数学与人文科学试题

合集下载

大学文科高数试题及答案

大学文科高数试题及答案

大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。

答案:32. 极限lim(x→∞)(1/x)的值是________。

答案:03. 函数f(x)=x^2+2x+1的最小值是________。

数学与人文科学试题

数学与人文科学试题

数学与人文科学试题一·数学是只用于工程技术和自然科学研究的吗?它在人文科学中有无作用?有哪些作用?请举出具体事例说明你的观点。

答:数学不只用于工程技术和自然科学。

在人文科学中也有作用。

1,在建筑工程中,必须要经过严格并且精确的数学计算,勾勒相互建筑大致的模型以及需要材料的多少,才能开始施工。

2,通过建立数学模型和借助功能日益强大的计算机来解决各种复杂的问题,为人类的发展做出巨大贡献。

3,在博弈学中,通俗一点就是中彩票的概率问题,必须应用数学公式来计算其概率,因为数学,推动了博弈的发展。

总之,数学在我们的生活,无处不在。

数学已经是我生活中不能缺少的。

二·什么事“蝴蝶效应”?举出你所经历过的或者观察到的“蝴蝶效应”。

应如何防止坏的“蝴蝶效应”?如何利用好的“蝴蝶效应”?答:蝴蝶效应(The Butterfly Effect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。

这是一种混沌现象。

2003年,美国发现一宗疑似疯牛病案例,马上就给刚刚复苏的美国经济带来一场破坏性很强的飓风。

扇动“蝴蝶翅膀”的,是那头倒霉的“疯牛”,受到冲击的,首先是总产值高达1750亿的美国牛肉产业和140万个工作岗位;而作为养牛业主要饲料来源的美国玉米和大豆业,也受到波及,其期货价格呈现下降趋势。

但最终推波助澜,将“疯牛病飓风”损失发挥到最大的,还是美国消费者对牛肉产品出现的信心下降。

在全球化的今天,这种恐慌情绪不仅造成了美国国内餐饮企业的萧条,甚至扩散到了全球,至少11个国家宣布紧急禁止美国牛肉进口,连远在大洋彼岸中国广东等地的居民都对西式餐饮敬而远之。

这让人联想到时下的禽流感,最初在个别国家发现的禽流感,很快波及全球,就算在没有发现禽流感的地区或国家,人们也会“谈鸡色变”。

再比如,你能想像得出一个美国人抽烟和中国的通货膨胀有什么关系吗?假设美国现在有一个人抽烟,不小心把没熄灭的烟头扔在了床边,然后出门上班了,大约20分钟后,烟头慢慢引燃床单,火越来越大,逐渐蔓延到左邻右舍,引起煤气罐的连环爆炸。

