人教版九年级第二十五章概率初步知识点
2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
【人教版】初中数学九年级知识点总结:25概率 简洁易懂

预习九年级知识点: 25概率一、知识框架二、重点、难点:在具体情境中了解概率意义、对频率与概率关系的初步理解。
四、知识点、概念总结1.随机事件: 在随机试验中, 可能出现也可能不出现, 而在大量重复试验中具有某种规律性的事件, 简称事件。
随机事件通常用大写英文字母A.B.C等表示。
2.特殊的事件必然事件记作Ω, 必然发生。
不可能事件记作Φ, 不可能发生。
3.概率:表示一个事件发生的可能性大小的数,叫做该事件的概率。
人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
5.列举法:从逻辑上进行分析并将其本质内容全面地一一地罗列出来的手段,再针对列出的项目一一提出改进的方法。
列举法一种方式为树状图, 如下: P136列举法另一种方式为图表, 如下:第2个1 2 3 4 5 6AC D EH I H I H IBC D EH I H I H I甲乙丙(具体图表意义请参照初中数学九年级上册人教版课本P135页)4.频率与概率的区别与联系从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近, 说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.5.频率估计概率:历史上有许多著名数学家也做过掷硬币的试验.历史上数学家做掷币试验的数据统计表说明:只要试验的次数n足够大, 频率就可以作为概率的估算值!。
九年级数学人教版(上册)第25章小结与复习

乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率
概
率
初
步 列举法求
概
率
用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
初中数学人教九年级上册第二十五章 概率初步概率PPT

巩固练习
第二十五章 概率初步
变式题1 掷一个骰子,观察向上的一面的点数,
求下列事件的概率:
(1)点数为2;
(1)点数为2有1种可能,因此P
(点数为2)=
1 6
;
(2)点数为奇数; (2)点数为奇数有3种可能,即点数为1,
3,5,因此P(点数为奇数)=
1 2
;
(3)点数大于2小于5.
(3)点数大于2且小于5有2种可能,即点数为3,4,
抽到的序号不会是0;
想一想:能算出抽到每个数字的可能数值吗?
学习目标
第二十五章 概率初步
1. 理解一个事件概率的意义. 2. 会在具体情境中求出一个事件的概率. 3. 会进行简单的概率计算及应用.
知识探究
知识点 1 概率的定义
第二十五章 概率初步
活动1:抽纸团
从分别有数字1、2、3、4、5的五个纸团中随机 抽取一个,这个纸团里的数字有5种可能,即1、2、3、 4、5.
知识探究
【议一议】
第二十五章 概率初步
一个袋中有5个球,分别标有1、2、3、4、5这5
个号码,这些球除号码外都相同,搅匀后任意摸出
一个球.
(1)会出现哪些可能的结果? 1、2、3、4、5 (2)每个结果出现的可能性相同吗?猜一猜它
们的概率分别是多少? 相同
知识探究
第二十五章 概率初步
归纳总结
一般地,如果一个试验有n个可能的结果,并
特别地:当A为必然事件时,P(A)=1,当A为不可能事件 时,P(A)=0.
知识探究
第二十五章 概率初步
素养考点 1 简单掷骰子的概率计算
例1 任意掷一枚质地均匀骰子. (1)掷出的点数大于4的概率是多少? (2)掷出的点数是偶数的概率是多少?
人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
人教版初中数学九年级上册教学课件 第二十五章 概率初步 随机事件与概率 随机事件

• R·九年级上册
新课导入
情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺 序,为了体现比赛的公平性,决定采取临时抽签的方式决 定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上 面分别标有出场的数字1,2,3,4,5.小军首先抽签,他 在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取 一张纸签.
摸到黑球的可能性大些,摸到球的可能 性大小与袋子中该种球的多少有关.
•
能否通过改变袋子中某种颜色的球的数量,
使“摸出黑球”和“摸出白球”的可能性大小相
同?
试一试!
• 一般地,随机事件发生的可能性是有大 小的,不同的随机事件发生的可能性的大小 有可能相同.
