a1 0 a1 + a2 π 1 1 A( x ) = + sin x− a1 < x ≤ a2 2 2 2 a2 − a1 1 a2 < x
③中间型
x ≤ −a 2 0 1 1 a1 + a2 π + sin x− − a2 < x ≤ −a1 2 2 2 a2 − a1 A( x ) = 1 − a1 < x ≤ a1 1 1 a1 + a2 π − sin x− a1 < x ≤ a2 2 2 2 a2 − a1 0 a2 < x
1 1
x
0
a1 a1 + a2a2 2
− a2 − a10 a1 a2 1
x
x
0
a1 a1 + a2 a2 2
例: 建立(年轻人)的隶属函数, 根据统计资料, 建立(年轻人)的隶属函数, 根据统计资料, 作出其大致曲线, 作出其大致曲线,发现与哥西分布
1 A( x ) = 1 1 + α ( x − α ) β
(1)矩形分布或半矩形分布 (1)矩形分布或半矩形分布
1
①偏小型
1 x ≤ a A( x ) = 0 x > a
0
a
x
②偏大型
0 x < a A( x ) = 1 x ≥ a
1
0
③中间型
a
x
1
0 x < a A( x ) = 1 a ≤ x < b 0 b ≤ x
0
a
1 A( x ) = 1 + α ( x − a )β
x > a (α > 0, β > 0)
(α > 0, β正偶数 )
(6)岭形分布 ) ①偏小型 1 x ≤ a1 a1 + a2 π 1 1 A( x ) = − sin x− a1 < x ≤ a2 2 2 2 a2 − a1 0 a2 < x ②偏大型
∀ Ai ∈ F (U ) i = 1, 2 ⋯ m .每次试验都确定一个映 射 e : U → Pm 多项 F统计的结果 , 可确定各相在 U上的隶属函数 它们满足 ∀u ∈ U , A1 ( u) + A2 ( u) + ⋯ + Am ( u) = 1
设进行了 n 次试验 , 第 k次试验的映射为 e k . 1 ek ( u) = Ai k 令 ai ( u ) = 0 ek ( u) ≠ Ai
m
m
2.三分法 三分法 用随机区间的思想处理模糊性(模糊性的清晰化) 用随机区间的思想处理模糊性(模糊性的清晰化)
建立矮个子 A1 ,中等个子 A2 , 高个子 A3的隶属函数
设 P3 = { A1 , A2 , A3 }, U = [0,3] (单位: m ) 单位:
每次 F 试验确定 U 的一次划分 , 每次划分确定 一对数( . 一对数( ξ ,η)
m → A( 27 ) = 0.78 n 每组以中值为代表, 将论域 U分组, 每组以中值为代表,分 别计算各组
隶属频率 .(见表 2 − 2)
表2-2 分组计算隶属频率(实验次数129) 分组计算隶属频率(实验次数 )
分 组 13.5~14.5 14.5~15.5 15.5~16.5 16.5~17.5 17.5~18.5 18.5~19.5 19.5~20.5 20.5~21.5 21.5~22.5 22.5~23.5 23.5~24.5 24.5~25.5 频数 2 27 51 67 124 125 129 129 129 129 129 128 隶属频率 0.016 0.210 0.395 0.519 0.961 0.969 1 1 1 1 1 0.992 分 组 25.5~26.5 26.5~27.5 27.5~28.5 28.5~29.5 29.5~30.5 30.5~31.5 31.5~32.5 32.5~33.5 33.5~34.5 34.5~35.4 35.5~36.5 频数 103 101 99 80 77 27 27 26 26 26 1 隶属频率 0.798 0.783 0.767 0.620 0.597 0.209 0.209 0.202 0.202 0.202 0.008
§6 确定隶属函数的方法综述
一、确定隶属函数的几种主要方法
1.F统计方法
确定“青年人”的隶属函数 确定“青年人”的隶属函数.
青年人” 以年龄为论域 U , A是“青年人”在 U上的F集. 选取 u0 = 27岁, 用F统计实验确定 u0对A的隶属度 .
选择若干( )合适人选, 选择若干(n)合适人选,请他们写出各自认为 “青年人”最适宜、最恰当的年限,即将模糊概念 青年人”最适宜、最恰当的年限, 明确化。 明确化。
1
0
a
b
x
0
a
b
x
(4)正态分布 ) ①偏小型
1 A( x ) = x − a 2 − e σ
②偏大型
x≤a x>a
1
0