NaY分子筛的改性及对FCC汽油选择吸附脱硫的研究

合集下载

分子筛改性

分子筛改性

分子筛的改性主要方法有:加入模板剂(控制含量),老化时间(温度)、搅拌速度、晶化时间(温度)以及碱度控制,吸附一些金属离子等硅烷化改性ZSM-5分子筛用于催化脱蜡催化剂改性方法:利用分子模拟技术,筛选分子大小合适的硅烷模板化含物A对ZSM-5分子筛进行表面修饰,并对改性分子筛性质进行了表征改性结果:在改性温度50℃,硅烷化合物A质量分数为5%的条件下,可制备选择性良好的改的ZSM一5分子筛。

将其用于制备新型催化脱蜡催化剂,在压力为6.5 MPa,氢气/原料油(体积比)为500,空速为1.0 h-1的条件下,与未改性者相比,前者柴油收率提高了2.7个百分点,凝点降低了2℃。

改性后的分子筛对正己烷的吸附选择性增加,对环己烷的吸附含量减小。

刘丽芝,郭洪臣.硅烷化改性ZSM-5分子筛用于催化脱蜡催化剂;[J]石化技术与应用,2009,27(3),242-245直链烷烃对Ti-HMS分子筛合成的影响改性方法:以十二胺为模板剂,正硅酸乙酯为硅源,钛酸四丁酯为钛源,直链烷烃正己烷或正辛烷为有机添加剂,在室温下合成出具有较大孔径的Ti-HMS分子筛。

结果:研究了烷烃对Ti-HMS分子筛的扩孔作用及对分子筛结晶度和催化性能的影响,结果表明,加入的烷烃越多,分子筛的孔径越大;烷烃链长越长,对Ti-HMS的扩孔作用越显著, 将加入烷烃所得的Ti-HMS用于模拟燃料中),4,6-二甲基二苯并噻吩的氧化脱除反应,结果发现,Ti-HMS的催化氧化活性有所提高,对4,6-二甲基二苯并噻吩的脱除速率增大孙德伟,李钢,金长子,赵丽霞,王祥生;直链烷烃对Ti-HMS分子筛合成的影响;[J]催化学报,2007,28(5),479-483小晶粒SAPO-11分子筛的合成、表征与异构化性能研究改性方法:通过调整反应物凝胶的老化条件和原料配比,制备了亚微米级晶粒尺寸的SAPO-11 分子筛。

以二正丙胺和二异丙胺的混合物为模板剂单胺法:选用二正丙胺(DPA)和二异丙胺(DIPA)两种有机模板剂,将两种有机胺分别进行合成。

海川化工论坛-提高汽油产率和辛烷值的催化材料的开发(罗一斌)

海川化工论坛-提高汽油产率和辛烷值的催化材料的开发(罗一斌)
每个基本单元为4个氧原子以四面体与 Si或Al原子相连,由于Al为+3价,铝氧四 面体带一个负电荷,因此有一阳离子(Na+) 与之达成电荷平衡。
NaY分子筛典型的晶胞化学式为: Na56【(AlO2)56(SiO2)136】•264H2O
晶胞大小与酸中心距离的关系
理论上Y分子筛中每一个AlO4-四面体就有一个酸中心, 因此,当分子筛脱铝 之后,酸的中心数减少,酸中心之间的距离拉大。晶胞常数在2.445nm以下, Al-Al中心间的距离快速增大;晶胞常数在2.430nm时,Al-Al的距离约为 1.6nm,这个距离大于一般的馏分油分子。
水热老化苛刻度对晶胞常数的影响
在FCC装置中,由于再生器高温水汽的作用,Y分子筛的晶胞 因骨架脱铝而发生收缩,REY型分子筛通常从24.65~24.70Å收 缩到24.50Å左右,而超稳Y分子筛(由水热脱铝或化学脱铝法制 备)可从24.50~24.60Å收缩到24.30Å以下。
水热老化苛刻度对晶胞常数的影响(□ 760℃;■816℃)
稀土含量对辛烷值的影响
RE2O3, m% 0 4 8 16
晶胞常数 (Å)
新鲜剂 760℃/5h水热处理
24.54
24.26
24.61
24.29
24.62
378.2 0.061 339.7 0.016 392.8 0.029
0.095 0.064 0.059
备注:弱酸中心:峰温小于300℃的酸中心 强酸中心:峰温大于300℃的酸中心
老化条件:800 ℃ /17h/100%水热处理
特点:AMC的强酸中心比例稍低,老化后酸中心的保留度更高
2013-9-2பைடு நூலகம்
9/2/2013

