《离散数学》 第一章
离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学课件第一章(第1讲)

3)区分“可兼或”与“不可兼或(异或,排斥或)” 析取联结词为可兼或 例如: 灯泡有故障或开关有故障。 今天下雨或打雷。 以上例句均为可兼或。
“不可兼或”表示为:▽ (异或),当P和Q均为“T”时, 则P异或Q为“F”。
P
Q
P▽Q
F
F
F
F
T
T
T
F
T
T
T
F
例: 他通过电视看杂技或到剧场看杂技。 他乘火车去北京或乘飞机去北京。
§1 命题与命题联结词
1 命题
《定义》: 具有唯一值的陈述句叫命题。 讨论定义:
(1)命题的值: 命题值可以是真的,也可以是假的,但不能同时 既为真又为假。
(2)命题的真假值表示: 命题中所有的“真”用“T ” 或“ 1”表示 命题中所有的“假”用“F ”或 “0 ”表示。
(3)命题分类: ⅰ)原子命题:一个命题,不能分解成为更简单的命题。
(2) 合取词(“合取”、 “与”运算) 1) 符号 “Λ” 设P,Q为两个命题,则PΛQ称P与Q的合取, 读作: “P与Q” “P与Q的合取” “P并且Q”
2) 合取运算真值表
P Q PΛ Q
FF
F
FT
F
TF
F
TT
T
QΛP F F F T
注: ①当且仅当P和Q的真值均为 T ,则PΛQ 的真值 为 T 。否则,其真值为 F 。
第一篇 数理逻辑
逻辑:通常指人们思考问题,从某些已知条件出发推出合 理的结论的规律。 数理逻辑:用数学方法来研究推理的规律。包括命题逻辑 和谓词逻辑。 数理逻辑研究方法:采用一套数学的符号系统来描述和处 理思维的形式和规律。
第一章 命题逻辑
§1.命题与命题联结词 §2.命题公式与真值表 §3.命题公式的翻译 §4. 等价式与蕴含式 §5.对偶与范 式 §6.命题逻辑的推理理论 §7.其他联结词
精品文档-离散数学(方世昌)-第1章

第1章 数理逻辑
例 1.1 - 1 下述都是命题: (1) 今天下雪; (2) 3+3=6; (3) 2 是偶数而 3 是奇数; (4) 陈涉起义那天,杭州下雨; (5) 较大的偶数都可表为两个质数之和。
3
第1章 数理逻辑
以上命题中,(1)的真值取决于今天的天气; (2)和(3)是真; (4)已无法查明它的真值,但它是或真或假的, 故将它归属于 命题; (5)目前尚未确定其真假,但它是有真值的,应归属于 命题。
6
第1章 数理逻辑
从以上分析,我们得出他必须既非说谎也不是讲真话。 这 样,断言“我正在说谎”事实上不能指定它的真假,所以不是命 题。 这种断言叫悖论。
若一个命题已不能分解成更简单的命题,则这个命题叫原子 命题或本原命题。 例1.1 - 1中(1)、(2)、(4)、(5)都是本原命 题,但(3)不是,因为它可写成“2 是偶数”和“3 是奇数”两 个命题。
译为P∧Q,但“林芬和林芳是姐妹”就不能翻释成两个命题的合
取,它是一个原子命题。
34
第1章 数理逻辑
1.1.3 命题变元和命题公式 通常,如果P代表真值未指定的任意命题,我们就称P为命题
变元; 如果P代表一个真值已指定的命题,我们就称P为命题常元。 但由于在命题演算中并不关心具体命题的涵义,只关心其真假值, 因此,我们可以形式地定义它们。
以“真”、“假”为其变域的变元,称为命题变元; T和F称 为命题常元。
35
第1章 数理逻辑
习惯上把含有命题变元的断言称为命题公式。 但这样描述 过于表面,它没能指出命题公式的结构。 因为不是由命题变元、 联结词和一些括号组成的字符串都能成为命题公式,因此在计算 机科学中常用以下定义。
单个命题变元和命题常元叫原子公式。 由以下形成规则生 成的公式叫命题公式(简称公式):
离散数学.第1章

