分布拟合检验简介
数据分布拟合

数据分布拟合检验的数学模型摘 要假设检验的基本思想,讨论当总体分布为正态时,关于其中未知参数的假设检验问题,可能遇到这样的情形,总体服从何种理论分布并不知道,要求我们直接对总体分布提出一个假设 。
一般的各种检验法, 是在总体分布类型已知的情况下, 对其中的未知参数进行检验, 这类统计检验法统称为参数检验. 在实际问题中, 有时我们并不能确切预知总体服从何种分布, 这时就需要根据来自总体的样本对总体的分布进行推断, 以判断总体服从何种分布。
这类统计检验称为非参数检验. 解决这类问题的工具之一是英国统计学家K. 皮尔逊在1900年发表的一篇文章中引进的——2χ检验法。
关键词:数据检验 分布拟合 2χ检验法一、问题重述①、问题背景:自1965年1月1日至1971年2月9日共2231天中,全世界记录到里氏震级4级和4级以上地震计162次,统计如下:相继两次地震记录表:86681017263150403935343029252420191514109540出现的频率间隔天数--------x 试检验相继两次地震间隔的天数X 服从指数分布(=α0.05)。
在概率论中,大家对泊松分布产生的一般条件已有所了解,容易想到,每年的次数,可以用一个泊松随机变量来近似描述。
也就是说,我们可以假设每年爆发战争次数分布X 近似泊松分布。
现在的问题是:上面的数据能否证实X 具有泊松分布的假设是正确的?②、检验法的基本思想检验法是在总体X 的分布未知时, 根据来自总体的样本, 检验总体分布的假设的一2χ种检验方法。
具体进行检验时,先提出原假设:0H : 总体X 的分布函数为)(x F然后根据样本经验分布和所假设的理论分布之间的吻合程度来决定是否接受原假设。
这种检验通常称作拟合优度检验. 它是一种非参数检验. 一般地, 我们总是根据样本观察值用直方图和经验分布函数, 推断出总体可能服从的分布, 然后作检验.1、 通过提出的方案和计算来决定给出数据分布拟合检验的数学模型的的情况。
分布拟合检验

3、计算样本观测值 4、判断 p1 PH 0 ( D D0 ), p2 PH 0 ( A2 A02 ), p3 PH 0 (W 2 W02 )
当p , 拒绝H 0;p ,不能拒绝H 0
Hale Waihona Puke 正态性W检验方法专用正态性检验的方法 1、假设
H0:F(x)是正态分布函数,H1:F(x)不是正态分布函数 2、构造统计量 对称位置次序统计量的差
2、构造检验统计量
其中, mi和npi 频数 p1 F0 (a1 )
2 ( m np ) i 2 = i npi i 1 分别为第i组的样本频数和理论 l
pi F0 (ai ) F0 (ai 1 ), i 2, 3,, ... l 1 pl 1 F0 (al 1 )
数据分组为l个区间1提出假设01122构造检验统计量其中分别为第i组的样本频数和理论频数当原假设为真时该检验统计量的极限分布是k为理论分布中待估计参数的个数
数据的分布拟合检 验与正态性检验
总体分布服从正态分布或总体分布已知 条件下的统计检验,称为参数检验。 但是在数据探索分析中,我们需要拟合的 正是数据的分布。这就要用到非参数假设检 验——分布拟合检验(用于检验样本观测值 是否来自某种给定分布)。 常用的分布拟合检验方法有 2 检验, 经验分布拟合检验法,以及正态性W检验法 。
由于0<W<1,在H0为真时,W接近1,W值过小应拒 绝H0
p1 PH 0 (W W0 ) 当p , 拒绝H 0;p ,不能拒绝H 0
请看SAS实现部分
H0:F(x)=F0(x),H1:F(x)≠F0(x)
经验分布拟合检验方法
2、构造检验统计量 统计量是以两个函数的距离为基础的,根据 不同的距离定义有不同的统计量。
概率论课件分布拟合检验

