回转窑窑尾漏料的主要原因及解决方法
浅谈窑尾漏料的原因与处理

浅谈窑尾漏料的原因与处理作者:徐陆洋王绥哲陈西利来源:《中国科技博览》2018年第20期中图分类号:TU710 文献标识码:A 文章编号:1009-914X(2018)20-0324-01预分解窑窑尾漏料是影响窑正常生产运行最常见的原因,窑尾漏料不但影响窑产质量,而且严重影响环境卫生,造成窑尾漏风,冷空气吸入窑内,增大了热损失,使工作环境条件恶劣,制约了生产力的发展。
通过仔细观察、认真分析,找出影响窑尾漏料的真正原因,以便根据实际情况对症下药,进行处理。
(见表1)1.各测温点测量仪表不准,显示值比实际温度偏低,据观察特别是分解炉出口温度更加明显。
导致系统温度普遍高,尾煤用量偏高,头尾煤比例失调,窑内煤灰大量沉积,不均匀掺入熟料中,最终导致不正常工况(结圈、结蛋)的发生,以致窑尾漏料。
处理方法:勤注意观察系统温度的变化,衡量头尾秤用煤的多少,加强对仪表准确性的管理。
要求仪表管理人员对分解炉出口等主要测温点仪表进行检查,及时清除热电偶头部的结皮,及时更换已损坏的热电偶等要求。
2.关于窑速的控制低窑速运行会造成窑内填充率较大,厚料层操作,导致窑尾漏料。
采用薄料快转的煅烧方法本来就是水泥熟料煅烧的需要。
有的人认为,当窑喂料小时,就应降低窑速,但我们实践体会,当窑已发生结圈、长厚窑皮,在进行烧圈(厚窑皮)时,尽管喂料量已减小或止料,但窑速也不宜减得过慢,应在3.0r/min以上或更高,同时调整火焰向下,以利于圈或厚窑皮的脱落。
有时当窑尾部件完好时,窑尾也存在漏料,比如略微增加窑投料量10t/h,窑尾就可能出现漏料;当清理烟室、分解炉下部结皮后,窑尾开始漏料,但基本上在30min内又恢复正常,经多次观察分析认为,主要是大量清理的结皮瞬间入窑造成,由此可见窑尾端物料填充率过高是造成窑尾漏料最重要的因素。
窑内窑皮过长过厚是造成窑尾端物料填充率超过其设计最大填充率的原因。
处理方法:窑和分解炉用风要进行合理调节,根据窑和分解炉用风情况及时对三次风阀开度进行调节。
回转窑运行常见问题及解决方案

回转窑运行常见问题及解决方案回转窑的处理能力异常丰富,这一特点已将其推向越来越多的应用领域。
虽然回转窑是可靠的机器,但它们可能会遇到问题,尤其是在设计,监控或维护不当的情况下。
知道为什么会发生此类问题,以及如何识别和解决这些问题对于最大限度地提高回转窑的使用寿命至关重要。
尽管问题通常是特定于手头操作的独特参数,但这里重点介绍了回转窑操作员面临的一些最常见挑战,以及其原因,如何发现它们以及解决问题的潜在途径。
这些问题中的许多问题也可以通过过程或设备审核来确定。
环(渣)形成窑炉中的炉渣或坝环形成是指在窑炉内部周围形成的堆积物,其作用是防止材料通过或受到显着抑制。
在窑炉中形成物料环具有多种含义,包括影响停留时间和引起产品质量问题,在进料端密封件中积聚物料,降低产量以及促进窑炉中的物料备份等问题。
它还会大大降低吞吐量。
此外,如果环(或环的一部分)断裂,则有可能完全堵塞窑炉出口,从而导致更严重的问题。
形成环经常需要经常停机以清除材料,废品以及对后处理的更高需求。
简而言之,它降低了整个过程的效率。
是什么原因导致窑炉成环?成环非常普遍,大约占85%的商业窑炉中。
通常是结渣温度变化的结果。
结渣温度是材料融合在一起并使其固化的温度。