例4
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
10
3. 析取“∨”(相容或)[讲解教材P3-5关于或]
4. 定义1.3
由命题P和Q利用“∨”组成的复合命题,称 为析取式复合命题,记作“P∨Q”(读作“P或Q”)。 当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
练习1-1
1. 判断下列语句哪些是命题,若是命题,则指出其真值。
(1) (2) 只有小孩才爱哭。 X+6=Y ( 是 假 ) ( 不是 ) (是 真) ( 不是 )
(3)
银是白的。
(4) 起来吧,我的朋友。 2. 将下列命题符号化
(1) 我看见的既不是小张也不是老李。 解 令P:我看见的是小张;Q:我看见的是老李。 则该命题可表示为¬ P∧¬ Q (2) 如果晚上做完了作业并且没有其它的事,他就会 看电视或听音乐。 解 令 P:他晚上做完了作业;Q:他晚上有其它的事; R:他看电视; S:他听音乐。 则该命题可表示为(P∧¬ Q)→(R∨S)
28
1.3 等值演算
• 定义1.10 设A和B是两个命题公式, 若等价式A↔B 是重言式,则称公式A 和B等值,记为A B,称 AB为等 值式。
• 注意: (1)符号“”与“↔”的区别与联系 “”不是联结词,AB不表示一个公式, 它表示两个公式间的一种关系,即等值关系。 “↔”是联结词,A↔B是一个公式。 AB 当且仅当 A↔B 是永真公式。
1 0 1 0 1 0 1 0
0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1
离散数学第一章知识点总结

离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
离散数学资料库

《离散数学》资料库第一章数理逻辑1、数理逻辑的历史。
逻辑是研究人类思维学科,最早是由古希腊学者亚里士多德创建的,他的《工具论》奠定了逻辑学的理论基础。
中国最早的一部逻辑专著--《墨经》也创造了一个比较完整的逻辑体系。
b5E2RGbCAP 根据所研究的对象和方法的不同,逻辑学可分为形式逻辑、辩证逻辑和数理逻辑。
数理逻辑得用数学方法研究推理,利用符号体系研究推理过程中前提和结论之间的关系,因此也叫符号逻辑。
plEanqFDPw从十七世纪开始,就有一些学者试图用数学的方法来研究逻辑。
德国的哲学家的数学家莱布尼兹&".10让血2>被公认为是数理逻辑的创始人。
他认为数学之所以能发展如此迅速,数学知识之所以能如此有效,就是因为数学使用了特别的符号语言。
这种符号语言为表达思想和进行推理提供了非常良好的条件。
因此他提出了用一种象数学一样的表意符号体系来研究思维形式和规律,能简洁地表达出各种的推理的逻辑关系,使得推理过程就象数学一样可以利用公式来进行计算,以便用计算来解决争论。
DXDiTa9E3d1847年,英国数学家、逻辑学家布尔(G.Boole>发表了《逻辑的数学分析》(The mathematical Analysis of Logic>,建立了“布尔代数”(Boolean Algebra>,并创造一套符号系统,利用符号来表示逻辑中的各种概念。
布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。
RTCrpUDGiT十九世纪七十年代末至二十世纪初,为了理解数学命题的性质和数学思维规律,德国的弗雷格(G.Frege>、意大利的皮亚诺(G.Peano >和英国的罗素(B.Russell>建立了古典逻辑演算、命题演算和谓词演算。
数理逻辑突破了古典形式逻辑的局限,形成了一个完整的逻辑体系.5PCzVD7HxA而德国的希尔伯特(D.Hilbert^D哥德尔(K.Godel>的研究努力又使数理逻辑成为一门内容丰富的独立学科。
离散数学-第1章

练习1解答
提示: 分清复合命题与简单命题 分清相容或与排斥或 分清必要与充分条件及充分必要条件
答案: (1) 是简单命题
(2) 是合取式
(3) 是析取式(相容或)(4) 是析取式(排斥或)
设 p: 交通阻塞,q: 他迟到
(5) pq,
(6) pq或qp
(7) qp 或pq, (8) qp或pq
假命题 真命题 不是命题 不是命题
不是命题 不是命题
命题,但真值现在不知道
5
命题分类
命题分类:简单命题(也称原子命题)与复合命题 简单命题符号化
用小写英文字母 p, q, r, …, pi, qi, ri (i1)表示简单命题
用“1”表示真,用“0”表示假 例如,令
p: 2是有理数,则 p 的真值为0,
p q p pq (pq) (pq)q
00 1 1
0
0
01 1 1
0
0
10 0 0
1
0
11 0 1
0
0
成假赋值:00,01,10,11; 无成真赋值
24
公式的类型
定义1.10 (1) 若A在它的任何赋值下均为真, 则称A为重言式或永真式; (2) 若A在它的任何赋值下均为假, 则称A为矛盾式或永假式; (3) 若A不是矛盾式, 则称A是可满足式.
30
练习3解答
(1) pr(qp)
pqr
qp (qp) pr(qp)
000
1
0
0
001
1
0
0
010
0
1
0
011
0
1
0
100
1
0
0
101
离散数学第一章PPT课件