4种分子筛对vocs静态吸附与脱附性能研究

4种分子筛对vocs静态吸附与脱附性能研究

第48卷第12期2019年12月应㊀用㊀化㊀工AppliedChemicalIndustryVol.48No.12Dec.2019收稿日期:2019 ̄02 ̄12㊀㊀修改稿日期:2019 ̄04 ̄18基金项目:河北省科技支撑计划(173976121D)ꎻ河北省重点研发计划项目(18273712D)ꎻ2018年省级战略新兴产业发展专项资金(360102)作者简介:杨宇轩(1994-)ꎬ男ꎬ河北廊坊人ꎬ硕士研究生ꎬ师从杜昭教授ꎬ研究方向为大气污染控制工程ꎮ电话:15733107797ꎬE-mail:yyx929@vip.qq.com通讯联系人:杜昭ꎬE-mail:28664885@qq.com4种分子筛对VOCs静态吸附与脱附性能研究杨宇轩1ꎬ2ꎬ3ꎬ杜昭1ꎬ2ꎬ3ꎬ刘倩1ꎬ2ꎬ3(1.河北科技大学环境科学与工程学院ꎬ河北石家庄㊀050018ꎻ2.挥发性有机物与恶臭污染防治技术国家地方联合工程研究中心ꎬ河北石家庄㊀050018ꎻ3.河北省大气污染防治中心ꎬ河北石家庄㊀050018)摘㊀要:采用干燥器 ̄静态吸附法测定3A㊁4A㊁5A㊁10X四种分子筛对甲醇㊁苯㊁正己烷等VOCs的吸附性能ꎮ结果表明ꎬ10X分子筛在吸附量上明显高于其它3种分子筛ꎬ对苯㊁甲醇㊁正己烷的吸附量分别达到了96ꎬ88ꎬ75mg/gꎮ微波脱附和热脱附的脱附能力差别甚微ꎬ微波脱附时间短ꎮ分子筛再生率>95%ꎬ与之前吸附量相当ꎬ未对分子筛的内部结构产生影响ꎮ关键词:分子筛ꎻVOCsꎻ吸附量ꎻ脱附再生中图分类号:TQ028.1+5㊀㊀文献标识码:A㊀㊀文章编号:1671-3206(2019)12-2930-03StudyonstaticadsorptionanddesorptionpropertiesofVOCsbymolecularsievesYANGYu ̄xuan1ꎬ2ꎬ3ꎬDUZhao1ꎬ2ꎬ3ꎬLIUQian1ꎬ2ꎬ3(1.SchoolofEnvironmentalScienceandEngineeringꎬHebeiUniversityofScienceandTechnologyꎬShijiazhuang050018ꎬChinaꎻ2.NationalLocalJointEngineeringResearchCenterforVolatileOrganicCompoundsandOdorousPollutionControlTechnologyꎬShijiazhuang050018ꎬChinaꎻ3.HebeiProvienceAirPollutionandControlPromotionCenterꎬShijiazhuang050018ꎬChina)Abstract:Theadsorptionperformanceoffourmolecularsieves(3Aꎬ4Aꎬ5Aꎬ10X)onVOCssuchasmethanolꎬbenzeneandn ̄hexanewasdetermined.Theadsorptionamountof10Xmolecularsievewassig ̄nificantlyhigherthanthatoftheotherthreemolecularsievesꎬandtheadsorptionamountsofbenzeneꎬmethanolandn ̄hexanereached96ꎬ88ꎬ75mg/gꎬrespectively.Thereisnodifferenceinthedesorptiona ̄bilitybetweenmicrowavedesorptionandthermaldesorption.Afterthedesorbedmolecularsieveisre ̄ad ̄sorbedꎬitisalmostthesameasthepreviousadsorptionamountꎬanddoesnotaffecttheinternalstructureofthemolecularsieve.Keywords:molecularsieveꎻVOCsꎻadsorptioncapacityꎻdesorptionregeneration㊀㊀挥发性有机化合物(VOCs)通常指在常压下沸点低于250ħꎬ或在室温下(25ħ)饱和蒸气压大于133.32Pa的任何有机化合物ꎬ是空气中所有的有机化合物的总称ꎮ一些挥发性有机化合物表现出强烈的毒性㊁刺激性㊁致癌性ꎬ并带特殊气味ꎬ对人体有极大的损害[1]ꎮ吸附法是处理低浓度VOC的有效方法ꎬ由于其成熟的技术和高加工效率[2 ̄5]ꎮ吸附法是通过吸附剂对VOCs进行选择吸附净化处理后ꎬ然后排入大气当中ꎮ由于吸附剂的种类㊁比表面积㊁孔径等物理性质的不同ꎬ其对VOCs的吸附效果肯定也不同[6 ̄8]ꎮ本文采用静态吸附法ꎬ研究不同型号分子筛对不同性质VOCs的吸附量ꎬ分析影响吸附量的主要因素ꎻ分别采用热脱附与微波脱附时分子筛进行脱附ꎬ得出更经济㊁高效㊁清洁的脱附方法ꎬ为吸附剂工业化使用提供理论依据ꎮ1㊀实验部分1.1㊀试剂与仪器甲醇㊁苯㊁正己烷均为分析纯ꎬ动力学直径和极性见表1ꎻ3A分子筛㊁4A分子筛㊁5A分子筛㊁10X分第12期杨宇轩等:4种分子筛对VOCs静态吸附与脱附性能研究子筛均为优级纯ꎬ参数见表2ꎮ表1㊀VOCs的参数Table1㊀ParametersofVOCsVOCs动力学直径/nm极性沸点/ħ甲醇0.43664.7苯0.583.380正己烷0.660.0681表2㊀分子筛的参数Table2㊀Parametersofmolecularsieves分子筛孔隙/nm外观/mm比表面积/(m2 g-1)3A0.33682.24A0.42.5541.85A0.51.5486.410X0.94354.3㊀㊀B124S电子天平ꎻDHG ̄9030电热鼓风干燥箱ꎻMICHEMMD6微波消解系统ꎻNOVA2000e孔径及比表面积分析仪等ꎮ1.2㊀静态吸附[9]将4种分子筛置于150ħ烘箱中活化4hꎬ除去分子筛表面吸附的杂质以及水分ꎮ量取苯㊁甲醇㊁正己烷150mLꎬ分别置于200mL烧杯中ꎬ将烧杯分别置于干燥器中ꎮ称量3A分子筛㊁4A分子筛㊁5A分子筛㊁10X分子筛各5gꎬ置于表面皿中ꎬ将表面皿放入盛有VOCs的干燥器ꎮ常温(20ħ)下进行静态吸附ꎬ每隔1h取样称重ꎮ当称重质量不再变化时(分子筛的吸附量已饱和)ꎬ取出分子筛ꎬ并用密封袋密封保存ꎬ并计算吸附量ꎮ1.3㊀脱附1.3.1㊀热解吸[10 ̄11]㊀吸附饱和的分子筛采用电热风箱进行热风脱附ꎬ由室温开始加热ꎬ温度为400ħꎬ间隔15min取出称重ꎬ时间为1hꎮ1.3.2㊀微波脱附[12]㊀将吸附饱和的分子筛放入微波解析器中ꎬ以800W功率ꎬ由常温25ħ开始微波加热ꎬ每间隔1min取出称重ꎬ当其质量不再发生变化时ꎬ即分子筛已脱附完全ꎮ2㊀结果与讨论2.1㊀时间对吸附量的影响4种分子筛对VOCs的静态吸附结果见表3和图1~图3ꎮ表3㊀分子筛对VOCs静态吸附量Table3㊀Statisticsofadsorptionamount分子筛苯吸附量/(mg g-1)甲醇吸附量/(mg g-1)正己烷吸附量/(mg g-1)3A7260554A6255445A60653610X968875图1㊀甲醇的静态吸附曲线图Fig.1㊀Staticadsorptioncurveofmethanol图2㊀苯的静态吸附曲线图Fig.2㊀Staticadsorptioncurveofbenzene图3㊀正己烷的静态吸附曲线图Fig.3㊀Staticadsorptioncurveofn ̄hexane㊀㊀由表3和图1~图3可知ꎬ10X分子筛对3种VOCs具有突出的吸附效果ꎬ反应22h时基本达到吸附平衡ꎬ对苯的吸附量达96mg/gꎬ对甲醇吸附量88mg/gꎬ3A㊁4A㊁5A分子筛的甲醇吸附量接近ꎬ分别为60ꎬ55ꎬ65mg/gꎬ在吸附苯和正己烷的过程中ꎬ10X分子筛都具有非常突出的吸附性能ꎮ10X分子筛对甲醇的吸附与活性炭㊁纳米活性炭对比ꎬ见图4ꎮ㊀㊀由图4可知ꎬ10X分子筛对甲醇的吸附量与普通活性炭相当ꎬ分别为88ꎬ97mg/gꎬ但低于纳米活性炭375mg/g的吸附量ꎮ吸附能力上来说ꎬ10X分子筛的吸附量小于活性炭吸附量ꎮ1392应用化工第48卷图4㊀分子筛与活性炭对甲醇的吸附量Fig.4㊀Adsorptionamountofmethanol2.2㊀脱附以吸附效果最佳的10X分子筛分别进行热脱附和微波脱附ꎬ结果见表4㊁表5ꎮ表4㊀10X分子筛热脱附率Table4㊀10Xmolecularsievesthermaldesorptionrate时间/min苯脱附率/%甲醇脱附率/%正己烷脱附率/%155656383070807145999290601009798表5㊀10X分子筛微波