基因表达分析
通过分布拟合检验,可以 对基因表达数据进行统计 分析,了解基因表达模式 和功能。
临床试验数据分析
在临床试验中,分布拟合 检验可用于分析药物疗效、 疾病发病率等数据。
其他应用场景
环境监测
在环境监测领域,分布拟合检验可用 于分析空气质量、水质等环境指标的 分布特征。
社会调查
在社会调查中,分布拟合检验可用于 分析人口普查、民意调查等数据,了 解社会现象和趋势。
本研究还发现,不同分布拟合检验方法在拟合效 果上存在差异,其中QQ图和概率图在判断分布拟 合优劣方面表现较好,而直方图在可视化展示方 面更具优势。
研究展望
在未来的研究中,可以进一步 探讨其他理论分布与实际数据 的拟合程度,以寻找更合适的
分布模型。
可以结合机器学习和人工智能 算法,对数据进行更深入的挖 掘和分析,以提高分布拟合检
分析结果表明,所选理论分布与实际数据存在一 定的拟合程度,但也存在一定的偏差。其中,正 态分布和指数分布与实际数据的拟合效果较好, 而泊松分布和威布尔分布的拟合效果相对较差。
在本研究中,我们采用了多种分布拟合检验方法 ,包括直方图、QQ图、概率图和统计检验等方法 ,对实际数据进行了深入的分析和比较。
通过绘制直方图和QQ图,可 以直观地观察数据分布与理论 分布的拟合程度。同时,计算 峰度系数和偏度系数等统计指 标,可以量化地评估分布拟合 程度。
案例二:人口普查数据分布拟合检验
• 总结词:人口普查数据分布拟合检验是评估人口数据质量和预测人口发 展趋势的重要手段。
• 详细描述:通过对人口普查数据进行分布拟合检验,可以判断人口数据 是否符合预期的分布形态,如年龄、性别、地区分布等,从而评估数据 质量和预测未来人口发展趋势。
分布拟合

在前面的课程中,我们已经了解了假 设检验的基本思想,并讨论了当总体分布 为正态时,关于其中未知参数的假设检验 问题 .
然而可能遇到这样的情形,总体服从何 种理论分布并不知道,要求我们直接对总体 分布提出一个假设 .
例如,从1500到1931年的432年间,每年 爆发战争的次数可以看作一个随机变量,椐统 计,这432年间共爆发了299次战争,具体数据 如下:
若有r个未知参数需用相应的估计量来代 替,自由度就减少r个. 此时统计量 渐近(k-r-1)个自由度的 分布.
2 2
根据这个定理,对给定的显著性水平 , 2 2 查 分布表可得临界值 ,使得
P ( )
2 2
得拒绝域:
( k 1) (不需估计参数)
例1
在一个正二十面体的二十个面上,分别标有
数字0, 1, 2, …, 9. 每个数字在两个面上标出.
为检验其均匀性,作了800次投掷试验,数字0, 1,
2, …, 9朝正上方的次数如下: 数字 0 频数 74 1 92 2 83 3 79 4 80 5 73 6 77 7 75 8 76 9 91
2
使用 2检验法对总体分布进行检验时,
我们先提出原假设:
H0:总体X的分布函数为F(x) 然后根据样本的经验分布和所假设的理论分 布之间的吻合程度来决定是否接受原假设. 这种检验通常称作拟合优度检验,它是一 种非参数检验.
在用 2检验法 检验假设H0时,若在H0下 分布类型已知,但其参数未知,这时需要先 用极大似然估计法估计参数,然后作检验.
K-S检验的优势和劣势
• • • • 作为一种非参数方法,具有稳健性; 不依赖均值的位置; 对尺度化不敏感; 适用范围广(不像 t 检验仅局限于正态分布, 当数据偏离正态分布太多时t 检验会失效; • 比卡方更有效; • 如果数据确实服从正态分布,没有 t 检验敏感 (或有效)。
总体分布的卡方拟合检验