R 0 1 0 1 0 1 0 1
Assignments(作业)
第30页: 4
1.3 公式分类与等价式
1.3.1 公式分类 1.3.2 等价公式(等值演算) 1.3.3 基本等价式----命题定律 1.3.4 代入规则和替换规则 1.3.5 证明命题公式等价的方法
1.3.1 公式分类
定义1.13 设A是一个命题公式,对A所有可能的解释: (1)若A都为真,称A为永真式或重言式。
(2)若A都为假,称A为永假式或矛盾式。
(3)若至少存在一个解释使得A为真,称A为可满足式。
例1 从上一节真值表可知,命题公式(PQ)(P∨Q)为 重言式,(PQ)∧Q为矛盾式,PQ)∧R为可满足式。
注: 1、 永真式必为可满足式,反之则不然;永真式的否定是永 假式,反之亦然; 2、 决定一个公式是否是一个永真式、永假式或可满足式有 三种方法:真值表法(适用于变元少而简单的公式)、求主范
1.否定词(negation connective )﹁
定义1.4 复合命题“非P”称为命题P的否定,记作
P,读作非P。 P为真当且仅当P为假。
例3 设 P:离散数学是计算机专业的核心课程, 则 P:离散数学不是计算机专业的核心课 程。
2.合取词(conjunction connective )∧
命题符号化的目的在于用五个联结词将日 常语言中的命题转化为数理逻辑中的形式命题, 其关键在于对自然语言中语句之间的逻辑关系 以及命题联结词的含义要有正确的理解,使用 适当的联结词: (1)确定语句是否是一个命题;
(2)找出句中连词,用适当的命题联结词表
示。
Assignments(作业)
第30页: 3(偶数小题)
定义1.12 设A是含有n个命题变元的命题 公式,将命题公式A在所有赋值之下取值的情 况汇列成表,称为A的真值表( truth table )。 为列出一个公式的真值表,我们约定: ①命题变元按字典序排列;②对公式的每个 解释,以二进制从小到大列出;③当公式较 复杂时,可先列出子公式的真值,最后列出 所给公式的真值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3
析取联结词∨
P 0 0 Q 0 1 P∨ Q 0 1
1
1
0
1
1
1
9
1.1.2 命题联结词
• 4
P
条件联结词→
Q P→ Q
• 5 双条件联结词
P 0 0 Q 0 1 P Q 1 0
0 0 1 1
0 1 0 1
1 1 0 1
1
1
0
1
0
1
10
1.2 命题公式与解释
• 1.2.1 命题公式 • 1.2.2 命题公式的解释
12
1.2.1 命题公式 • 命题公式是由命题变元、联结词和括号
组成的,但并非由命题变元、联结词和 括号组成的符号串都能成为命题公式。
例如,下面的符号串都是公式: ((((﹁P)∧Q)R)∨S) ((P﹁Q)(﹁R∧S)) (﹁P∨Q)∧R 以下符号串都不是公式: ((P∨Q)(∧Q)) (∧Q)
20
1.2.2
命题公式的解释
定义 设G 是命题公式, P1,P2,…,Pn是出现在命 题公式 G 中的全部命题变元,指定P1 , P2 , … , Pn 的一组真值,称这组真值为G的一个解释或赋值, 记作I,公式G在I下的真值记作TI(G)。
13
1.2.1 命题公式
• 2. 命题的符号化
可以把自然语言中的有些语句,转变成数理逻辑 中的符号形式,称为命题的翻译,也称为符号化。 命题翻译时应注意下列事项: (1)确定所给句子是否为命题。 (2)句子中联结词是否为命题联结词。 (3)要正确的选择原子命题和合适的命题联结词。 (4)用正确的语法将原命题表示由原子命题、联 结词和圆括号组成的合式公式。
19
• ( 4 )设 P :你努力; Q :你将失败。原 命题可符号化为:PQ。 • (5)设P:你固执己见;Q:她固执己见; R:不愉快的事也不会发生。原命题可符 号化为:(P∧Q) R。 • (6)设P:你固执己见;Q:她固执己 见;R:不愉快的事也不会发生。原命题 可符号化为:(P∧Q) R。
6
1.1 命题及其表示法
• 命题常量 • 命题变元 • 原子变元
7
1.1.2 命题联结词