你能举一些反映随机事件发生的可能性大小 的例子吗?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
2. 桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、
2张红桃.从中随机抽取1张.
【教材P129练习 第2题】
(1)能够事先确定抽取的扑克牌的花色吗? 不能
(2)你认为抽到哪种花色的可能性大? 抽到黑桃的可能性大.
(3)能否通过改变某种花色的扑克牌的數量,使“抽到
黑桃”和“抽到红桃”的可能性大小相同?
件.例如:抛掷一枚质地均匀的骰子,骰子停止后朝上的
点数为9是不可能事件;抛掷一枚质地均匀的骰子,骰子
停止后朝上的点数都小于7是必然事件.
课堂小结
必然事件 在一定的条件下,必然会发生的事件. 不可能事件 在一定的条件下,必然不会发生的事件.
随机事件 在一定的条件下,可能发生也可能不发生的事件.
一般地,随机事件发生的可能性是有大小的.
九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版单选题1、小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字答案:D分析:根据利用频率估计概率得到实验的概率在0.2左右,再分别计算出四个选项中的概率,然后进行判断.根据拆线图知:概率在0.2左右,,不符合题意;A:抽出的是“朝”字的概率是720,不符合题意;B:抽出的是“长”字的概率是720,不符合题意;C:抽出的是独体字的概率是920=20%,符合题意,D:抽出的是带“氵”的字的概率为420故选:D.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A .B .C .D .答案:A分析:结合图形求出各个阴影部分所占的比例即为小球落在阴影部分的概率,进行比较即可. 解:A 、小球落在阴影部分的概率为14; B 、小球落在阴影部分的概率为12; C 、小球落在阴影部分的概率为59;D 、小球落在阴影部分的概率为39=13; 小球落在阴影部分的概率最小的是A , 故选:A .小提示:题目主要考查概率的基本计算方法,理解题意,掌握概率的基本计算方法是解题关键.3、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案. 解:画图如下:共有4种情况,而出现高茎的有3种结果, ∴子二代豌豆中含遗传因子D 的概率是34,故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键.4、《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金. 小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为( )A .2B .3C .4D .6答案:D分析:通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可. 解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, P 田忌赢=318=19. 故选:D .小提示:本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.5、某人在做抛掷硬币试验中,抛掷n 次,正面朝上有m 次,若正面朝上的频率是P =mn ,则下列说法正确的是( )A .P 一定等于0.5B .多投一次,P 更接近0.5C .P 一定不等于0.5D .投掷次数逐渐增加,P 稳定在0.5附近 答案:D分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做此事件概率的估计值,从而可得答案.解:根据频率和概率的关系可知,投掷次数逐渐增加,P 稳定在0.5附近, 故选:D .小提示:考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29D .19答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49,故选A .小提示:此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.7、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对 答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形, ∴∠AOB =60°, ∵OA =OB =r ,∴△OAB 是等边三角形, ∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2,∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A .小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.8、如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).A .12B .13C .14D .34答案:C分析:让小灯泡发光的情况数除以总情况数即为发光的概率. 解:共有4个开关,闭合其中一个开关,有4种情况, 只有闭合D 才能使灯泡发光, ∴小灯泡发光的概率=14. 故选:C .小提示:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9、用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为( )A .16B .13C .12D .23答案:C分析:列表得出所有等可能的情况数,找出能配成紫色的情况数,即可求出所求的概率. 解:列表如下:3种, 则P (配成紫色)=36=12, 故选:C .小提示:本题考查的是用列表法或画树状图法求概率,熟练掌握概率=所求情况数与总情况数之比是解题的关键.10、从−√2,0,√4,π,3.5这五个数中,随机抽取1个,则抽到无理数的概率是( )A .15B .25C .35D .45答案:B解:这里的无理数有−√2,π,共2个, ∴P (抽到无理数)=25. 故选:B .小提示:本题主要考查了列举法求概率,解决问题的关键是熟练掌握用列举法求概率的方法. 填空题11、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程x 2−2x +a2=0有实数根,且关于x 的分式方程1−ax x−2+2=12−x有解的概率为______.答案:16分析:根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案.一元二次方程x 2−2x +a2=0有实数根,∴4−4×a2≥0. ∴a ≤2, ∴a =0,1,2, 关于x 的分式方程1−ax x−2+2=12−x的解为:x =22−a,且2−a ≠0且x ≠2, 解得:a ≠2且a ≠1, ∴a =0,∴使得关于x 的一元二次方程,x 2−2x +a2=0有实数根,且关于x 的分式方程1−axx−2+2=12−x 有解的概率为:16. 