如果允许进料成分发生变化以降低排渣温度,则会形成环。
同样,如果窑温度没有正确测量和控制,则温度可能会超过结渣的温度,从而导致成环。
成环的迹象窑中形成环的潜在迹象包括从窑中排出的物料显着减少或完全停止。
您如何解决成环问题?炉渣环可以手动移除,也可以通过提高系统的工作温度使其溶解。
如果采用温度调节方法,一旦环破裂,温度可再次降低至可能形成炉渣的温度以下。
为了防止将来产生额外的结渣,应检查燃烧室热电偶和监控系统,以确保它们正常运行以进行足够的温度监控。
进料的规格也应与原始工艺参数进行比较,以确保不对原料的变化负责。
在某些情况下,也可以通过提高窑的转速来消除炉渣的形成,从而使物料更快地通过窑。
技术丨回转窑窑尾漏料的主要原因及解决方法

技术丨回转窑窑尾漏料的主要原因及解决方法回转窑窑尾漏料的主要原因及解决方法活性石灰生产中的回转窑是石灰烧成阶段的主要设备之一,回转窑窑尾漏料是影响窑正常生产运行比较常见的原因。
窑尾漏料造成窑尾漏风,冷空气吸入窑内,增大了热损失,不但影响回转窑的产量和质量,而且严重影响环境卫生,使工作环境条件恶劣,制约了正常的生产。
如何解决和避免窑尾漏料,清洁工作环境,通过生产中仔细观察、认真分析,找出影响窑尾漏料的真正原因,以便根据实际情况对症下药,进行处理,从而达到优质高产和创造一个清洁和谐的工作环境。
通过长期的生产线的设计、现场跟踪观察、分析认为,可能导致窑尾漏料的因素主要有以下几个方面:一、窑内物料填充率过高1、回转窑窑尾设计物料最大填充率计算在回转窑进行设计时,对应于相应的产量,回转窑有一个最大填充率,用以确定回转窑的相关尺寸。
回转窑最大填充率计算时取物料的存在为理想状态,以4×60m回转窑为例进行计算窑的最大填充率计算:图1:回转窑物料的填充状态若窑的缩口尺寸为2650mm,窑内耐火砖厚度为230mm,故R=1770mm,H=445mm,R-H=1325mm,θ=arcos(1325/1770)=41.53o式中:Φ2 ——窑尾缩口允许的填充率(%)θ ——物料填充区最高点与圆心的夹角(o);R ——窑尾部砌砖后的有效半径(m);H ——窑尾填充区弓形截面的高度(m)。
当料面的高度低于缩口时,理论上窑尾不漏料,当料面高度大于等于缩口高度时,就会出现漏料现象。
2、窑实际运转时窑尾物料的填充率首先用下式计算窑实际运转时窑尾物料的填充率:式中:Φ1 ——物料在窑尾的填充率(%)M ——每小时原料石灰石,即成品乘以料耗(t/h);W ——石灰石在窑尾部的运动速度(m/s);Di ——窑尾部砌砖后的有效直径(m);rm ——石灰石的比重(t/m3),一般取1.4(t/m3)。
物料在窑尾部的运动速度可以用下式计算:式中:i ——回转窑的斜度(°);Di ——窑尾部砌砖后的有效直径(m);n ——回转窑的转速(r/min);β ——石灰石的自然休止角,一般取35o。
窑口浇注料频繁脱落原因分析及处理措施

同时夹带飞砂料对窑 口浇注料进行冲刷 。 窑以4 . O r / m i n左右的速 落, 特别是窑 口挡砖铁烧 蚀严重 的地 方 , 受窑砖前 窜整体垮 落 。 度快速转动 ,窑 口护铁受高温膨胀 作用挤压浇注 料 ,窑头 高达 因所报的窑 口挡砖圈未到位 ,处理后中途又处理 了两次坚持 至 1 7 0 0  ̄左 右的火焰对浇注料 产生 巨大的热辐射 。 窑 口简体椭圆度 2 0 1 3年 9月 2 0 E t 对窑 口挡砖 圈进行 了整体更换 , 施工质量严格 变形, 增加 了浇注料脱离窑体 的可 能性 。窑 口浇注料 在生产不正 把 关, 使用至今, 窑 口浇注料完好无损 。 常 时 要 经 受 开 停 窑 的 急 冷 急 热 冲 击 。一般 窑 口浇 注 料 脱 落 , 均 会