知识点8.6总体分布的卡方拟合检验设总体X的分布函数F(x)未知, X,⋯,X n是X的一个样本, 要1求检验假设H0:F(x)=F0(x),H1:F(x)≠F0(x).这里F(x)是数学表达形式已知的分布函数. 备择假设表示F(x)是除了F(x)以外的某一函数, 通常可以不写出来.用k −1个分点t 1,⋯,t k−1将实数轴分成k 个区间, 记为A i =t i−1,t i ,其中t 0=−∞,t k =+∞.H 0为真时, 有p i =P(X ∈A i )=F 0(t i )−F 0(t i−1).解决方案A i +∞−∞t 1t i−1t i ⋯⋯如果F 0(x)中带有未知参数,则先利用样本求出未知参数的最大似然估计值,然后将估计值代入F 0x 计算概率p i .记样本观测值x 1⋯,x n 落入区间A i 的频数为n i , 称其为实际频数.从频率和概率之间关系的角度出发, Karl Pearson 提出了如下形式的检验统计量:χ2=i=1kn p i n i n−p i2=i=1k(n i −np i)2np inp i 称为理论频数.当H 0为真时, 在样本容量充分大的情况下, 该检验统计量近似服从χ2(k −r −1)分布, 其中r 为F 0(x)中待估计的未知参数个数.由Bernoulli 大数定律可知,当试验次数较大时,事件发生的频率和概率出现较大偏差的概率是比较小的.所以当H 0为真时,对于给定的显著水平α有P i=1k(n i −np i )2np i≥χα2(k −r −1)≈α.故H 0的拒绝域为:χα2k −r −1,+∞.H 0的接受域为:0,χα2k −r −1.注意事项(1) 原假设H0中的总体分布也可以用分布律或密度函数来表示, 只要在H0为真时, 能够计算概率pi即可.(2) 根据实践经验, 要求样本容量n≥50, 且要求理论频数np i≥5.若npi <5, 则应适当合并Ai以满足此要求.例1将一枚骰子抛掷120次, 结果如下问这枚骰子的六个面是否匀称?取显著性水平为0.05.解将骰子六个面的点数作为总体X,H0:P X=k=16,k=1,2,⋯,6.点数123456频数212819241612分组数k =6, 待估计参数个数r =0,χα2k −r −1=χ0.052(5)=11.07.由于8.1<11.07, 故接受H 0, 即认为这枚骰子的六个面是匀称的.分组n ip inp i(n i −np i)2/npi1211/6201/202281/62064/203191/6201/204241/62016/205161/62016/206121/62064/20Σχ2=8.1例2从某纱厂生产的一批棉纱中抽取300条进行拉力强度试验, 得到数据如下, 检验该批棉纱的拉力强度是否服从正态分布(取显著水平为0.05).拉力强度区间频数拉力强度区间频数拉力强度区间频数拉力强度区间频数0.50~0.6411.06~1.20371.48~1.62521.90~2.0416 0.64~0.7821.20~1.34531.62~1.76262.04~2.184 0.78~0.9291.34~1.48561.76~1.90192.18~2.321 0.92~1.0624解设棉纱的拉力强度为总体X , H 0:X~N μ,σ2.以拉力强度区间的中点为观测值x i , 得到μ和σ2的最大似然估计值分别为ෝμ=x =1300i=113x i n i =1.41,ෝσ2=s n 2=1300i=113x i −x 2n i =0.0892.当H 0为真时,p i =Φt i −1.410.0892−Φt i−1−1.410.0892,i =1,⋯,13.这样合并满足np i >5np i <5需要合并分组这部分要重新计算合并后仍有np i <5要继续合并从而得计算表如下这里也要相应合并分组拉力强度区间实际频数n i 概率p i 理论频数np i n i −np i2np i 10.50~0.6410.00381.140.017220.64~0.7820.01253.750.816730.78~0.9290.03309.900.081840.92~1.06240.070221.060.410451.06~1.20370.120436.120.021461.20~1.34530.166449.920.190071.34~1.48560.185355.590.003081.48~1.62520.166449.920.086791.62~1.76260.120436.122.8354101.76~1.90190.070221.060.2015111.90~2.04160.03309.903.7586122.04~2.1840.01253.750.0167132.18~2.3210.00381.140.0172合并后的计算表分组拉力强度区间实际频数ni 概率pi理论频数npi(n i−np i)2/np i10.50~0.92120.049314.790.526320.92~1.06240.070221.060.410431.06~1.20370.120436.120.021441.20~1.34530.166449.920.190051.34~1.48560.185355.590.003061.48~1.62520.166449.920.086771.62~1.76260.120436.122.835481.76~1.90190.070221.060.201591.90~2.32210.049314.792.6074Σχ2=6.8822分组数k=9, 待估计参数个数r=2,χα2(k−r−1)=χ0.052(6)=12.592.由于6.8822<12.592, 故接受H, 即认为该批棉纱的拉力强度服从正态分布.。
7.4似然比检验与分布拟合检验

4 July 2024
第七章 假设检验
第23页
解:这是一个典型的分布拟合优度检验,总体 共有6类,其发生概率分别为0.1、0.2、0.3、 0.2、0.1和0.1,选用如下卡方检验统计量
2 k ni npi 2 ,
i 1
npi
检验拒绝域为:
这里k=6,
2
2 1
5
,
4 July 2024
4 July 2024
第七章 假设检验
第2页
当 ( x) 较大时,拒绝原假设 H0 , 否则,接受 H0 ,
这种检验方法称为似然比检验。
例1 对正态总体,方差已知,检验问题
H0 : 0 , H1 : 1 (1 0 )
似然比为
(x)
p( x1,, xn , 1 ) p( x1,, x, 0 )
1
2
n exp
1
2 2
n
( xi
i 1
1
)2
1
2
n exp
1
2 2
n
( xi
i 1
0
)2
4 July 2024
第七章 假设检验
exp
1
2 2
n
[( xi
i 1
1 )2
(xi
0
)2
]
exp
1 2
0
2
n
(2xi
i 1
1 0 )
exp
n ( 1
0 )
x
0
n
4 July 2024
第七章 假设检验
第10页
可得临界值为 c1 F1 (1, n 1)
这样检验统计量也可以为
常见的几种非参数检验方法