所以答案是:16小提示:本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.12、盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x和y满足的关系式为 __.答案:y=53x分析:根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴可得关系式xx+y =38,∴x和y满足的关系式为y=53x.所以答案是:y=53x.小提示:此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、口袋里装有红球和白球共10个,这些球除颜色外其余均相同.每次将球搅拌均匀,任意摸出一个球,记下颜色后再放回口袋里,摸了100次,其中发现有69次摸到白球,则白球的个数约为___________个.答案:7分析:利用频率估计概率可估计摸到白球的概率,再用口袋里球的总个数乘以摸到白球的频率即可得出答案.解:∵共摸了100次球,发现有69次摸到白球,∴摸到白球的概率为0.69,∴口袋中白球的个数大约10×0.69≈7(个).所以答案是:7.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.答案:316分析:画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=316.所以答案是:316.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.解答题16、2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出15名同学参加会议相关服务工作,其中9名男生,6名女生.(1)若从这15名同学中随机选取1人作为联络员,求选到男生的概率.(2)若会议的某项服务工作只在A,B两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为1,2,3,6(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于6则选A,否则选B,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.答案:(1)35;(2)该游戏规则合理;理由见解析.分析:(1)直接根据概率公式计算;(2)先画出树状图,展示所有12种等可能的结果数,再找出两个数字之和大于6所占的结果数,计算出选A的概率和选B的概率,然后比较两概率大小判断该游戏规则是否合理.(1)选到男生的概率=915=35;(2)画树状图:共有12种等可能的结果数,其中两个数字之和大于6占6种,所以选A的概率=612=12,则选B的概率=1−12=12,由于选甲的概率等于选乙的概率,所以该游戏规则合理.小提示:本题考查列表法与树状图法,解题的关键是利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;(4)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率.答案:(1)10;(2)180°;(3)18;(4)P(恰好抽到2名男性)=16.分析:(1)用50-4-25-8-3可求出m的值;(2)用360°乘以年龄在“30≤x<40”部分人数所占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“x<20”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.解:(1)m=50-4-25-8-3=10;所以答案是:10;(2)360°×2550=180°;所以答案是:180°;(3)在这50人中女性人数为:4×(1-50%)+10×(1-60%)+25×(1-60%)+8×(1-75%)+3×(1-100%)=2+4+10+2+0=18;所以答案是:18;(4)设两名男性用A1,A2表示,两名女性用B1,B2表示,根据题意:可画出树状图:或列表:2种,故P(恰好抽到2名男性)=212=16.小提示:此题考查了列表法或树状图法求概率以及频数分布表.用到的知识点为:概率=所求情况数与总情况数之比.18、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13.(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章概率初步知识点总结
25.1 概率
1.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
随机事件发生的可能性(概率)的计算方法:
2.可能性大小
(1)理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.
(2)实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.
第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.
3.概率的意义
(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.
(3)概率取值范围:0≤p≤1.
(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.
(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.
25.2 用列举法求概率
1.概率的公式
(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
2. 几何概型的概率问题
是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点
M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G 的测度
简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
3.列举法和树状法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
4.游戏公平性
(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
(2)概率=所求情况数总情况数.
25.3 利用频率估计概率
1. 利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
2.模拟实验
(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.
(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,
目的在于省时、省力,但能达到同样的效果.
(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。