建材发展导 向 2 0 1 4年 6月
设备安装
窑 口浇注料频繁脱落原 因分析及处理措施
钱 建 勋
( 曲靖 昆钢 嘉华水泥建材 公司 中图分类号 : T Q1 7 2 . 6 + 2 文献标识码 : B 云南 曲靖 6 5 5 0 1 1 ) 文章编号 : 1 6 7 2 — 1 6 7 5 ( 2 0 1 4 ) 1 1 ~ 0 3 1 7 — 0 2
的隐患 。它一般 以表格 的形 式表现 出来 , 主要内容有 提出 问题 并 回答 结果、对 具有危 险性的安全 措施进 行有 效的 降低 或 消除 。 Wh a t — i f 分析法的主要步骤有分析准备、 完成分析 、 编制最后 的结 果文件 , 这三个步骤操作完成形成该方法 的基本程序 。通常情 况 下, 把安全 检查表和 Wh a t — i f 分 析法结合 在一起使 用 , 可 以很 好
采 取 立 即停 窑 处 理 的 方 式 ,故 窑 口浇 注 料 的 正 常 与 否 对 窑 系 统 的生产至关重要 。
回转窑结圈的影响因素及解决措施

回转窑结圈的影响因素及解决措施-----龙仕连我司从11月23日开始窑内断断续续出现少量漏料,并出现了三次大料球,严重影响到窑的正常运转,公司及部门领导高度重视。
经分析是窑23米处结后圈导致窑尾漏料和结料球。
于25日开始处理后圈:1、窑减产到350 t/h煅烧;2、窑头煤管每个班移动两次,-200~+100冷热交替处理;3、每班清理煤管头部积料结焦4次,以保证头煤燃烧好,火焰集中;4、控制煤粉细度及水分,以保证煤粉燃烧效果(煤磨出磨温度控制在63~65度,入磨温度<300度。
内部控制煤粉细度<6.0);5、适当提高熟料KH。
通过3天的处理,23料处后圈薄了很多,并有缺口,于28日窑恢复了365 t/h正常生产。
出现这样的工艺事故,我们必须深度反思。
特别是工艺管理人员和窑操作员一定要密切关注窑皮的变化趋势及原燃材料的变化,及时调整窑参数,保证窑正常运转。
下面让我们再次学习一下窑内结圈的成因、危害及解决措施:结圈是指回转窑在正常生产中,由于原燃材料的变化,或者操作和热工制度的影响,窑内因物料过度粘结,在特定的区域形成一道阻碍物料运动的环形、坚硬的圈。
这种现象在回转窑内是一种不正常的窑况,它破坏了正常的热工制度,影响窑内通风,造成窑内来料波动很大,直接影响到回转窑的产量、质量、消耗和长期安全运转。
而且处理窑内结圈费时费力,严重时需停窑停产,危害极其严重。
结圈的成因及危害:结圈的形成: 结圈实际上是在烧成带末端与放热反应带交界处形成的窑皮,是回转窑内危害最大的结圈。
在熟料煅烧过程中,当物料温度达到1280℃时,其液相黏度较大,最容易形成结圈,而且冷却后比较坚固,不易除掉。
在正常的煅烧情况下,后结圈体的内径部分往往被烧熔而掉落,保持正常的圈体内径。
如果在1 250~l 280℃温度范围内出现的液相量偏多,往往会形成妨碍生产的后结圈。