脱附率Table5㊀10Xzeolitemicrowavedesorptionrate时间/min苯脱附率/%甲醇脱附率/%正己烷脱附率/%14858502516461581908210961081011510512011730114126118㊀㊀由表4和表5可知ꎬ无论是微波脱附还是热脱附ꎬ基本上都可以脱附完全ꎬ两者脱附率可达95%以上ꎮ微波脱附因为具有超高温的特性ꎬ把分子筛内部的结晶水除去ꎬ造成脱附后的重量少于原重ꎬ而热脱附相对来说脱附温度处于可控状态ꎬ没有出现脱除结晶水的情况(在热脱附之前使用热重分析仪对分子筛进行预实验ꎬ得到可脱附完全的温度)ꎮ2.3㊀分子筛的再吸附实验经微波和热脱附的10X分子筛在室温20ħ下进行静态吸附ꎬ结果见表6ꎮ表6㊀10X分子筛再吸附数据Table6㊀Resorptionof10Xmolecularsieve项目微波再生热再生苯甲醇正己烷苯甲醇正己烷原始吸附量/(mg g-1)968875968875再生后吸附量/(mg g-1)938886837471再利用率/%96.9100114.786.484.194.7㊀㊀由表6可知ꎬ微波脱附和热脱附二者再吸附率都很高ꎬ脱附方式的不同没有影响到再吸附的效果ꎬ不会对分子筛内部结构造成影响ꎮ微波脱附具有快速㊁高效㊁回收效率高等优点ꎬ比热脱附更加方便㊁高效ꎮ3㊀结论(1)4种分子筛(3A㊁4A㊁5A㊁10X)当中ꎬ10X分子筛对3种VOCs(苯㊁甲醇㊁正己烷)均具有最大的吸附量ꎬ可知吸附量和孔径大小成正比ꎮ(2)将吸附饱和的分子筛进行微波脱附和热脱附ꎬ脱附效率都达到了95%以上ꎬ微波脱附比热脱附更加方便㊁高效ꎬ且清洁ꎮ就微波脱附而言ꎬ甲醇在各时段的脱附效率均高于苯与正己烷ꎬ原因是极性越大ꎬ吸收微波的能力越强ꎬ从而脱附效率越大ꎮ(3)经微波和热脱附的10X分子筛在20ħ下进行静态吸附ꎬ分子筛具有与原来相同的吸附性能ꎮ10X分子筛对苯的原始吸附量为96mg/gꎬ微波再生后吸附量93.3mg/gꎬ分子筛的再利用率都达到90%以上ꎬ表明脱附方式并没有对分子筛性能造成影响ꎮ参考文献:[1]㊀付永川ꎬ钱炜ꎬ杨海蓉ꎬ等.活性炭微波脱附再生[J].广东化工ꎬ2017ꎬ44(8):125 ̄126.[2]常仁芹.微波适应型吸附剂表面有机分子微波脱附再生研究[D].杭州:浙江工业大学ꎬ2014:105 ̄112. [3]常仁芹ꎬ周瑛ꎬ卢晗锋ꎬ等.微波加热脱附回收Y分子筛吸附的酮类有机分子[J].环境工程学报ꎬ2014ꎬ8(12):5399 ̄5405.[4]XiYꎬYiHꎬTangXꎬetal.Behaviorsandkineticsoftolu ̄eneadsorption Desorptiononactivatedcarbonswithvaryingporestructure[J].JournalofEnvironmentalSci ̄encesꎬ2018ꎬ67(5):107 ̄117.[5]陈云琳ꎬ祖志楠ꎬ魏琳ꎬ等.介孔分子筛在挥发性有机化合物吸附中的研究进展[J].现代化工ꎬ2011ꎬ31(2):13 ̄16.[6]顾勇义.ZSM ̄5沸石分子筛吸附 ̄脱附VOCs性能的研究[D].杭州:浙江工业大学ꎬ2012.[7]SanzOꎬDelgadoJJꎬNavarroPꎬetal.VOCscombustioncatalysedbyplatinumsupportedonmanganeseoctahedralmolecularsieves[J].AppliedCatalysisBEnvironmentalꎬ2011ꎬ110:231 ̄237.[8]卢晗锋ꎬ周春何ꎬ周瑛ꎬ等.气相低浓度甲苯在超稳Y分子筛的吸附 ̄脱附性能[J].高校化学工程学报ꎬ2012ꎬ26(2):338 ̄343.[9]周春何ꎬ卢晗锋ꎬ曾立ꎬ等.沸石分子筛和活性炭吸附/脱附甲苯性能对比[J].环境污染与防治ꎬ2009ꎬ31(4):38 ̄41.[10]李文明ꎬ袁东ꎬ付大友ꎬ等.活性炭和分子筛对甲醛㊁苯和甲苯吸附质的热脱附研究[J].广东农业科学ꎬ2011ꎬ38(4):139 ̄140.[11]龚健.5A分子筛对正庚烷的吸附㊁脱附性质的研究[J].石油化工ꎬ1987(8):563 ̄566.[12]郭昊乾ꎬ屈文山ꎬ李晓峰ꎬ等.自制ZSM ̄5分子筛对甲苯气体的吸附 ̄脱附性能[J].化工环保ꎬ2013ꎬ33(2):98 ̄102.2392。