2023年陕西省高考文科数学真题及参考答案

2023年陕西省高考文科数学真题及参考答案

2023年陕西省高考文科数学真题及参考答案一、选择题1.=++3222ii ()A .1B .2C .5D .52.设集合{}8,6,4,2,1,0=U ,集合{}6,4,0=M ,{}6,1,0=N ,则=⋃N C M U ()A .{}8,6,4,2,0B .{}8,6,4,1,0C .{}8,6,4,2,1D .U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若c A b B a =-cos cos ,且5π=C ,则=∠B ()A .10πB .5πC .103πD .52π5.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .26.正方形ABCD 的边长是2,E 是AB 的中点,则=⋅ED EC ()A .5B .3C .52D .57.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .218.函数()23++=ax x x f 存在3个零点,则a 的取值范围是()A .()2-∞-,B .()3-∞-,C .()14--,D .()0,3-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .65B .32C .21D .3110.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .2311.已知实数y x ,满足042422=---+y x y x ,则y x -的最大值是()A .2231+B .4C .231+D .712.已知B A ,是双曲线1922=-y x 上两点,下列四个点中,可为AB 中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若⎪⎭⎫ ⎝⎛∈30πθ,,21tan =θ,则=-θθcos sin .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.16.已知点C B A S ,,,均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则=SA .三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.记n S 为等差数列{}n a 的前n 项和,已知112=a ,4010=S .(1)求{}n a 的通项公式;(2)求数列{}n a 前n 项和n T .19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)若︒=∠120POF ,求三棱锥ABC P -的体积.20.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)若()x f 在()∞+,0单调递增,求a 的取值范围.21.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,证明:线段MN 中点为定点.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112CADCDBCBADCD1.解:∵i i i i 212122232-=--=++,∴()52121222232=-+=-=++i ii 3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵C B A -=+π,∴()B A C +=sin sin ,∵c A b B a =-cos cos ,由正弦定理得:B A B A C A B B A sin cos cos sin sin cos sin cos sin +==-∴0cos sin =A B ,∵()π,0∈B ,∴0sin ≠B ,∴0cos =A ,∴2π=A ∵5π=C ,∴10352πππ=-=B .5.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .6.解:以AD AB ,为基底表示:AD AB BC EB EC +=+=21,AD AB AD EA ED +-=+=21,∴31441212122=-=-=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⋅AB AD AD AB AD AB ED EC7.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .8.解:由条件可知()032=+='a x x f 有两根,∴0<a 要使函数()x f 存在3个零点,则03>⎪⎪⎭⎫ ⎝⎛--a f 且03<⎪⎪⎭⎫⎝⎛-a f ,解得3-<a 9.解:有条件可知656626=⨯=A P .10.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .11.解:由042422=---+y x y x 得()()91222=-+-y x ,令t y x =-,则0=--t y x ,圆心()1,2到直线0=--t y x 的距离为321111222≤-=+--t t ,解得231231+≤≤-t ,∴y x -的最大值为231+.12.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.二、填空题13.49;14.55-;15.8;16.213.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.解:∵⎪⎭⎫⎝⎛∈20πθ,,∴0cos ,0sin >>θθ,由⎪⎩⎪⎨⎧===+21cos sin tan 1cos sin 22θθθθθ,解得552cos ,55sin ==θθ,∴55cos sin -=-θθ.15.解:作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A ,此时截距z -最小,则z 最大,代入得8=z .16.解:如图所示,根据题中条件2==OS OA ,3===AC BC AB ,∴3323321=⎪⎪⎭⎫ ⎝⎛⨯⨯==A O r ,∴()⎪⎩⎪⎨⎧+-=+=2121221212A O OO SA OS A O OO OA即()⎪⎩⎪⎨⎧+-=+=222222r d SA R r d R ,代入数据得()⎪⎩⎪⎨⎧+-=+=343422d SA d ,解得2=SA 或1-=SA (舍)三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s ,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)设等差数列{}n a 的公差为d ,由题意可得⎪⎩⎪⎨⎧=⨯+==+=402910101111012d a S d a a 解得⎩⎨⎧-==2131d a ,∴数列{}n a 的通项公式为()n d n a a n 21511-=-+=.(2)由(1)知n a n 215-=,令0215>-=n a n 得*∈≤<N n n ,70∴当*∈≤<N n n ,70时,()n n a a n T n n 14221+-=+=;当*∈≥N n n ,8时,nn a a a a a a T +++++++= 98721n a a a a a a ----+++= 98721()n a a a a a a +++-+++= 98721()981414492222777+-=+--⨯=-=--=n n n n T T T T T n n 综上所述⎪⎩⎪⎨⎧∈≤++-∈≤+-=**Nn n n n Nn n n n T n ,7,814,7,142219.解:(1)∵BC AB BF AO ⊥⊥,,∴OAB FBC ∠=∠.22tan ==∠AB OB OAB ,22tan ==∠BC AB ACB ,∴ACB FBC ∠=∠.又点O 为BC 中点,∴BC OF ⊥.又BC AB ⊥∴AB OF ∥.∴点F 为AC 中点.∵点E 为P A 中点,∴PC EF ∥.∵点O D ,分别为BC BP ,中点,∴PC DO ∥,即EFDO ∥∵⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)过点P 作OF PH ⊥,垂足为H .由(1)知BC OF ⊥,在PBC ∆中,PC PB =,∴BC PO ⊥.∵O PO OF =⋂,∴BC ⊥平面POF .又⊂PH 平面POF ,∴PH BC ⊥.又∵OF PH ⊥,O BC OF =⋂,∴PH ⊥平面ABC .在PBC ∆中,222=-=OC PC PO .在POH Rt ∆中,︒=∠60POH ,3sin =∠⋅=POH PO PH ∴362213131=⋅⋅⨯=⋅=∆-BC AB PH S PH V ABC ABC P .20.解:(1)(1)当1-=a 时,()(),1ln 11+⎪⎭⎫⎝⎛-=x x x f ,则()()11111ln 12+⨯⎪⎭⎫⎝⎛-++⨯-='x x x x x f ,据此可得()()2ln 1,01-='=f f ,函数在()()11f ,处的切线方程为()12ln 0--=-x y ,即()02ln 2ln =-+y x .(2)由题意知()()()()()11ln 11111ln 1222+++-+=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-='x x x x x ax x a x x x x f .若()x f 在()∞+,0上单调递增,则方程()()01ln 12≥++-+x x x ax 在()∞+,0上恒成立,令()()()0,1ln 12>++-+=x x x x ax x h ,则()()1ln 2+-='x ax x h .当21≥a 时,()()01ln 2≥+-='x ax x h 成立,()x h 单调递增且()00=h ,()0≥x h 成立,符合题意.当210<<a 时,()()()0112,1ln 2=+-=''+-='x a x h x ax x h ,则121-=a x ,则()x h '在⎪⎭⎫ ⎝⎛-121,0a 上单调递减,在⎪⎭⎫ ⎝⎛∞+-,121a 上单调递增,()00='h 则()x h 在⎪⎭⎫⎝⎛-121,0a 上单调递减,()00=h ,则⎪⎭⎫⎝⎛-∈121,0a x 上时,()0<x h 不合题意,舍去.当0≤a 时,()()01ln 2<+-='x ax x h ,()x h 单调递减,()00=h ,则()0<x h 不合题意,舍去.∴a 的取值范围为⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y 。

