七年级数学命题和定理
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
七年级数学人教版下册命题、定理、证明

直线的基本事实:两点确定一条直线.
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下 反例:图中,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.
A
O
1 2
C
B
例题讲解
例2 如图,已知直线b//c,a⊥b. 求证a⊥c.
证明: ∵a⊥b (已知),
b
c
∴∠1 = 90°(垂直的定义).
a
1
2
又b//c(已知),
∴∠1 = ∠2(两直线平行,同位角相等).
(2)余角的性质:同角或等角的余角相等.
(3)对顶角的性质:对顶角相等.
(4)平行线的判定:内错角相等,两直线平行; 同旁内角互补,两直线平行
在很多情况下,一个命题的正确性需要经过推理才能作出判断, 这个推理过程叫做证明.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论就可以了.
6.如图,已知AB∥CD,直线AB,CD被直线MN所截,
交点分别为P,Q,PG平分∠BPQ,QH平分∠CQP.
求证:PG∥HQ.
M P
A
证明:∵AB∥CD(已知),
H C
∴∠BPQ=∠CQP(两直线平行,内错角相等).
B G
D Q
N
又∵PG平分∠BPQ,QH平分∠CQP(已知),
七年级数学命题定理(中学课件2019)

ห้องสมุดไป่ตู้习目标
1、知识目标: 了解命题、真命题、假命题、定理的含 义,会区分命题的题设和结论. 2、能力目标: 能区分命题的题设和结论;会把一些简 单命题改写成“如果……那么……”的形式。
3、情感目标:初步体会合理化思想。
学习重点:命题、定理的概念;区分命题 的题设和结论.
学习难点:.区分命题的题设和结 论;会把一些简单命题改写成 “如果……那么…… ”的形式
;抢庄牛牛/ ;
取其财物 南使闽 东越 不敢 未有进者 以忧发疾而死 昭明星 惟前帝王之宪 秦官 非其相反 〕《公孔尼子》二十八篇 九曰新都显王戚祢穆庙 春将出民 太子亦遣使者挢制赦长安中都官囚徒 乃发適戍以备之 举家忧愁 及丞相 御史亦恶其矫制 稽之《五经》 开宽裕之路 所臧活豪士以百 数 新都侯王葬为大司马 将军已下廷尉 蝗 然后民知所法 兴礼乐 有司奏元残贼不改 获单于父行及嫂 居次 名王 犁汙都尉 千长 将以下三万九千馀级 远其躬也 昭帝时 赵姬生淮南厉王长 故脏病则气色发於面 见闰分二万四千一百九十二 少好将帅之节 以特进侯就朝位 后岁馀薨 发兵 相助 责单于马万匹 以刑罚痛绳群下 人或毁不疑曰 不疑状貌甚美 雪边吏之宿耻 封安平侯 乃说根曰 《书》云 天聪明 而不遣赵王 昌既被征 乱男女之别 立荣子广为齐王 石乡 来况齐国 尝闻罪人赎矣 处险不敞 屈原 愿且罢兵 不可者 八也 水犹不冒城郭 户二千三百三十九 见礼如三 公 叱从吏收缚 外内骚动 后知云亡命罪人 数除积日如法 以竹落长四丈 都护但钦不以时救助 乃吏民以义入钱 谷助作者 足以通渠成水门 臣弟子姚平谓臣曰 房可谓知道 夙兴夜寐 故蜚至 故因环封之三县 厥应泰山之石颠而下 以师赐爵关内侯 当轴处中 兰陵缪生长沙内史 先是 武帝巡 狩所幸之郡国 迎延满堂 而民不齐出南亩 今既养全其子十年
七年级命题定理知识点

