高中数学 讲义
高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。
一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。
我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。
掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。
1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。
我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。
1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。
我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。
1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。
向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。
我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。
1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。
高中数学 集合的表示讲义

第2讲:集合的表示【知识梳理】一、集合的表示【考点解读】考点一:用列举法表示集合例1.用列举法表示下列给定的集合:(1)不大于12的非负偶数组成的集合A ;(2)小于9的质数组成的集合B ;(3)方程2230x x --=的实数根组成的集合C ; (4)方程组42x y x y +=⎧⎨-=⎩的解集D .变式训练1:用列举法表示下列集合:(1)方程22x x =的所有实数解组成的集合;(2)直线21y x =+与y 轴的交点所组成的集合;(3)由所有正整数构成的集合.考点二:用描述法表示集合文字描述;式子描述例2.用描述法表示下列集合:(1)不等式231x -<的解组成的集合A ;(2)被3除余1的正整数的集合B ;(3){2,4,6,8,10}C =;(4)平面直角坐标系中第一象限内的点组成的集合D .变式训练1:用描述法表示下列集合:(1)比1大又比11小的实数组成的集合;(2)不等式342x x +≥的所有解;(3)到两坐标轴距离相等的点的集合.考点三:集合的表示综合例3.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};④集合{|45}x x <<可以用列举法表示.A .只有①和④B .只有②和③C .只有②D .以上语句都不对变式训练1:方程组149x y x y +=⎧⎨-=⎩的解集是( )A .()2,1-B .()1,2-C .(){}1,2-D .(){}2,1-变式训练2:下列集合恰有2个元素的集合是( )A .2{0}x x -=B .2{|}x y x x =-C .2{|0}y y y -=D .2{|}y y x x =-变式训练3:已知集合{}21,1,3A a a a =+--,若1A ∈,则实数a 的值为__________.考点四:元素个数相同元素根据互异性,只能计算一次(主要考查互异性)例4.设集合{123}{45}}{|A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为( )A .3B .4C .5D .6变式训练1:已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为()A .1个B .2个C .3个D .4个变式训练2:设集合(){},1,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( )A .3B .4C .5D .6变式训练3:集合{}2*70,A xx x x =-<∈N ∣,则*8{,}B y y A y =∈∈N ∣中元素的个数为( )A .1个B .2个C .3个D .4个考点五:元素个数(求参) 相同元素根据互异性,只能计算一个(主要考查互异性)例5.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( )A .{1}B .{0}C .{0,1,1}-D .{0,1}变式训练1:已知集合{}2310A x ax x =-+=中有且只有一个元素,则实数a 的取值集合是( )A .9{0,}4B .1{0,}3C .{0}D .9{}4变式训练2:式子22a b a a b a++________.变式训练3:已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围考点六:集合新定义例6.给定集合A ,若对于任意a 、b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,给出如下三个结论:①集合{}4,2,0,2,4A =--为闭集合; ②集合{}3,A n n k k Z ==∈为闭集合;③若集合1A 、2A 为闭集合,则12A A 为闭集合. 其中正确结论的个数是( )A .0B .1C .2D .3变式训练1:已知集合A 中的元素均为整数,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A 的一个“孤立元”.给定集合{1,2,3,4,5,6,7,8}S =,由S 中的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.变式训练2:已知集合{|31,},{|32,},{|63,}A x x n n B x x n n M x x n n ==+∈==+∈==+∈Z Z Z .(1)若m M ∈,则是否存在,a A b B ∈∈,使m a b =+成立?(2)对于任意,a A b B ∈∈,是否一定存在m M ∈,使a b m +=?证明你的结论.【课堂检测】1、若用列举法表示集合27{(,)|}2y x A x y x y -=⎧=⎨+=⎩,则下列表示正确的是( )A .{1,3}x y =-=B .{(-1,3)}C .{3,-1}D .{-1,3}2、已知集合{}1,2,3,4,5A =,(){},|,,B x y x A y A x y A =∈∈+∈,则集合B 中所含元素的个数为( )A .4B .6C .8D .103、已知集合{}2,2A =-,{}|,,B m m x y x A y A ==+∈∈,则集合B 等于( )A .{}4,4-B .{}4,0,4-C .{}4,0-D .{}04、已知{}232,2a a ∈++,则实数a 的值为( )A .1或1-B .1C .1-D .1-或05、下列四个命题:①{0}是空集;②若a ∈N ,则a -∉N ;③集合2{|210}x x x ∈-+=R 含有两个元素;④集合6{|}x Q N x ∈∈是有限集.其中正确命题的个数是( )A .1B .2C .3D .06、若集合{}210x ax x -+=中只有一个元素,则实数a 的值为( )A .14B .0C .4D .0或147、设P 是一个数集,且至少含有两个元素.若对任意的,a b P ∈,都有,,,a ab a b ab P b +-∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是一个数域,有下列说法正确的是( )A .数域必含有0,1两个数;B .整数集是数域;C .若有理数集Q M ⊆,则数集M 必为数域;D .数域必为无限集.8、设P 是一个数集,且至少含有两个数,若对任意a b P ∈、,都有+a b 、-a b 、ab 、a P b ∈(除数0b ≠)则称数集P 是一个数域.例如有理数集Q 是数域;数集{,}F a a b Q =+∈也是数域.下列命题是真命题的是( )A .整数集是数域B .若有理数集Q M ⊆,则数集M 必为数域C .数域必为无限集D .存在无穷多个数域9、用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)30的正因数组成的集合.(3)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.10、已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.11、已知集合{}2|210A x R ax x =∈++=,其中a R ∈.(1)1是A 中的一个元素,用列举法表示A ;(2)若A 中至多有一个元素,试求a 的取值范围.。
高中数学讲义:充分条件与必要条件