人文素养考试试卷数学高三

人文素养考试试卷数学高三

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各式中,属于有理数的是()。

A. √9B. √-16C. πD. 2/32. 若函数f(x) = x^2 - 4x + 4,则f(x)的图像是()。

A. 双曲线B. 抛物线C. 直线D. 圆3. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的大小是()。

A. 75°B. 105°C. 120°D. 135°4. 下列哪个数是实数()。

A. 无理数B. 有理数C. 复数D. 以上都是5. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差是()。

A. 3B. 4C. 5D. 66. 下列函数中,在定义域内单调递增的是()。

A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = -x^37. 下列哪个方程无实数解()。

A. x^2 + 4 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 08. 已知数列{an}的前n项和为Sn,且S1=1,S2=3,S3=6,则数列{an}的通项公式是()。

A. an = nB. an = n^2C. an = 2nD. an = n(n+1)/29. 若等比数列{an}的首项为2,公比为3,则该数列的第5项是()。

A. 18B. 54C. 162D. 48610. 已知函数f(x) = x^3 - 3x^2 + 4x,则f'(x)的零点是()。

A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 已知等差数列{an}的前三项分别为1,4,7,则该数列的公差是______。

2. 若函数f(x) = x^2 - 2ax + a^2在区间[0, 2a]上单调递增,则a的取值范围是______。

2012年人文科学素养数学试卷10

2012年人文科学素养数学试卷10

PNMDCBA 2009年人文科学素养数学试卷10(20012/12)班级 姓名一、选择题:(共9题,每题3分,共27分)1、已知y=P (x ,y )所在的象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、现有6个红球,4个白球,这10个球除颜色外都相同,小明先从这些球中任意拿出1个球(不放回),小华再从余下的球中任意拿出1个球,则小明拿到红球,小华拿到白球的概率是( ) A3,54 9 B 32,55 C 2,51 3 D 34109, 3、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ) A 106元 B 105元 C 118元 D 108元4、如果关于1)11x a x a x a +>+<的不等式(的解集为,那么的取值范围是( ) A 、1a <- B 、0a < C 、1a >- D 、0a >1a <-5、为了调查学生的身体情况,某校对九年级学生进行了体检,在前50名学生中有49名是合格的,以后每8名中有7名是合格的,且该校九年级学生的体检合格率不低于90﹪,则该校九年级学生最多为( )A 180人B 200人C 210人D 225人6、电线杆上有一盏路灯O ,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB 、CD 、EF 是三个标杆,相邻的两个标杆之间的距离都是 2 m ,已知AB 、CD 在灯光下的影长分别为BM = 1. 6 m ,DN = 0. 6m.则标杆EF 的影长为( ) A 1.2 B 0.8 C 0.4 D 0.27、如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( )A185. B 4. C 215. D 245. 8、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 1B32 C21 D31 9、如图,张三同学把一个直角边长分别为3cm,4cm 的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A 的位置变化为12A A A →→,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边21A C 与桌面所成的角恰好等于BAC ∠,则A 翻滚到2A 位置时共走过的路程为( )A.B.8πcmC.cmD. 4πcm二、填空题(共5题,每题4分,共24分)9、已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 为圆心,且与⊙O 相切的圆的半径是 。

数学与人文科学试题与答案

数学与人文科学试题与答案

数学与人文科学试题与答案2010——2011学年第二学期《数学与人文科学》试题一、至少举三个具体的例子说明:数学不仅用于自然科学与工程技术,也广泛用于各种人文科学。