后结圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长、增厚,发展到一定程度即形成后结圈。
回转窑常见故障及方案

回转窑常见故障及处理方法一.掉转红窑:1.窑衬及其镶砌质量不良或腐蚀后过薄没有按时更换,导致掉转红窑?方法:选用质量高的耐火砖,停窑补换新砖,提高镶砌质量,严禁补压。
2.窑皮挂的不好?方法:加强配料工作,提高煅烧操作水平。
3.轮带与垫板磨损严重,间隙过大,窑筒体径向变形增大?方法:严格控制烧成带附近的轮带与垫板间隙,间隙增大时要及时更换垫板或加垫调整。
4.窑体中心线不直?方法:定期校正窑体中心线。
5.窑筒体局部过热变形,内壁凹凸不平?方法:红窑必停,对变形过大的窑筒体及时整修或更换。
二.窑筒体振动:1.窑筒体受热不匀,弯曲变形过大,托轮脱空?方法:正确调整托轮。
2.大小齿轮齿合间隙过大或过小?方法:调整大小齿轮的齿合间隙。
3.大齿圈接口螺栓松动或断落?方法:紧固或更换螺栓。
4.弹簧板焊缝开裂?方法:重新找正焊补。
5.传动小齿轮磨损严重,产生台阶?方法:更换小齿轮。
6.基础地脚螺栓松动?方法:紧固地脚螺栓。
三.窑筒体开裂:1.表面温度太高或红窑烧损窑筒体,强度和刚度削弱? 方法:窑筒体补焊,加固烧焊。
2.某档托轮顶力太大?方法:正确调整托轮,减轻负荷。
3.窑筒体钢板材质有缺陷或接口焊缝质量差?方法:探伤检查内部缺陷四.窑筒体弯曲偏斜:1.突然停窑,长时间没有转动?方法:将窑弯出做一记号,等窑转到上面停窑数分钟使其复原。
2.窑墩基础下沉,托轮位置发生移动?方法:根据测量数据调整托轮位置五.托瓦衬瓦过热:1.窑中心线不直,衬瓦受力过大?方法:校正中心线,调整托轮受力情况。
2.托轮不正确歪斜,轴承推力过大?方法:调整托轮位置。
3.轴承内冷却水管漏水,用油不当或润滑油变质,以及油内混有其他杂物?方法:换油,修理水管,清洗衬瓦。
4.带油勺发生故障或油盘油沟堵塞?方法:清理油勺,修复带油勺。
六.电动机振动:1.地脚螺栓松动?方法:紧固地脚螺栓。
2.电动机与联轴器中心线不同心? 方法:校正中心线。
3.轴承损坏?方法:更换轴承,检查,调整间隙。
回转窑窑后结圈原因分析及处理方法

回转窑窑后结圈原因分析及处理方法巩义市恒昌冶金建材设备厂生产的1000t/d熟料生产线是由天津水泥工业设计研究院有限公司设计的,主要包括TDF型分解炉、单系列五级旋风预热器、Φ3.2m×50m回转窑及TC-836篦式冷却机。
自2007年2月以来,窑后频繁发生结圈、结球的工艺事故,巩义市恒昌冶金建材设备厂技术人员现将原因分析及解决措施介绍如下,供同仁参考。
1、结圈情况2007年3月19日最为严重,窑前返火,窑尾有漏料现象,无法操作煅烧,迫使停窑处理。
从窑内看,主窑皮长达22m,副窑皮长到窑尾,35~37m处形成后结圈,结圈最小孔洞呈不规则状,直径约l.5m,进窑观察该圈明显分为两层,且层次明确、清晰,第一层厚约150mm,呈黄白色,第二层厚约460mm,呈黑色,圈体非常致密。
对圈体取样分析见表1。
表1 圈体取样分析结果从表l可以看出,第一层硫碱含量较高,是硫碱圈,第二层明显是煤粉圈,熟料液相出现过早、过多导致结圈。
2、原因分析(1)由于2006年煤价不断上涨,加之公路运输距离远,为了降低成本,采用当地劣质煤煅烧,煤质下降,灰分高,挥发分低,发热值低,煤工业分析如表2、3。