充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
高中数学教案讲义

高中数学教案讲义
目标:学生能够理解平面直角坐标系的基本概念,掌握直线方程的求解方法,并能应用直线方程解决实际问题。
一、引入(5分钟)
1. 引导学生回顾平面几何中的基本概念,并介绍平面直角坐标系的概念和作用。
2. 提出问题:如何利用直线方程描述平面上的几何关系?
二、讲解(15分钟)
1. 介绍平面直角坐标系的建立方法和性质。
2. 解释直线的一般方程和斜截式方程的定义及求解方法。
3. 演示如何根据给定条件写出直线的方程。
4. 引导学生通过例题理解直线方程的求解过程。
三、练习(20分钟)
1. 学生进行小组讨论,解决给定的直线方程问题。
2. 学生尝试自己写出题目并解决。
3. 老师对学生的答案进行评价和指导。
四、应用(10分钟)
1. 给学生提出一个实际问题,要求用直线方程解决。
2. 学生组织答案并进行展示。
3. 老师对学生的表现进行点评和鼓励。
五、总结(5分钟)
1. 总结本节课的重点内容。
2. 提出学生可能存在的问题,并鼓励他们在课后进行复习和巩固。
六、拓展(5分钟)
1. 引导学生探索三维直角坐标系,了解空间直线的方程和性质。
2. 鼓励学生对平面直角坐标系进行更深入的研究和探索。
七、作业(2分钟)
1. 布置作业:完成课堂练习题和课后习题,加深对直线方程的理解和掌握。
教学反思:通过本节课的教学,学生能够初步掌握直线方程的求解方法,并能够运用所学知识解决实际问题。
在后续教学中,可以通过更多的实例引导学生对平面直角坐标系的应用有更深入的了解。
高中数学辅导讲义

高中数学辅导讲义全文共四篇示例,供读者参考第一篇示例:高中数学辅导讲义一、高中数学的特点高中数学是一门抽象性强、逻辑性强的学科,是洞悉事物内在规律的有力工具。
高中数学包括数学分析、几何、代数、概率统计等内容,既是基础性学科,又是应用性学科,对培养学生的逻辑思维能力、创新能力和解决问题的能力具有重要作用。
二、高中数学的学习方法1. 夯实基础知识。
高中数学的学习需要建立在扎实的初中数学基础之上,因此一定要加强对基础知识的掌握。
特别是代数、几何等基础知识的理解和掌握十分关键。
2. 理解概念,掌握方法。
根据教材的内容,理解数学概念的本质和意义,掌握解题方法,而不是死记硬背,遇到新问题时也能灵活应用。
3. 多做练习,多总结归纳。
数学是一个需要不断实践的学科,只有通过不断练习才能提高解题能力。
要及时总结归纳解题方法,形成自己的学习笔记和知识框架。
4. 注重思辨能力的培养。
数学教学注重逻辑性和推理能力,因此在学习数学的过程中,培养自己的思辨能力,学会分析问题,寻求问题的解决方法十分重要。
5. 多与同学讨论,多请教老师。
数学是一个需要合作的科目,通过与同学讨论,可以相互学习,相互进步。
遇到困难时也要及时请教老师,不要让问题困扰自己。
1. 数列。
数列是高中数学的基础内容之一,包括等差数列、等比数列、数列的概念和性质等。
理解数列的概念和性质,掌握求和公式和通项公式的推导方法,能够熟练解决相关题目。
4. 概率统计。
概率统计是高中数学的应用内容之一,包括概率的基本概念、概率的计算方法、随机变量和分布等。
理解概率统计的基本原理和应用方法,能够熟练计算概率和应用统计方法解决实际问题。
四、高中数学常见问题及解决方法1. 能力不足。
如果在高中数学学习中遇到能力不足的情况,可以通过加强基础知识的学习和练习来提高解题能力,同时及时找老师请教解决问题。
2. 缺乏兴趣。
如果对高中数学缺乏兴趣,可以多跟同学交流讨论,寻找解题乐趣,也可以通过参加数学竞赛等活动来激发学习兴趣。
高中数学选修3-1基础精品讲义