答:1,、在建筑工程中,必须要经过严格并且精确的数学计算,勾勒出建筑大致的模型以及需要材料的多少,才能开始施工;2、通过建立数学模型和借助功能日益强大的计算机来解决各种复杂的问题,为人类的发展做出巨大的贡献;3、在博弈学中,通俗一点就是中彩票的概率问题,必须应用数学公式来计算其概率,因为数学,推动了博弈学的发展。

二、阅读教材的相关材料,你最欣赏哪位学者对数学的论述?你为什么欣赏这一论述?答:我更喜欢数学家阿尔布斯纳特说的一句话“数学使思维产生活力。

并使思维不受偏见、轻信与迷信的影响与干扰。

”这句话也使我想起以前的数学老师常对我们说,数学好的人会在自己的脑海里形成一种鲜明的观点,在任何场合都会坚定自己的立场,不会被外界的假象所迷惑,并且具备极强的推理能力,对一些疑难问题有独特的见解,往往能把问题迎刃而解。

所以,我认为多少学习一点数学知识在生活中是百利而无一害的。

三、举出你所发现的用虚假数据欺骗社会造成巨大危害的事例,分析造成这种情况的原因,阐述你在社会生活中如何识别虚假数据,防止被虚假数据误导的方法。

答:1、忠县中学高考失败用虚假数据欺骗社会家长和考生。

2009年,忠县中学高考成绩揭晓了,经县招办数据统计:仅考了250个重点,可电视上却变成了294个,后来被家长发现了,不好意思,改成288个,又改成284个,太不诚信了。