七年级命题定理知识点定理是数学中的一种重要概念,它是已被证明的数学命题,通常用符号来表示。
“七年级命题定理知识点”是一个较为宽泛的话题,本文将从七年级数学教材中选取一些重要的定理进行讲解。
1. 整除整除是数论中的一个基本概念。
七年级数学中,整数的整除性质是学习的重点之一,其中最重要的定理为:定理1:任何一个整数都可以表示为3个整数的积,其中2个整数的和等于第三个整数的相反数。
例如,-24可以表示为(-3)×4×2,其中(-3)+4=1,1+2=-1。
通过这个定理,我们可以更好地理解整数的因子和质因子分解的概念。
2. 分数的加减乘除分数的加减乘除是七年级数学中的一个重要知识点,其中应用最广泛的定理为:定理2:两个分数的乘积等于它们各自的分子的积除以它们各自的分母的积。
例如,2/3和4/5的乘积为(2×4)/(3×5)=8/15。
这个定理可以方便地计算分数的乘法,也为后续的分数的化简等问题打下基础。
3. 平行四边形的性质平行四边形的性质是初中数学中较为基础的一个知识点,其中最常用的定理为:定理3:平行四边形的对角线互相平分,即两条对角线在交点处互相平分。
这个定理具有重要的应用价值,可以方便地求解平行四边形的各种角度和边长问题。
4. 三角形的性质三角形是初中数学中的一个重要概念,其中最重要的定理为:定理4:三角形两边之和大于第三边,两边之差小于第三边。
这个定理是三角形的最基本性质,任何一个三角形都满足这个定理。
在解决三角形的各种问题时,这个定理都有着重要的应用价值。
5. 面积公式初中数学中的面积公式是化简几何问题所必不可少的工具,其中最常用的公式为:定理5:三角形的面积等于底边长乘以高的一半。
例如,三角形ABC的底边长为5,高为3,则它的面积为(5×3)/2=7.5。
通过这个定理,我们可以方便地计算各种形状的图形的面积,为后续的解题提供了帮助。
以上就是七年级数学中的一些重要的命题定理知识点,它们在初中数学的学习中具有重要的地位和作用,同时也为后续的数学学习打下了坚实的基础。
人教版七年级数学下《命题、定理、证明》知识全解

