有理数的加减法重难点突破案例

合集下载

人教版数学七年级上册第一章有理数的加法异号两数相加优秀教学案例

人教版数学七年级上册第一章有理数的加法异号两数相加优秀教学案例
在教学过程中,教师以学生的认知发展为基础,关注学生的个体差异,引导他们通过观察、思考、交流与合作,探索异号两数相加的规律。通过设计丰富多样的教学活动,激发学生的学习兴趣,培养学生的逻辑思维能力和实际问题解决能力,使他们在面对实际问题时,能够运用所学知识进行分析和解决。
本案例旨在让学生在掌握异号两数相加运算规则的基础上,能够灵活运用这一知识,提高数学素养,为后续学习打下坚实基础。同时,注重培养学生合作交流、探索创新的能力,使他们在学习过程中体验到数学的乐趣,增强自信心,形成积极向上的学习态度。
2.鼓励学生进行课后反思,及时调整学习方法。
"希望大家在完成作业后,能够回顾一下今天的学习过程,思考哪些地方做得好,哪些地方还需要改进。"
五、案例亮点
1.生活情境的巧妙融入
本教学案例的一大亮点是将异号两数相加这一数学概念与学生的生活实际紧密结合。通过购物找零、温度变化等生活情境的引入,使学生感受到数学知识的实用性和趣味性,从而激发他们的学习兴趣。这种贴近生活的教学方式,有助于学生更好地理解数学概念,提高数学素养。
4.通过对实际问题的分析和解决,培养学生的创新意识和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们主动学习的积极性。
2.培养学生面对困难时的坚持和毅力,使他们形成克服困难、勇于探索的精神风貌。
3.通过合作交流,培养学生的团队精神和协作能力,提高他们的人际沟通能力。
4.引导学生认识到数学在生活中的重要作用,增强他们的数学应用意识和实践能力。
"我们来看这个数轴,如果我从0点向右走3步,表示加3,那么从0点向左走2步,表示减2。现在我要求这两个动作的和,实际上就是从0点向右走1步,也就是1。这就是异号两数相加的规则,我们可以总结为:同号相加,异号相减,取绝对值较大的数的符号。"

人教版七年级数学上册第二单元2.2《有理数的减法》优秀教学案例

人教版七年级数学上册第二单元2.2《有理数的减法》优秀教学案例
3.教师对学生的作业进行评价,关注学生的学习效果,及时给予反馈。
4.鼓励学生之间进行互评,互相学习,共同提高。
5.对本节课的学习内容进行总结,让学生明确自己的学习目标。
五、案例亮点
1.生活实例导入:通过讲述一个与学生生活紧密相关的故事,引出有理数减法的概念,激发了学生的学习兴趣,增强了学生对知识的理解和记忆。这种生活化的教学方式,让学生感受到数学与生活的紧密联系,提高了学生的学习积极性。
2.设计具有针对性的练习题,让学生在实践中掌握有理数减法的运算规律,提高学生的数学运算能力。
3.引导学生总结归纳有理数减法的运算规律,培养学生的数学思维能力,提高学生的自主学习能力。
4.采用小组合作、讨论交流的方式,培养学生的团队协作精神,提高学生的人际沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的内在动力。
3.通过实际例题,讲解有理数减法在实际问题中的应用,让学生学会运用有理数减法解决问题。
(三)学生小组讨论
1.让学生分组进行讨论,每组选择一个实例,运用所学知识进行有理数减法的计算,并解释计算过程。
2.鼓励学生提出疑问,组内成员共同解答,形成良好的学习氛围。
3.各组派代表分享自己的讨论成果,其他组进行评价和补充。
3.引导学生对小组合作过程进行总结,培养学生的团队协作能力和自主学习能力。
(四)反思与评价
1.让学生对自己的学习过程进行反思,总结自己在学习有理数减法过程中的优点和不足。
2.学生之间进行互评,互相学习,共同提高。
3.教师对学生的学习情况进行评价,关注学生的学科素养和综合素质的提高。
4.采用多元化的评价方式,如课堂表现、作业完成情况、实践活动成果等,全面评价学生的学习效果。