2、揭穿崔家营工程的虚假报道:据说“建设崔家营航电枢纽工程,将使南水北调后的襄樊化不利为有利。

”然后列出工程的有利之处——第一,工程使“汉江从崔家营回水33公里,直到樊城区的牛首镇,那时,坝上位将抬高5米,正常蓄水可达62.73米(黄海高程)。

”还说:“汉江襄樊段可形成30公里长的人工湖。

”以上说法是虚假的。

大坝正常蓄水位62.73米,牛首镇的高程本人不知道,但牛首镇下游白家湾高度是66.3米,距大坝28公里。

大学文科数学试题(附答案)精选全文完整版

大学文科数学试题(附答案)精选全文完整版

大学文科数学试题(附答案)一、 判断题(对画“√”,错画“×”, 共6题,每题3分,共18分)1.任意修改收敛数列{}n a 的前100项,数列{}n a 仍收敛,且极限不变. ( )2.若0lim[()()]0x x f x g x →−=,则必有00lim ()lim ()x x x x f x g x →→=. ( )3.函数()f x 在某个区间上的极大值一定大于极小值. ( )4.当0→x 时,无穷小量34x x −+是关于x 的4阶无穷小量. ( )5.概率的公理化定义虽然不能用来直接确定事件的概率,但它给了概率所必须满足 的最基本规律,为建立严格的概率理论提供了坚实的基础. ( )6.微分方程xyx y dx dy tan +=的通解是Cx x y =sin . ( ) 二、填空题(共6题,每题3分,共18分)1.已知(sin )cos 12x f x =+,则(cos )2xf =___________.2.直线L 与x 轴平行且与曲线y x e x=−相切,则切点坐标为_____________.3.已知()f x 的一个原函数是2x e −,则'()=xf x dx ⎰________________________.4.利用定积分的几何意义,计算0=⎰_________(0)a >,这个结果表示的是________________________的面积.5.函数1xy x =的极大值点是 ,极大值为 .6.三台机器在一天内正常工作的概率分别为:第一台0.9,第二台0.7,第三台0.6,且它们发生故障是相互独立的,则三台机器同时发生故障的概率________. 三、计算题(要求有计算过程,共6题,每题4分,共24分)1.102030(1)(35)lim (611)n n n n →∞−+−;2.301lim sin 3x x x →+;3.152lim ()1xx x x −→+∞++; 4. 设()y y x =是方程cos()0x y e xy +−=所确定的隐函数,求0x dy =;5.; 6.dxxee⎰1|ln|.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分)1.把长度为l的线段分成两段,分别围成正方形和圆形,问如何分该线段可以使得正方形和圆的面积之和最小(即求此时正方形的周长和圆的周长)?2.求曲线3(03)y x x=≤≤分别绕x轴和y轴旋转所得到的旋转体的体积.3.甲、乙、丙三个分厂生产同一批次规格相同的灯管,产量之比为1:2:1.已知甲、乙、丙三个分厂产品的合格率依次是0.93,0.92,0.98.现任取一灯管,求(1) 取到不合格灯管的概率;(2) 若取到不合格灯管,求它是由乙分厂生产的概率.五、问答题(共3题,每题5分,共15分)1.叙述函数)(xfy=在],[ba上的拉格朗日中值定理的作用与几何意义,并画出几何示意图.2.简述古典概型的特点,并举一个古典概型在教育系统的应用实例.3.微分方程研究的内容是什么?举几个微分方程在现实应用中的成功实例.大学文科数学试题 答案一、判断题(对画“√”,错画“×”, 共6题,每题3分,共18分) 1.√ 2.× 3.× 4.× 5.√ 6.√ 二、填空题(共6题,每题3分,共18分)1.22sin 2x; 2. ()01,−; 3.22(21)x x e C −−++; 4. 24a π,半径为a 的四分之一的圆的面积; 5. 1,ee e ; 6. 0.012.三、计算题(要求有计算过程, 共6题,每题4分,共24分)1. 203036;2. 16; 3. 5e −; 4. dx −;5. ln 1|C −+;6. 22e−.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分) 1. 正方形的周长为44lπ+,圆的周长为4l ππ+. 2.(1)3326021877x V y dx x dx πππ===⎰⎰; (2)22727237295y V x dy y dy πππ===⎰⎰. 3.(1)令B 为任取一件为不合格灯管,i A 分别为任取一件为甲、乙、丙分厂生产的灯管1,2,3i =, 则由全概率公式得)(B P =31()(|)i i i P A p B A ==∑0.250.070.50.080.250.020.0625⨯+⨯+⨯=.(2)利用贝叶斯公式 31()()(|)(|)()()(|)i i i i i i i P A B P A P B A P A B P B P A P B A ===∑, 1,2,3i =. 计算得2(|)P A B =0.50.08=64%0.0625⨯.五、问答题(共3题,每题5分,共15分)1.拉格朗日中值定理是联系函数局部性质与整体性质的纽带.其几何意义是:联结两点的一条光滑曲线上至少存在一条切线与这两点的连线平行(示意图从略).2. 古典概型的特点是:有限性(每次试验有有限个样本点);等可能性(每次试验,每个样本点出现的可能性相同).例如,主考教师从装有n道题的袋中随机抽一题进行测试,就属于古典概型.3. 微分方程研究含有未知函数的导数或微分的方程,然后从中求得这个未知函数.19世纪,天文学家利用微分方程发现海王星,20世纪,科学家利用微分方程推断出阿尔卑斯山肌肉丰满的冰人的遇难时间,如今微分方程更是广泛用于预测人口数量,进行天气预报等方面,这些都是微分方程的成功应用实例.。