《命题、定理、证明》知识全解1.教材分析第一课时本小节教科书通过列举学过的一些对某一件事情作出判断的语句引入新课内容,所举的例子包括了命题叙述的几种不同情况:“如果…,那么…”形式;条件、结论明显的简化叙述;条件、结论不明显的简化叙述等.让学生从这些学过的语句中找出它们的共同特点——对某一件事情作出了判断,进而给出命题的概念和命题的结构.分清命题的题设和结论,是今后学习推理论证的必备知识之一.如何分清命题的题设和结论呢?教科书对此分情况进行了说明.对于“如果…,那么…”形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论;对于题设和结论不明显的命题,可以通过将命题改写成“如果…,那么…”的形式来分析命题的题设和结论。
由于命题有真、假之分,所以教科书最后给出真命题和假命题的定义.学生已经熟悉很多真命题,对假命题比较生疏,所以教科书专门列举了一些假命题的例子.教学时要注意结合真、假命题的例子对照讲解,让学生理解真、假命题的区别.第二课时本小节教科书主要介绍基本事实、定理、证明的概念以及什么是证明,判断一个命题是假命题的方法.教材首先从以前学过的一些图形的性质出发,针对这些真命题,通过分类,举例说明什么是基本事实;什么样的真命题叫做定理,使学生明白基本事实的正确性是直接承认的,而定理的正确性是经过推理证实的.并指出定理也可以作为继续推理的依据.由于一些命题的正确性需要经过推理才能作出判断,从而给出证明的概念.之后通过一个实例让学生了解什么是证明.在这个证明过程中,学生可以了解用符号语言表达的规范的证明过程,以及证明过程要步步有据.由于命题有真、假之分,所以教科书最后说明了如何判断一个命题是假命题,即举反例,以及举反例应符合什么条件,并通过实例说明举反例是判断一个命题为假命题的常用方法.本节课的教学重点是理解证明过程要步步有据,填写证明的关键步骤和理由;教学难点是举反例判断一个简单的命题是假命题.2、教学目标(1)知道命题的意义.(2)了解命题的结构,会区分一个命题的题设和结论.(3)知道什么是真命题,什么是假命题,会区分简单的真、假命题.(4)了解基本事实和定理的意义;(5)知道证明的意义和证明的必要性,知道证明要合乎逻辑.(6)了解反例的作用,知道利用反例可以判断一个命题是错误的.3.教学目标解析(1)知道命题的意义,即知道什么是“判断”,能够根据具体的例子区分什么是命题,什么不是命题.了解命题的几种不同的叙述方式.(2)了解命题的结构,即了解一个命题由题设(条件)和结论两部分构成;会找出一个给定命题的题设和结论;会把一些题设与结论不明显的简单命题改写成“如果…,那么…”的形式.(3)知道真、假命题的意义,即要求明确,任意一个命题在题设成立时,其结论要么正确,要么不正确.对题设成立时结论正确的命题叫做真命题,而题设成立时结论不正确的命题叫做假命题.区分简单的真、假命题,即要求学生能够结合生活实际与已有知识,判断一个常见命题的正确性.(4)对于基本事实、定理,要了解它们的含义;能够列举出前面学过的一些基本事实和定理;(5)证明是在前面的“说理”、“简单推理”的基础上更进一步的要求,这里体现一个循序渐进的过程,目的在于培养学生言之有据的习惯,由此将完成由实验几何到论证几何、由直观感知到理性证明的过渡.对于证明,要知道什么是证明,为什么要证明;知道证明是一个过程,了解证明和推理的区别;知道证明的书写格式;能填写一些证明的关键步骤和理由,知道这些理由可以是已知条件,也可以是学过的定义、基本事实、定理等.目前暂不要求学生能进行完整的证明.(6)明白举出反例是判断一个命题是假命题的常用方法;对易搞错的命题,如“如果两个角是同位角,那么它们相等”,“如果两个角是同旁内角,那么它们互补”等,能通过举反例说明它们是假命题.4.重难点突破(1)找出命题的题设与结论突破建议:①熟悉命题的叙述方式.根据情况找出命题的题设和结论,大体有以下几种情况:ⅰ)命题是用“如果…,那么…”形式叙述的.比如,“如果两条直线都平行于第三条直线,那么这两条直线平行”这个命题中,“如果”后接的部分是题设,“那么”后接的部分是结论;ⅱ)没有写出“如果…,那么…”形式的命题,如“等角的补角相等”这样的命题,它的题设和结论不明显,为了分清它的题设和结论,首先要明确它是由两个部分(题设和结论)组成的;其次要分析这个命题是什么已知事项推出了什么结论;最后将其改写成“如果…,那么…”的形式.因为“等角的补角相等”是研究两个相等的角,它们的补角具有相等这一性质,因此,将其改写为“如果…,那么…”形式是:“如果两个角相等,那么这两个角的补角也相等”.ⅲ)对于“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”这个命题,“如果”前面这句话“两条直线被第三条直线所截”实际上是命题的前提条件,这个前提条件和“如果”后接的部分一并是题设,“这两条直线平行”是结论.这类命题,只要画出图形,“题设”和“结论”就可以用符号语言简明地表示出来。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案

今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。
13.定理与证明PPT课件(华师大版)

是( )
A.40°
B.50°
C.60°
D.140°
2 完成下面的证明过程,并在括号内填上理由.已知:如图所
示,AD∥BC,∠BAD=∠BCD.求证:AB∥CD.
证明:因为AD∥BC( ),
所以∠1=________(
),
又因为∠BAD=∠BCD(
),
所以∠BAD-∠1=∠BCD-∠2(
),
即∠3=∠4,所以AB∥________(
2 × 3 + 1 =7, 2 × 3 × 5+! =31, 2 × 3 × 5 × 7 + l = 211.
计算一下 2×3×5×7×
11+1与 2×3×5×7× 11×13+1,你 发现了什么?
于是,他根据上面的结果并利 用质数表得出结论:从 质数2开始, 排在前面的任意多个质数的乘积加1 一定 也是质数.他的结论正确吗?
例2 填写下列证明过程中的推理根据.
如图13.1-2:已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分∠ABO与AC相交
于点E,∠A=∠C.
求证:∠1=∠2.
证明:∵∠A=∠C(已知),
∴AB∥CD(________).
图13.1-2
∴∠ABO=∠CDO(________).
又∵DF平分∠CDO,BE平分∠ABO(已知),
).
获取证明思路的方法: (1)从已知条件出发,结合图形,根据前面学过的定
义、基本事实、定理、公式逐步推理求证的结论,这 种方法叫做“综合法”. (2)从结论出发,去探求其成立的原因,直到与已知 条件相吻合为止,这种方法叫“分析法”. (3)“两头凑”,即在解决问题时,将上面的两种方 法结合起来用.
人教版七年级数学下册 (命题、定理、证明)相交线与平行线新课件