• • • • • 1 2 3 4 5 否定联结词 合取联结词 析取联结词 条件联结词 双条件联结词
8
1.1.2 命题联结词
1 否定联结词﹁P
P
0 1
﹁P
1 0
2 合取联结词∧
P 0 0 1 1 Q 0 1 0 1 P∧ Q 0 0 0 1
• 解:(1)设P:上午下雨;Q:我去看电 影; R :我在家里读书; S :我在家里看 报 。 本 命 题 可 表 示 为 : ( P Q ) ∧ (P(RS))。 • (2)设P:我今天进城;Q:今天下雨; • 这句话的意思是“如果今天不下雨,那 么我就进城”,本可表示为QP。 • (3)设P:张三可以做这件事;Q:李四 可以做这件事。这个命题可以理解为: 张三可以做这件事,并且李四也可以做 这件事。因此原命题可符号化为:P∧Q。
4
1.1 命题及其表示法
• 由于命题只有真、假二个真值情况,所 以命题逻辑也称为二值逻辑。 • 例1.1.2 判断下面语句是否为命题。 • (1)其它星球上有生命存在。 • (2)我正在说谎。
5
1.1 命题及其表示法
• 命题通常使用大写字母A,B,…,Z或带下标 的大写字母或数字表示,如Ai,[10],R等, 例如 A1:我是一名大学生。 A1:我是一名大学生. [10]:我是一名大学生。 R:我是一名大学生。 表示命题的符号称为命题标识符, A1 、 [10] 和 R 都是标识符。
11
1.2.1 命题公式
1.定义 命题公式,简称公式,定义为: (1)命题变元是公式; (2)如果P是公式,则﹁P是公式; (3)如果P、Q是公式,则P∧Q、P∨Q、PQ、 PQ都是公式; (4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号 串是才是公式。
16
• 汉语的意思是不可兼或,而逻辑联结词∨是“可 兼或”,因此不能直接对两个命题析取。构造表 如表1.2-1所示。
P 0 0 Q 0 1 (4)命题 0 1 PQ 1 0 (PQ) 0 1
1 1
0 1
1 0
0 1
1 0
17
1.2.1 命题公式
• 例1.2.2 将下列命题符号化。 • ( 1 )假如上午不下雨,我去看电影,否则就 在家里读书或看报。 • (2)我今天进城,除非下雨。 • (3)张三或李四都可以做这件事。 • (4)除非你努力,否则你将失败。 • ( 5 )如果你和她都不固执己见的话,那么不 愉快的事也不会发生了。 • (6)如果你和她不都是固执己见的话,那么 不愉快的事也不会发生了。 18
21世纪高等院校规划教材
离散数学
1
第1章 命题逻辑
• • • • • • • • • 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 命题命题联结词 命题公式与解释 真值表与等价公式 对偶定理 范式 公式的蕴涵 其它联结词与最小联结词组 命题逻辑推理理论
2
1.1 命题及其表示法
• 1.1.1 命题
14
1.2.1 命题公式
例1.2.1 将下列命题符号化。 (1)张莉既聪明又好学。 (2)张莉虽然聪明但不好学。 (3)仅当你走,我将留下。 (4)上海到北京的14次列车是下午五点半 或六点开。
15
1.2.1 命题公式
• 解:设P:张莉聪明;Q:张莉好学,则 • (1)张莉既聪明又好学,可符号化为P∧Q; • ( 2 )张莉虽聪明但不好学,可符号化为P∧ (﹁Q)。 • ( 3 )设 P :你走; Q :我留下;这句话中“你 走”是“我留下”的必要条件。因此命题可表 示为QP。 • (4)设P:上海到北京的14次列车是五点半开; Q:上海到北京的14次列车是六点开;
把具有确定真假意义的陈述句,称为命题。 如果一个句子是命题,必需满足以下条件: (1)该句子是具有判断性的陈述语句; (2)它有确定的真值,非真即假。
3
1.1 命题及其表示法
例1.1.1 判断下列语句是否为命题,若是命题,判断其 真值。 (1)10是素数。 (2)f(x)= x2在[a,b]上连续。 (3)北京是中国的首都。 (4)1001+11=1100 (5)请勿喧哗! (6)你记住了吗? (7)这个风景真美呀! (8)x+y=7