2023年成人高考----数学(文科、理科)真题试卷及答案

2023年成人高考----数学(文科、理科)真题试卷及答案

2023年成人高等学校招生全国统一考试数学(文史财经类)第Ⅰ卷 选择题共85分一、选择题(本大题共17小题;每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}12=∈=x R x M ,{}13=∈=x R x N ,则=N M ( ).A.{}1B.{}1-C.{}1-,1 D.∅2.函数sin(11)y x =+的最大值是( ).A.11B.1C.1-D.11-3.设α是第一象限角,1sin 3α=,则sin 2α=( ).A.49B.3C.9D.234.设2log x a =,则22log 2x =( ).A.221a +B.221a -C.21a -D.21a +5.设甲:sin x =,乙:cos x =则( ). A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 6.下列函数中,为增函数的是( ).A.3y x =B.2y x =C.2y x =-D.3y x =-7.已知点(12)M ,,(23)N ,,则直线MN 的斜率为( ). A.53 B.1 C.1- D.53- 8.如果点()1,1A 和()4,2B 关于直线b kx y +=对称,则=k ( ).A.3-B.13-C.13D.39.若向量()1a =,-1,()1b x =,,且2a b +=,则x =( ).A.4-B.1-C.1D.410.设40πα<<,则=-ααcos sin 21( ).A.ααcos sin +B.ααcos sin --C.ααcos sin -D.ααsin cos -11.设()x ax x x f ++=23为奇函数,则=a ( ). A.1B.0C.1-D.2-12.等比数列{}n a 中21a =,2q =,则5a =( ).A.18B.14C.4D.813.函数2()2f x x x =-+的值域为( ).A.[)0+∞,B.[)1+∞,C.(]-∞,1D.(]-∞,014.一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为( ). A.0.6B.0.5C.0.4D.0.315.函数()321-=x x f 的定义域为( ). A. RB. {}1 C. {}1≤x xD. {}1≥x x16.若0x y <<,则( ).A.11x y< B.x y y x< C.2x y+> D.2y xx y+> 17.一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为( ).A.18B.14 C.38D.12第Ⅱ卷 非选择题共65分二、填空题(本大题共4小题;每小题4分,共16分)18.过点()02,作圆122=+y x 的切线,切点的横坐标为 . 19.曲线21x y =在点()11,处的切线方程是 . 20.函数ax x y +-=2图像的对称轴为2=x ,则=a . 21.九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85 这九个学生成绩的中位数为 .三、解答题(本大题共4小题,共49分.解答应写出推理.演算步骤.) 22.本小题满分12分.记ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知060=B ,ac b =2,求A .. 23.本小题满分12分.已知等差数列{}n a 中,1356a a a ++=,24612a a a ++=. (1).求{}n a 的首项与公差; (2).求{}n a 的前n 项和n S . 24.本小题满分12分.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1).求C 的方程;(2).若(1)(0)A m m >,为C 上一点,O 为坐标原点,求C 上另一点B 的坐标,使得OA OB ⊥. 25.本小题满分13分.已知函数()()a x x x f --=24)(. (1).求()x f ';(2).若()81=-'f ,求)(x f 在区间[]40,的最大值与最小值.2023年成人高等学校招生全国统一考试数学(文史财经类)试参考答案一、选择题.二、填空题. 18.【参考答案】1219.【参考答案】23y x =-+ 20.【参考答案】4 21.【参考答案】85三、解答题共4小题,12+12+12+13分,共49分. 22.【参考答案】60O A =. 23.【参考答案】(1) 122a d =-=,; (2) 23n S n n =-.24.【参考答案】(1) 22y x =; (2) (4,B -. 25.【参考答案】(1) '2()38f x x x a =--; (2) max (0)12y f ==,min (3)6y f ==-.2023年成人高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷 选择题共85分一、选择题(本大题共17小题;每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}12=∈=x R x M ,{}13=∈=x R x N ,则=N M ( ).A.{}1B.{}1-C.{}1-,1 D.∅2.函数sin(11)y x =+的最大值是( ).A.11B.1C.1-D.11-3.设α是第一象限角,1sin 3α=,则sin 2α=( ).A.49B.3C.9D.234.设2log x a =,则22log 2x =( ).A.221a +B.221a -C.21a -D.21a +5.设甲:sin x =,乙:cos x =,则( ). A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 6.下列函数中,为增函数的是( ).A.3y x =B.2y x =C.2y x =-D.3y x =-7.已知点(12)M ,,(23)N ,,则直线MN 的斜率为( ). A.53B.1C.1-D.53-8.2(1)i +=( ). A.2-B.2C.2i -D.2i9.若向量()1a =,-1,()1b x =,,且2a b +=,则x =( ). A.4-B.1-C.1D.410.341()x x+展开式中的常数项为( ).A.4B.3C.2D.111.空间向量()1a =,1,0,()1b =,2,3则a b ⋅=( ). A.2B.3C.6D.812.等比数列{}n a 中21a =,2q =,则5a =( ).A.18B.14C.4D.813.函数2()2f x x x =-+的值域为( ).A.[)0+∞,B.[)1+∞,C.(]-∞,1D.(]-∞,014.设函数2()1x f x x =+,则1()f a=( ). A.()f aB.()f a -C.1()f a D.1()f a -15.正四面体任意两个面所成的二面角的余弦值为( ). A.12B.13C.14 D.1516.若0x y <<,则( ).A.11x y< B.x y y x< C.2x y+> D.2y xx y+> 17.一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为( )A.18B.14 C.38D.12第Ⅱ卷 非选择题共65分二、填空题(本大题共4小题;每小题4分,共16分)18.圆心为坐标原点且与直线250x y +-=相切的圆的方程为 .19.棱长为2的正方体中,M N ,为不共面的两条棱的中点,则=MN . 20.若点()2,4在函数12x y a -=的图像上,则a = .21.已知随机变量X 的分布列是则q = .三、解答题(本大题共4小题,共49分.解答应写出推理.演算步骤.) 22.本小题满分12分.记ABC ∆的内角A B C ,,的对边分别为a b c ,,,若::21)a b c =. 求A B C ,,. 23.本小题满分12分.已知等差数列{}n a 中,1356a a a ++=,24612a a a ++=. (1).求{}n a 的首项与公差; (2).求{}n a 的前n 项和n S . 24.本小题满分12分.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1).求C 的方程;(2).若(1)(0)A m m >,为C 上一点,O 为坐标原点,求C 上另一点B 的坐标,使得OA OB ⊥. 25.本小题满分13分.设函数()322361f x x ax x =+++是增函数.(1).求a 的取值范围.(2).若()f x 在区间[]13,的最小值为9,求a .2023年成人高等学校招生全国统一考试数学(理工农医类)试参考答案一、选择题.二、填空题.18.【参考答案】225x y +=19.【参考答案 20.【参考答案】221.【参考答案】12-三、解答题共4小题,12+12+12+13分,共49分. 22.【参考答案】456075o O O A B C ===,,. 23.【参考答案】(1) 122a d =-=,; (2) 23n S n n =-.24.【参考答案】(1) 22y x =; (2) (4,B -. 25.【参考答案】(1) 22a -<<; (2) 0a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与人文科学试题
一·数学是只用于工程技术和自然科学研究的吗?它在人文科学中有无作用?有哪些作用?请举出具体事例说明你的观点。