高中数学选修3-1基础精品讲义
一、函数的基本概念
- 函数的定义及表示方法
- 定义域、值域、对应关系和逆函数
- 函数的相等和不等关系
二、一次函数
- 一次函数的定义、性质和图像
- 一次函数的斜率和截距
- 求一次函数的解析式和图像
三、二次函数
- 二次函数的定义、性质和图像
- 二次函数的最值和对称轴
- 求二次函数的解析式和图像
四、指数函数
- 指数函数的定义、性质和图像
- 指数函数与对数函数的关系
- 指数函数的增长速度
五、对数函数
- 对数函数的定义、性质和图像
- 对数函数与指数函数的关系
- 对数函数的应用场景
六、三角函数
- 三角函数的定义、性质和图像
- 三角函数的周期性和奇偶性
- 三角函数的应用场景
七、数列与数学归纳法
- 数列的定义、性质和常见类型
- 数学归纳法的基本原理和应用
- 数列的求和公式和递推公式
八、排列与组合
- 排列和组合的基本概念和表示方法- 排列和组合的性质和运算规则
- 排列和组合的应用
以上是《高中数学选修3-1基础精品讲义》的主要内容,希望对同学们的学习有所帮助。
高中数学《导数》讲义(全)

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
高中数学教案讲义模板

高中数学教案讲义模板标题:高中数学课程教学
教学内容:数学
教学目标:
1. 理解和掌握基本数学概念和方法;
2. 提高学生的数学思维能力和解题能力;
3. 培养学生的数学兴趣和学习能力。
教学重点:
1. 基本数学运算;
2. 代数方程与不等式;
3. 几何图形与空间几何。
教学难点:
1. 复杂数学运算;
2. 解决实际问题的数学建模;
3. 几何证明与推理。
教学流程:
一、复习与导入(5分钟)
1. 复习上节课内容,引出本节课的学习内容;
2. 提问学生对数学的认识和看法。
二、新知讲解(30分钟)
1. 介绍本节课的新知识点,详细讲解基本概念和方法;
2. 举例演示解题步骤,引导学生掌握解题技巧。
三、练习与训练(15分钟)
1. 布置练习题目,让学生独立解题;
2. 督促学生互相讨论与合作,共同解决问题。
四、检测与总结(10分钟)
1. 收集学生的作业,进行批改与评价;
2. 总结本节课的重点和难点,引导学生复习和提高。
五、课堂延伸(5分钟)
1. 辅导学生扩展相关知识,拓宽思维视野;
2. 鼓励学生进行自主学习和练习。
教学反思:本节课教师讲解清晰,学生参与积极,但仍需加强课后复习和练习,提高学生的解题能力和应用能力。
教学反馈:请学生整理本节课的知识点和练习题目,并反馈学习体会和建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
\高中函数部分附高中必修一到四点直线,切线直线与方程标准圆,圆与圆圆与方程,曲线与方程 xy=+ k, - k 一次函数函数二次函数对称轴求根不等式,方程组三角函数,二倍角、曲线与方程在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
求曲线的方程必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}◆用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}◆集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形} 4)Venn 图:4、集合的分类:(1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。
A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n 个元素的集合,含有2n 个子集,2n-1个真子集 二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题——一题多解 &指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q) (a^a)^b=a^ab(a>0,a 、b 属于Q) (ab)^a=a^a*b^a(a>0,a 、b 属于Q) 指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称 &对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. 方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点:二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算AB +BC =AC ,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a ,有:0+a =a +0=a 。
|a +b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。
零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:图象定义域值域最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值函数性质周期性奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度. 口诀:奇变偶不变,符号看象限. 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin αcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—-----2 2α+βα-βcosα-cosβ=-2sin—-----•sin—-----2 2积化和差公式⒏三角函数的积化和差公式sinα•cosβ=0.5[sin(α+β)+sin(α-β)] cosα•sinβ=0.5[sin(α+β)-sin(α-β)] cosα•cosβ=0.5[cos(α+β)+cos(α-β)] sinα•sinβ=- 0.5[cos(α+β)-cos(α-β)]。