常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
分布拟合检验

随机变量 x 的偏度和峰度指的是 x 的标准化变 量[x-E(x)]/ D( x ) 的三阶中心矩和四阶中心矩: x - E(x) 3 E[( x E ( x )) 3 ] v1=E[( ) ]= , 3/ 2 ( D( x )) D(x) x - E(x) 4 E[( x E ( x )) 4 ] v2=E[( ) ]= . 2 ( D( x )) D(x) 当随机变量 x 服从正态分布时,v1=0 且 v2=3. 设 x1,x2,…,xn 是来自总体 x 的样本,则 v1,v2 的矩估 计分别是 g1=B3/B 3/2 , g2=B4/B 2 . 2 2 其中 Bk(k=2,3,4)是样本 k 阶中心矩,并分别称 g1, g2 为样本偏度和样本峰度.
例 1 在一实验中,每隔一定时间观察一次由某 种铀所放射的到达计数器上的 粒子数 x,共观察了 100 次,得结果如下表所示: 表 8.2 铀放射的 粒子数的实验记录 i 0 1 2 3 4 5 6 7 8 9 10 11 12 fi 1 5 16 17 26 11 9 9 2 1 2 1 0 Ai A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 其中 fi 是观察到有 i 个 粒子的次数。从理论上考虑 知 x 应服从泊松分布
155 149 141 142 141 147 149 140
158 158 140 137 149 146 138 142
解 为了粗略了解这些数据的分布情况,我们先根 据所给的数据画出直方图,下面就来介绍直方图。 上述数据的最小值、最大值分别为126、158,即所 有数据落在区间[126,158]上现取区间[124.5,159.5] ,它能覆盖区间[126,158]。将区间[124.5,159.5]等 分为7个小区间,小区间的长度记为 , (159.5 124.5) / 7 5. 称为组距。小区间的端点称为组限。数出落在每个 小区间内的数据频数 f i ,算出频率 f i / n / n( n 84, i 1,2,,7) 如下表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布拟合检验简介
重点:分布拟合检验方法
在很多场合下,我们连总体服从什么分布也无法知道,这时我们需要对总体的分布进行检验,这正是分布拟合检验要解决的问题。
一、 分布拟合检验的方法
二、 例题
例1 在某一实验中,每隔一定时间观测一次某种铀所放射的到达计数器上的α粒子数X ,共观测了100次,得结果如下表所示
其中n i 为观测到i 个粒子的次数。
从理论上考虑,X 应服从泊松分布,问这种理论上的推断是否符合实际(取显著性水平α=0.05)
解:原假设H 0:X 服从泊松分布Λ,1,0,!
}{===-i i e i X P i
λλ
λ的极大似然估计值为2.4ˆ==x λ。
当H 0为真时,P{X=i}的估计值为Λ,1,0,!
2.4ˆ2.4==-i i e p i 。
2χ的计算如下表
所示。
查表可得592.122
05.0=χ
由于592.128215.62<=χ,故在显著性水平α=0.05下接受H 0,即认为理论上的推断符合实际
例2 自1965年1月1日至1971年2月9日共2231天中,全世界记录到的里氏震级4级和4级以上地震计162次,统计如下:
试检验相继两次地震间隔天数是否服从指数分布?取显著性水平α=0.05
解:原假设H 0:X 的概率密度为⎪⎩
⎪⎨⎧<>=-0 x 00 x )(x e x f λλ
λ的极大似然估计值为0726.0ˆ=λ
X 是连续性随机变量,将X 可能取值的空间(0,+∞)分为k=9个互不重叠的子区间921,,,A A A Λ
当H 0为真时,X 的分布函数为⎪⎩
⎪⎨⎧≤>-=-0 x 00 x 1)(ˆ0726.0x e x F 由上式可得概率p i =P{X ∈A i }的估计值i p
ˆ,将计算结果列表如下
查表可得067.14)7(2
05.0=χ
067.145631.12<=χ
故在显著性水平α=0.05下接受H 0,即认为X 服从指数分布。