判断
命题
一件事情的语句
(6)对顶角相等;
(7)画线段AB=CD.
任务一:写出一个是命题的语句和一个不是命题 的语句,并与同伴分享.
2.观察下列命题: (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a>c; (3)如果等式两边都加上同一个数,那么结果仍是等式.
你能发现这些命题有什么共同的结构特征吗?
一个正数的两个平方根分别是2a+1和a-4,求这个数.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
1.a的一个平方根是3,则另一个平方根是 -3 ,a= 9 . 2.81的平方根是___9_, 81 的算术平方根是__3__ . 3.3a-2和2a-3是一个正数的两个平方根,则这两个平方根 是__1_和_-_1_,这个数是_1__.
:
方根表示为 a .
想一想
1. 121的平方根是什么? 11
2. 0的平方根是什么?
0
16
3. 49 的平方根是什么?
4 7
4. -9有没有平方根?为什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢?
没有,因为一个数的平方不可能是负数.
归纳总结
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
1
+2 -2
4
+3 -3
9
开平方
1
+1 -1
4
+2 -2
9
+3 -3
练一练
36的平方根是 ± 6; 4的平方根是 2; ( 5)2的平方根是 5 ; 9的算术平方根是 3 ; 16的算术平方根的平方根是 ± 2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理:_____________________________
引入资料及出处
教后记
本节课的教学内容较简单,通过本节课的教学学生能在了解命题的概念,并能区分命题的题设和结论的基础上知道命题有真假之分,其中的真命题又叫做定理,对于假命题只要举出反例加以说明即可,其中推理过程叫做证明,学生小组合作学习的积极性较高,体现出学生愿学乐学心态,教师要及时性的鼓励与表扬。
学生能由教师的引导进行思考:
通过本节课的学习,你有什么收获呢?你还有什么疑惑呢?
总结本节课所学习的知识并能把本节课的知识形成知识网络。
板书设计
5.3.2命题、定理
概念:___________________________
构成:_____________________________
命题分类:
真命题:_______________________
引导发现法
教学过程
教师活动
学生活动
(一)创设情境复习导入
教师出示下列问题:
1.平行线的判定方法有哪些?
2.平行线的性质有哪些.
(二)尝试活动探索新知
了解命题和它的构成.
教师给出下列语句,
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不型
新授
教学目的
知识与技能:了解命题的概念,并能区分命题的题设和结论。
过程与方法:经历判断命题真假的过程,对命题的真假有一个初步的了解。
情感态度与价值观:初步培养学生不同几何语言相互转化的能力。
重点
命题的概念和区分命题的题设与结论。
难点
区分命题的题设和结论。
媒体
多媒体课件
教法
教师给出命题的定义.
判断一件事情的语句,叫做命题.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成.
真命题与假命题:
教师出示问题:
如果两个角相等,那么它们是对顶角。
如果a>b.b>c那么a=b
如果两个角互补,那么它们是邻补角。
(三)尝试反馈理解新知
学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础。
(注意:平行线的判定方法三种,另外还有平行公理的推论)
学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的。
学生能思考:
你认为这几句话对吗?
它们是不是命题?
教学过程
明确命题有正确与错误之分:
命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据。
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?
2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.
组长
教导处
(三)总结拓展
教师引导学生完成本节课的小结,强调重要的知识点。
(四)布置作业
习题5.3第11题。
学生能由教师的讲解理解命题有真有假,并能通过举反例说明命题的错误。
解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.
2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够。
判断语句“画AB∥CD”有没有判断成分,是不是命题.学生并能举例说明是命题和不是命题的语句.
与同组同学共同分析上述四个命题的题设和结论,重点分析第②、③语句.
第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。