NaY分子筛负载型离子液体在催化裂化汽油脱硫中的应用

NaY分子筛负载型离子液体在催化裂化汽油脱硫中的应用

摘 要 : 采 用物 理 浸 渍 法 将 [ c s mi m] Hs 0 ( 1 - 戊 基一 3 一 甲基 咪 唑 硫 酸 氢 盐 离子 液 体 ) 负载 在 分 子 筛 表 面 , 得到 分 子 筛 负载 型 离子 液 体 。采 用 萃 取 氧 化 法 , 考 察 了 负载 型 离子 液 体 对 催 化 裂 化 汽 油 的 脱 硫 效 果 结 果 表 明 , 分子 筛 孔 道 大 小 对 脱硫 效 果 有 一 定 的 影 响 。 以 Na Y 分 子 筛 为 负载 剂 , 质量分数 为 3 5 的H z 0 为 氧 化 剂 ,考 察 了氧 化 剂 加入体积 、 萃取 时间、 荆 油 体 积 比 等 不 同条 件 对 催 化 裂化 汽 油 的 脱硫 效 果 。 确 定 了最 佳 脱 硫 实验 条 件 为 l o g负 载 型 咪 唑 硫 酸 氢根 离子 液 体 , 1 0 0 mL F C C汽 油 , 1 mL H 0 2 , 4 O℃ 下 反 应 6 0 ai r n后 对 汽 油 有 较 高 的 脱 硫 率 , 一 次脱 硫 率
Ap pl i c a t i on o f Na Y Sup po r t e d I o n i c I i qu i d on De s u l f u r i z a t i 0n 0 f FCC Ga s o l i ne
H AO Yut o ng ,YAN We nc h a o 。LI Ke ( 1 . S c h o o l o f C h e mi c a l En g i n e e r i n g,Ch i n a Un i v e r s i t y o f Pe t r o l e u m Be i j i n g,Be i j i n g 1 0 2 2 4 9 , C h i n a; 2 . S c h o o l o f C h e mi s t r y a n d Ma t e r i a l S c i e n c e ,Li a o n i n g S h i h u a Un i v e r s i t y,Fu s h u n Li a o n i n g 1 1 3 0 0 1 , Ch i n a )