答:数学不只用于工程技术和自然科学。

在人文科学中也有作用。

1,在建筑工程中,必须要经过严格并且精确的数学计算,勾勒相互建筑大致的模型以及需要材料的多少,才能开始施工。

2,通过建立数学模型和借助功能日益强大的计算机来解决各种复杂的问题,为人类的发展做出巨大贡献。

3,在博弈学中,通俗一点就是中彩票的概率问题,必须应用数学公式来计算其概率,因为数学,推动了博弈的发展。

总之,数学在我们的生活,无处不在。

数学已经是我生活中不能缺少的。

二·什么事“蝴蝶效应”?举出你所经历过的或者观察到的“蝴蝶效应”。

应如何防止坏的“蝴蝶效应”?如何利用好的“蝴蝶效应”?答:蝴蝶效应(The Butterfly Effect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。

这是一种混沌现象。

2003年,美国发现一宗疑似疯牛病案例,马上就给刚刚复苏的美国经济带来一场破坏性很强的飓风。

扇动“蝴蝶翅膀”的,是那头倒霉的“疯牛”,受到冲击的,首先是总产值高达1750亿的美国牛肉产业和140万个工作岗位;而作为养牛业主要饲料来源的美国玉米和大豆业,也受到波及,其期货价格呈现下降趋势。

但最终推波助澜,将“疯牛病飓风”损失发挥到最大的,还
是美国消费者对牛肉产品出现的信心下降。

在全球化的今天,这种恐慌情绪不仅造成了美国国内餐饮企业的萧条,甚至扩散到了全球,至少11个国家宣布紧急禁止美国牛肉进口,连远在大洋彼岸中国广东等地的居民都对西式餐饮敬而远之。

这让人联想到时下的禽流感,最初在个别国家发现的禽流感,很快波及全球,就算在没有发现禽流感的地区或国家,人们也会“谈鸡色变”。

再比如,你能想像得出一个美国人抽烟和中国的通货膨胀有什么关系吗?假设美国现在有一个人抽烟,不小心把没熄灭的烟头扔在了床边,然后出门上班了,大约20分钟后,烟头慢慢引燃床单,火越来越大,逐渐蔓延到左邻右舍,引起煤气罐的连环爆炸。

这时的美国人已经对“恐怖袭击”胆战心惊,而这个肇事者(扔烟头的人)却忘了自己曾扔过烟头,于是在一时无法查明原因的情况下,暂时被定为“恐怖袭击”。

这样,惊恐万状的人们纷纷抛售股票,引起股市大跌。

人们下降的消费信心影响了整个美国经济,最后造成美元贬值,由于美元的持续贬值,使得以美元标价的基础性原材料价格上扬,盯住美元的人民币价格也相应上扬。

从而导致以原材料为基础的商品价格上涨,引发中国的成本拉动型通货膨胀。

——————摘自百度文库
那么如何防止坏的“蝴蝶效应”呢?我们只能再做事情的时候小心一点,多考虑一下后果,三思而后行。

很多安全事故都是因为不经意的一个行为造成的,所以,我们只要谨慎的思考后果,就能避免“蝴
蝶效应”。

怎么利用好的“蝴蝶效应”呢?注意观察,有远见,比如2007年金融海啸的源头怪罪于美国次级房贷,其实可能罪魁祸首应该是缺少财富的智慧,如果我们想的远一些,或许就没有这么严重了。