实际生产中,煤可燃性差,煤粉燃烧不完全,大量煤灰不均掺入生料中,液相在窑后面提前出现,而未燃尽的煤灰产生沉积及液相的提前出现结圈。
(2)2007年以来,由于机械原因,高温风机l号轴与密封圈强烈摩擦,产生局部高温,使轴侧曲,水平振动最高达6.4mm/s。
为了降低振动,不得不降低高温风机转速,由原来的1130r/min降至l060r/min,有时更低,严重影响了窑内通风,加上煤质又差,更多的窑头燃烧不完全的煤粉沉积在窑后燃烧,使窑内后部温度升高,液相量增加,加速了窑后结圈的形成。
(3)为了处理窑后结圈,我厂在迫不得已的情况下停窑烧后圈,由于煤质差,二、三次风温低,燃料不完全或未燃烧的煤粉落在圈上及圈后的积料上,不断燃烧,造成物料发粘,不但圈未烧掉,反而越结越厚,这也是第一层圈形成的主要原因。
氧化铝回转窑窑尾下料簸箕和下料管的修理

氧化铝回转窑窑尾下料簸箕和下料管的修理氧化铝熟料回转窑窑尾系统结构图,包括窑尾罩体、下料簸箕、下料管、喷枪及支架支承等部分。
下料簸箕是为了将返回到窑尾罩内的窑灰溜到窑体内;下料管是将收尘器收回的窑灰顺利地输送到窑体内。
下料簸箕及下料管对保证正常操作、稳定产量、保护环境至关重要。
下料簸箕与窑尾罩联接。
底部支承在基础上,低端伸入窑体内,一般用厚10毫米钢板制作。
其结构尺寸根据窑尾罩及窑体结构尺寸不同而不同。
其要求是有利于窑灰顺利地溜到窑体内,所以坡度必须大于窑灰的安息角。
下料管上口与旋风收尘器或窑灰输送设备排料口相联,固定在窑尾罩罩体上,下口伸入窑体内,下段支承于下料簸箕上,一般用厚8毫米钢板制作。
一、下料簸箕及下料管修理限度1.下料簸箕局部裂缝或磨损漏料,应进行焊补。
2.下料簸箕挡风板脱落应及时安装、更换。
3.下料簸箕大面积漏料或者下沉甚至与窑体相磨,就必须更换。
4.下料管文承开焊或断裂应及时支承加固好。
5.下料管断裂脱落应及时安装更换。
6.下料管磨损漏料或变形堵料应当更换。
二、下料簸箕及下料管修理质量标准1.下料簸箕制作一般按中间、两侧三部分制作,现场组装。
下料管可根据需要确定长度、直径尺寸,所有焊缝必须符合图纸和质量要求。
2.下料簸箕、下料管与窑体之间的相对位置可按照图示的尺寸安装。
3.簸箕安装时所有对接缝采用双面焊接。
4.安装完毕后要保证簸箕不漏料,在保证与窑体相对位置前提下,尽量增大接料面积,以防窑灰外落。
5、簸箕底部与窑尾罩体联接处要用三角立筋支承加固,底部要用钢结构整体加固,然后再支承在基础上并固定好。
6.要保证簸箕上表面圆滑,不得有其他障碍物,局部焊补保证不漏料。
7.下料管要严格按图纸安装,下口断面要割出与窑体平行的马蹄口并与旁侧窑筒体相距300毫米左右。
8.下料管新旧接口处环缝用三块厚10毫米,100×300毫米长方立筋加固,下料管下部用L80×80角钢支承两个点,并焊死在簸箕上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回转窑窑尾漏料的主要原因及解决方法关键词:回转窑窑尾漏料填充率
摘要:从几个方面分析了回转窑漏料的主要原因,并提出了窑尾漏料时可
采取的解决方法,有效的指导生产实际,改善了回转窑的热工环境。
前言:活性石灰生产中的回转窑是石灰烧成阶段的主要设备之一,回转窑
窑尾漏料是影响窑正常生产运行比较常见的原因。
窑尾漏料造成窑尾漏风,冷空气