分子筛改性研究进展

分子筛改性研究进展

f a c e mo d i f i c a t i o n . Va r i o u s mo d i f i c a t i o n me t h o d s a n d p r i n c i p l e s a r e r e v i e we d。wh i c h p r o v i d e s a n e w me t h o d f o r t h e a p — p l i c a t i o n f i e l d o f n e w i n o r g a n i c ma t e r i a l mo l e c u l a r ,a n d d e v e l o p me n t d i r e c t i o n o f mo l e c u l a r s i e v e i n t h e f u t u r e i s p r o s —
c h a n g e mo d i f i c a t i o n,d e a l u mi n u m mo d i f i c a t i o n,mi s c e l l a n e o u s a t o mi c c r y s t a l r e p l a c e me n t mo d i f i c a t i o n ,p o r e a n d s u r —
( S c h o o l o f Ch e mi c a l En g i n e e r i n g,Ku n mi n g Un i v e r s i t y o f S c i e n c e a n d Te c h n o l o g y ,Ku n mi n g 6 5 0 2 2 4 )
p e c t e d .
Ke y wo r d s

FCC汽油催化精馏烷基化硫转移工艺研究

FCC汽油催化精馏烷基化硫转移工艺研究
油 工 艺研 究工 作 。
分 通过 精 馏 塔 分 离 出低 硫 馏 分 和 高 硫 馏 分 , 硫 低 馏分 可 以 部 分 循 环 回烷 基 化 反 应 器 以提 高 脱 硫 率 , 质 高 硫 馏 分 直 接 去 加 氢 处 理 装 置 。B 公 重 P 司 l 提 出一 种先 分 馏 , 进 行 烷 基 化 反 应 , 分 馏 8 再 再 的 三步 汽油 脱硫 方 法 。在 分 馏 塔 的精 馏 段 和 提 馏 段分 别 取侧 线馏 分 引 入 两个 不 同反 应 条 件 的烷 基
则 直 接 进 入 加 氢 处 理 装 置 , 烷 基 化 处 理 的 轻 馏 经
mi 炉 温 m
反应前 后 油 品的硫 形 态分 析 采 用 安捷 伦 7 9 80
型 GC S D气 相 色谱仪 。分析 条件 为 : —C 载气 ( F ) C T 为氮气 , 压力 0 1 1MP , 均 速 率 0 2 94 c s . 2 a 平 . 1 m/,
油 品 中 硫 含 量 的 分 析 采 用 TS 一 0 0型 硫 氮 N20
技术 已在 醚 化 、 基 化 、 化 以及 异 构 化 等 工艺 中 烷 酯 获得 应用 l ] 具有 选择 性好 、 化率 高 、 _ , 2 转 能耗 低 、 产 品纯 度 高 、 操作 、 资 省等一 系 列优 点 。 易 投
类 硫 化 物 与 本 身 含 有 的 烯 烃 进 行 烷 基 化 反 应 生 成
化反 应 器 , 反应 产 物 再 进 行 分 馏 , 馏 分 去 混 合 对 轻 汽油 池 , 重馏 分 去加 氢单 元进 行脱 硫 处理 。 本课 题研 究 的催 化 精 馏 硫 转 移 脱 硫 技 术 是 在 装有 催 化剂 的精 馏 塔 中 , F C汽 油 中 的烯 烃 与 使 C 噻 吩类 硫 化 物 发 生 烷 基 化 反 应 , 成 高 沸 点 的 烷 生 基 噻 吩类 硫 化 物 , 过 蒸 馏 将 其 富 集 在 塔 底 重 馏 通 分 中 , 加氢 脱硫 处 理 后 可 以作 为 柴 油 馏 分 , 柴 经 而 油加 氢 脱 硫 则 可 避 免 烯 烃 饱 和 问 题 。到 目前 为 止, 国内外文 献 中尚未见 类似 技术 的报道 。