其实大自然的任何一个现象都是在表明一些事情,只要我们好好观察,思考,利用这些现象,就能为我们的生活甚至人类的生活服务。

三·爱因斯坦说:“政治是为当前,而方程是一种永恒的东西。

”请说说你对这句话的想法。

答:说这句话的背景,当时以色列首任总统去世后,以色列政府邀请爱因斯坦做第2任总统,但是他拒绝了,然后他才说了这番话。

对于这句话,我的想法是:首先,政治需要的是结合当前的形势,作为总统,或者是国家领导人,必须结合自己国家的形势,做出最好的领导政策,还要结合国际的形势,进行分析。

政治是多变的,也许今年世界死和平的,明年,就会出现战争和暴动。

比如,我们国家的钓鱼岛事件。

日本要抢我们国家的钓鱼岛,那怎么办呢!难道我们就直接和日本宣战,打仗吗?不是的。

这关系着很多的国际关系,美国,当时和日本签了条约,在我们中国和日本签条约后。

还有,打仗,会造成国际,我们国家,日本,海洋等等很大的危害。

本来地球的污染,臭氧空洞,等就让我们的生活的家园承受着巨大的危害,这时候再打仗,就会有更大的伤害。

所以,对于这件事,我们必须冷静的面对,理智的和日本人抗争。

钓鱼岛是我们的。

总之一句话,政治是很复杂的,需要一个冷静,有远见,有胸襟,有
领导才能的人来领导国家,不是一个科学家能做到的事。

然后,是方程式。

方程式,是永恒的,永远会对科学研究,对我们的生活,对社会都是有帮助的。

就想数学,我们每时每刻都会用到。

对人类的生活和进步有着重大的意义。

爱因斯坦能算出永恒的方程式,是经过无数的数据统计与计算,经过无数的研究和精心的钻研,经过无数的实际检验才得出的结论。

这是永恒的。

最后,爱因斯坦为什么会拒绝做总统呢?因为,爱因斯坦是为伟大的科学家,只能算出永恒的方程式,只想再科学上位人类作出巨大的贡献。

对于政治,爱因斯坦是没有兴趣的,也不想去做那个。

他的聪明,是伟大的。

我们学校的一位教授曾经说过这样一句话,“天才是创造,天才是伟大的”。

爱因斯坦的伟大,会永远写入人类的历史,他的方程式也会永远为人类所用,永远为人类服务。

这才是天才应该做的事。

四·为什么空洞的大话是无意义的?为什么用虚假的数字来说话是有巨大危害?相反地,为什么用真实的,全面的,统一性的数据,就能清晰而深刻地揭示出社会生活的状况?请收集你感兴趣的统计数据,加以分析,用正反两方面的具体事例来说明这个道理。

答:因为空洞的大话没有根据,没有事实依据,根本就是乱说,和事实根本就是两回事,根本就没有任何作用和意义。

用虚假的数字来说话,会掩盖事实的真相,让别人误导,错误的理解事实或者问题。

如果是在工程上,或者是科学研究中,会对社会,甚至人的生命有威胁,当然,用虚假数据说话人,也会影响周围的人,学习的积极性,对
教育业也是有影响的。

所以,用虚假的数字说话有巨大的危害。

用真实的数字能清晰而深刻的揭示出社会的生活状况,例子如下:1·2009年,忠县中学高考成绩揭晓了,经县招办数据统计:考了250个重点,170个一般大学。

比去年少了几十个人。

这样的真实数据就说明了,忠县中学今年的高考是失败的,在管理或者教学方面出现了问题,所以了这样的结果。

那么,真实的数据就能揭示社会真正的状况。

2·在我大一的时候,有个金工实习,老师叫我们看着图纸,照着尺寸,磨制一个榔头。

我们两个班的同学,分成了十组。

一组几个人。

大家都知道的,工程上的尺寸,都是非常精确的,如果有一点的不对,一点的错误,做出来的东西和图纸上的就会大不一样。

在磨制的过程中,有的同学,就没有磨制到准确的尺寸水平,最后,做的榔头尺寸就不对,样子与图纸上的完全不一样。

当然,照着尺寸精确磨制的组,做出的就是标准的榔头。

这个事实就说明,真实的数据,才能与想要的和正确的事实想接近。

3·我们现在大三了,这学期开学是的两周,我们班就画图纸,画的是一个百分表。

那些尺寸,当然,都是非常准确的。

因为,那个百分表本来就很小了,如果尺寸不对,肯定是会出错的。

在画图的过程中,有的同学就没有经过精确的计算,自己估计个数据,然后就画,最后,在老师的检查中没有过关,重新画。

这就是因为,没有按照真实的数据画图,当然,如果你要是设计师,工人照着你的图纸做出来的东西就是有问题的,不但不能为人们为科学服务,而且会给人们带来麻烦。

所以,真实的数据才能揭示出生活,揭示真理。

所以,真实的数字才能清晰而深刻的反应生活和社会的状况。

相关文档
最新文档