吸入窑内,增大了热损失,不但影响回转窑的产量和质量,而且严重影响环境卫
生,使工作环境条件恶劣,制约了正常的生产。
如何解决和避免窑尾漏料,清洁工
作环境,通过生产中仔细观察、认真分析,找出影响窑尾漏料的真正原因,以便根
据实际情况对症下药,进行处理,从而达到优质高产和创造一个清洁和谐的工作环境。
新兴河北工程技术有限公司通过长期的生产线的设计、现场跟踪观察、分析
认为,可能导致窑尾漏料的因素主要有以下几个方面:
一、窑内物料填充率过高
1、回转窑窑尾设计物料最大填充率计算
在回转窑进行设计时,对应于相应的产量,回转窑有一个最大填充率,用以
确定回转窑的相关尺寸。
回转窑最大填充率计算时取物料的存在为理想状态,以4×60m回转窑为例进行计算窑的最大填充率计算:
图1:回转窑物料的填充状态
若窑的缩口尺寸为2650mm,窑内耐火砖厚度为230mm,故
R=1770mm,H=445mm,R-H=1325mm,
θ=arcos(1325/1770)=41.53o
式中:Φ2 ——窑尾缩口允许的填充率(%)
θ——物料填充区最高点与圆心的夹角(o);
R ——窑尾部砌砖后的有效半径(m);
H ——窑尾填充区弓形截面的高度(m)。
当料面的高度低于缩口时,理论上窑尾不漏料,当料面高度大于等于缩口高度时,就会出现漏料现象。
2、窑实际运转时窑尾物料的填充率
首先用下式计算窑实际运转时窑尾物料的填充率:
式中:Φ1 ——物料在窑尾的填充率(%)
M ——每小时原料石灰石,即成品乘以料耗(t/h);
W ——石灰石在窑尾部的运动速度(m/s);
Di ——窑尾部砌砖后的有效直径(m);
rm ——石灰石的比重(t/m3),一般取1.4(t/m3)。
物料在窑尾部的运动速度可以用下式计算:
式中:i ——回转窑的斜度(°);
Di ——窑尾部砌砖后的有效直径(m);
n ——回转窑的转速(r/min);
β——石灰石的自然休止角,一般取35o。
以年产20万吨石灰生产线为例,年产20万吨生产线小时产量为25吨,假设产量不变的情况下,回转窑的转速发生变化时,窑的填充率的变化情况见下表:
窑速(r/min) 1.0 1.1 1.2 1.3 1.4 1.5
物料运动速度W 0.0113 0.0124 0.0136 0.0147 0.0158 0.0170 窑的填充率(%) 8.56 7.81 7.12 6.59 6.13 5.69
由上表可以看出,20万吨活性石灰生产线在达产状态下,只有窑速
≥1.2r/min的时,窑的填充率才小于最大填充率,这样才可以保证窑尾不漏料。
所以回转窑窑速的控制要和最终的产量相配套,产量大时,窑的转速也要相
应提高,以免窑的填充率较大,导致厚料层操作,引起窑尾的漏料。
从以上的公式
1中还可以看出,为保证窑尾的不漏料,窑尾缩口在保证足够的系统通风面积的情
况下,应尽量可能的小,以确保解决窑尾的漏料问题。
二、窑尾密封不好造成窑尾漏料
回转窑密封装置无论是窑头密封还是窑尾密封,在烧成系统中都起着连接固
定件和回转件之间的密封作用。
烧成系统是热工环境,以窑尾为例,不仅存在着高温、高粉尘、负压工艺环境,窑尾筒体同时存在回转、摆动、轴向窜动等综合复杂
活动,而且使用过程中不可避免存在椭圆、弯曲等变形。
回转过程中回转部件和固
定部件间存在不断变化的轴向、径向、环向三维间隙。
当密封装置不好时,便会有