【国家自然科学基金】_nay_基金支持热词逐年推荐_【万方软件创新助手】_20140801

【国家自然科学基金】_nay_基金支持热词逐年推荐_【万方软件创新助手】_20140801

吸附脱硫 合成 原位晶化 半导体可饱和吸收镜 动力学 介孔 丙酮 zeolite y 分子筛 uv/fenton selective adsorption nay mib mgo/nay geosmin desulfurization mechanism
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
科研热词 推荐指数 cey分子筛 2 高密度聚乙烯 1 附晶生长法 1 酯化 1 超级电容器 1 程序升温脱附(tpd) 1 碳酸丙烯酯 1 电化学电容 1 瓶中造船 1 球形晶粒 1 环境净化 1 沉淀法 1 水热合成 1 毛竹 1 杉木 1 有机硫脱除 1 智能质量分析(iga) 1 微分程序升温脱附(dtpd) 1 异相fenton 1 尿素 1 固定床反应器 1 噻吩脱除 1 噻吩吸附 1 吸附脱硫 1 吸附效率 1 光催化降解 1 催化反应工程 1 催化剂工程 1 催化共热解 1 介孔微孔复合分子筛 1 zno/nay 1 y型分子筛 1 nay沸石分子筛 1 nay沸石 1 nay分子筛. 1 co(oh)2/nay 1 12-钼磷酸 1 1,2-丙二醇 1
推荐指数 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

NiY分子筛选择性吸附脱硫性能及作用机理

NiY分子筛选择性吸附脱硫性能及作用机理

瓶 中 ,于 2 5℃下搅 拌 ,吸附 时间 5h 搅拌 后经离 心机离 心 ,对离 心后 的模 拟燃 料进行硫 含量 分析 . , 固定床 吸附穿 透 曲线 在常温 、 压 、 速为 5h 的条件下 测得 .通入模 拟油 前将 吸附剂 于 2 0℃ 常 空 0 原 位预处 理 1h以除 去吸附剂 上物理 吸附 的水 , 1 i 取 样进行 硫含 量分析 .采用 WK 2 每 0r n a 一D型微库仑
16 分子模 拟计算 .
采用 密 度 泛 函 理 论 ( e sy fn t nlter ,D T) D ni u c o a h o t i y F ,应 用 广 义 梯 度 近 似 ( e ea zd gain G n rle rde t i
apoi t n G A) p rx i , G 方法在 Ma r l S d ( S 软件 的 D o 模 块下进 行 噻吩类硫 化物分 子 的量 子化 ma o t is t i M ) e a u o ml 学结构 优化 , 并计算 得到各 硫原子 的 电荷 数.
噻吩环的共轭体系遭到破坏 ,形成硫化物大分子或 聚合 物 , 导致分子筛孔道堵 塞 , 严重影响 吸附剂 的吸附脱
硫 能 力 .N Y的 选 择 性 吸 附 脱 硫 是 硫 化 物 与 吸 附 中心 的相 互 作 用 及 吸 附剂 表 面 酸性 综 合 作 用 的 结 果 . i 关键词 液 相 离 子 交 换 ;NY分 子 筛 ; 附 脱 硫 ;表 面 酸 性 i 吸
中 ,选择性 吸附脱硫 由于具 有操 作条 件 温 和 、脱 硫 效率 高 、不 改 变油 品性 能 、可 生 产 低硫 或 超低 硫 产 品等优 势 , 为一项 极 受关 注 的脱硫 技术 . 成 金 属离 子改 性 Y型分 子筛 对燃 料 油具有 一 定深 度脱 硫效 果 , 但其 硫容 量较 低 ,不能 满 足工 业 生产 的需求 .研制 和开 发对 燃料 油 中 的噻吩类 硫 化物 具有 高 吸附能 力 和选 择 性 的吸 附 剂 ,仍 是该 领域 面 临 的最 大 问题 .而制 约此 类 吸 附剂 研 发进 展 的决定 性 因素 之一 ,就是 目前 尚未 对选 择 性 吸 附脱硫 机 理 的研 究 形成 共识 -] ag等 和 S n 等 , s.Y n og m 对不 同硫 化 物在 Y 型分 子 筛上 的选 择性 吸附 脱硫 性 能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档