有理数减法教案中的实例分析

有理数减法教案中的实例分析

本篇文章将从有理数减法教学的实际应用中进行实例分析,旨在帮助教师更好地理解和教授有理数减法。

一、教学内容和难点有理数减法是初中数学重要的基础知识,也是一道比较基础的数学题。

但对于初学者来说,有理数的负数和整数的混合运算以及有理数减法的借位等知识点难度还是比较大的。

在教学中,难点主要有以下几点:1、对有理数的混合运算形式没有掌握2、对于有理数减法的“0”和“1”的特殊情况没有着重讲解3、对于借位运算没有掌握二、教学方法针对以上难点,我们需要采取一些有效的教学方法,以帮助学生更好地理解和掌握有理数减法。

以下是一些推荐教学方法:1、精讲常用例题有理数减法的例题形式较为固定,为一系列数字和符号的排列组合。

我们可以先讲解一些常见的例题,通过课堂展示、练习等途径,使学生充分掌握有理数减法的基础知识。

2 、分步讲解解题方法有理数减法需要用到借位等解题方法。

在讲解该方法时,应先让学生看懂题,然后逐一讲解每个步骤的解法。

在教学结束后,可以再让学生自己尝试一遍,以加深对该方法的记忆。

3 、例题辅助在讲解难题时,可以给学生提供相关的例题,以便学生加深对难点的印象。

通过不断练习例题,学生将更加自信地掌握该知识点。

三、实例分析下面我们通过一个实例来进一步了解如何应用上述教学方法。

题目:$(-3)-(+5)$教学方法:1、让学生掌握有理数正负数的基本概念和运算法则。

教师可以用实物模型、电子课件等形式,将正、负数演示出来,让学生通过观察,感受正、负数之间的运算关系。

2、让学生掌握有理数减法的基本运算步骤。

在讲解有理数减法的步骤时,索性把后面的数字和符号连带着变成相反数,加法变成减法,例如:$(-3)-(+5)$可以变成$(-3)+(-5)$。

这样做有利于帮助学生理解减法的规则。

所以现在的式子就变成了:$(-3)+(-5)=?$3、让学生掌握自动化借位运算。

在讲解借位运算时,可以准备好具体的计算方法,并结合小学数学的“借位加法”等教育思路,通过表格、图例等形式展示解题的完整步骤。

有理数的加减法教学设计教案

有理数的加减法教学设计教案

有理数的加减法教学设计教案教学设计:有理数的加减法一、教学目标:1.知识目标:了解有理数的加减法的定义和性质,能够准确地进行有理数的加减运算。

2.能力目标:能够运用有理数的加减法解决实际问题,培养学生的逻辑思维和分析能力。

3.情感目标:培养学生良好的学习态度和团队合作意识,增强学生对数学的兴趣和自信心。

二、教学重点:1.有理数的加法和减法的运算方法。

2.运用有理数的加减法解决实际问题。

三、教学难点:运用有理数的加减法解决实际问题。

四、教学步骤:1.导入新知识(10分钟)通过简单的问题引入有理数的加减法概念,如:小华手中有十几个苹果,小明偷走了他的7个苹果,那么小华手中还剩下多少苹果?引导学生思考和探讨。

2.基础知识的讲解(20分钟)在较为简单的数值计算上,讲解有理数的加法和减法的定义和性质。

通过简单的数轴上的图示和实例进行解释。

3.例题引导和探究(30分钟)通过一些简单的例题引导学生进行操作,培养学生的计算能力和分析问题能力。

例题1:计算:(-3)+5,(-7)-4例题2:计算:(-4)+(-6),(-8)-(-5)4.拓展知识讲解(10分钟)在基础知识讲解的基础上,进一步引入拓展知识,如有理数的乘法和除法,学习有理数的四则运算规则。