冷风进入,从而增加了系统的废气量,减少了合理条件下的烟气的有效通过量,并
且增加了系统的热耗。
漏风、漏灰和工艺操作的不稳定导致了产量减少和质量的下降,给企业带来了不必要的经济损失,增加了生产成本。
要解决漏料先解决漏风。
现在的窑尾密封多采用柔性结构,这种结构能有效
解决回转窑在高温使用状态下产生的变形、筒体偏摆和偏心等问题。
所以密封材料
必须采用高弹性、耐高温材料,在窑尾温度达到1000℃时仍能保持良好的机械性能,从而保证良好的密封效果。
窑尾密封是回转窑的一个重要组成部分,它位于既周向旋转又轴向窜动的窑和静止不动的预热器之间,作用是使窑内环境和外界隔离,以防止窑外的冷空气的吸入和窑内物料的漏出窑外。
窑尾密封的不合理会造成热耗偏高,增加生产成本,污染环境。
窑尾密封效果差,当窑尾物料积满后,大量的物料从密封处挤出,不但对现场环境造成严重污染,而且增加了职工的劳动强度,二是由于大量的积灰从密封处挤出,密封圈经常被挤、挂坏,造成冷风从窑尾处进入窑系统,破坏窑内的热工制度,导致窑尾温度偏低,影响正常煅烧,产量、质量波动大。
所以,在窑尾密封工作的时候,应注意观察各部件的情况,是否存在卡死、开缝、漏灰等现象。
如有应立即调整,以免形成恶性循环。
三、下料溜嘴、窑尾缩口以及溜嘴和缩口之间间隙的不合理造成窑尾漏料
要解决漏料,必须设计好窑尾溜槽的下料溜嘴、回转窑的窑尾缩口以及溜嘴和下料溜嘴之间的间隙,处理好三者之间的关系。
物料从溜嘴溜入到回转窑时局部成堆积状,当间隙不合理时,物料在随筒体回转的过程中会有一部分料从间隙挤出而造成漏料。
窑尾预热器的下料不均匀时,尤其是堵料时,物料会从溜嘴两侧冲出掉入密封内,造成设备漏料。
实际窑尾下料始终是不均匀的,因此窑尾溜槽的溜嘴设计非常关键。
新兴河北工程技术有限公司根据上述情况在对用户密封改造时首先核对用户现有的窑尾缩口、入料溜嘴等设计是否合理,然后根据现场情况本着为用户节约的前提下为用户进行改造或重新设计,从而保证正常生产情况下最大限度减少漏风、漏料,保证了柔性密封在使用中的寿命。
四、窑尾的下料溜嘴烧损变短及两边的挡料浇注料没有,造成窑尾的漏料
窑尾溜嘴长期处在窑尾介质温度为1000℃左右的高温环境中,非常容易高温氧化,浇注料会因为无骨架的支撑而脱落,浇注料脱落后,大量的物料溜嘴与窑尾
之间的间隙,进而导致窑尾漏料。
所以在溜嘴设计时候,要充分考虑无骨架的支撑脱落的因素,在设计溜嘴
时,给溜嘴带上浇筑料的支撑架,防止在生产过程中由于物料的冲刷而使浇注料脱落,致使预热器下料时物料冲出溜嘴而进入窑尾缩口和溜槽之间的间隙,造成窑尾
的漏料。
另外将溜嘴由原来的180°变为现在的150°,增大了窑尾的通风面积,改善了窑尾的热工制度,同时也降低了窑尾漏料的机率。
五、系统中的仪表不准确造成窑尾漏料
各测温点测量仪表不准确。
由于温度不准确造成燃料给定的不准确,造成系
统温度比实际温度偏高,如果原料粉含量较大或煤的灰熔点较低,窑非常容易结
圈,结圈后出料不畅导致窑尾的填充率过高而造成窑尾的漏料。
对此,应经常对主
要的测温点进行检查,热电偶头部结皮的要及时清除,已损坏的要及时更换。
经以上分析可以看出,窑尾漏料的原因是多样的,一旦发生窑尾漏料应根据
实际情况,具体情况具体分析,对症下药进行处理,从而稳定窑内的热工制度,降
低漏风量,减少热损失,保持一个清洁卫生的工作环境和良好的系统工况。