5.解决实际问题(20分钟)通过一些实际的问题来引导学生解决问题,培养学生的应用能力和实际运用能力。

如:问题1:小明从北京骑自行车到天津,用了2小时30分钟,骑车速度为每小时16公里。

问:小明从北京到天津的距离是多少公里?问题2:小华去超市买牛奶,超市原价是每瓶9元,今天正在打折,每瓶打7折。

小华买了5瓶,他用了多少元?6.总结与讲评(10分钟)总结本节课的知识要点和核心内容,帮助学生理清思路。

7.作业布置(5分钟)布置一些相关的课后作业和练习题,要求学生按时完成并及时订正。

五、教学反思:通过本节课的教学设计和实施,学生能够全面了解和掌握有理数的加减法的基本知识和运算方法。

初中初一数学上册《有理数的加法与减法》优秀教学案例

初中初一数学上册《有理数的加法与减法》优秀教学案例
3.小组合作,提升团队协作能力
案例中,小组合作是一种重要的教学策略。通过分组讨论、互助学习,学生能够在团队中发挥各自的优势,共同解决问题。这种合作学习方式不仅提高了学生的团队协作能力,还培养了学生的沟通表达能力和共享精神。
4.反思与评价,促进自主学习
本案例注重学生的反思与评价,鼓励学生总结自己的学习过程,发现优点和不足,制定针对性的改进措施。这种教学策略有助于培养学生的自主学习能力,使他们在反思中不断成长。
(二)过程与方法
1.通过情境创设,引导学生主动探究有理数加减法的规律,培养学生独立思考的能力。
2.采用问题驱动法,激发学生的学习兴趣,引导学生通过自主探究、合作交流等方式解决问题。
3.设计不同难度的例题和练习,使学生在实际操作中掌握有理数的加减法运算方法,提高解题能力。
4.注重个别辅导,关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们针对以下问题进行讨论:
1.有理数加减法的运算规律有哪些?如何运用到实际计算中?
2.在有理数加减法运算中,如何避免常见的错误?
3.结合实例,讨论有理数加减法在实际生活中的应用。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,总结有理数加减法的运算规律和技巧。具体包括以下几点:
3.鼓励小组成员积极参与讨论,分享自己的观点和思路,学会倾听他人的意见,形成共识。
4.教师在小组合作过程中进行巡回指导,关注每个学生的参与情况,及时给予反馈和指导。
(四)反思与评价
反思与评价是教学过程中的重要环节,可以帮助学生巩固所学知识,提高自我认知。在本章节的教学中,我将采取以下措施:

有理数的加减法重难点突破案例

有理数的加减法重难点突破案例

有理数的加减法重难点突破案例第一篇:有理数的加减法重难点突破案例有理数的加减法重难点突破教学案例一、教学目标知识与技能:使学生理解有理数加法运算的意义,初步掌握有理数加法法则,并能准确熟练地进行有理数的加法运算.过程与方法:通过有理数的加法运算练习,培养学生的基本的运算能力.情感与态度:激发学生学习数学的兴趣。

二、教学重点与难点重点:熟练应用有理数的加法法则进行加法运算.难点:有理数的加法法则的理解及应运.三、教学过程(一)复习提问(回顾已学知识)1.有理数的俩个分类标准是什么?怎么分类?2.有理数的绝对值代数意义?一个有理数的绝对值的几何意义是什么?3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?-4与-9;|7|与|-7|;|-3|与0;-2与|+1|;-|+4|与|-3|.(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将仍适应吗?(利用类比思想,降低学习难度)(三)新课教学有理数的加法。

显示课本上例题:例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里有必要规定向东走为正,向西走为负.这两数相加分以下三种情况:1.号两数相加同(1)某人向东走5米,再向东走3米,两次一共走了多少米?这是求两次行走的路程的和.5+3=8,用数轴表示如图(板书)从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.再举几个例子说明,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米(-5)+(-3)=-8 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了(-8)米.可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.归纳,同号两数相加,取相同的符号,并把绝对值相加.(板书)例如,(-4)+(-5),……同号两数相加(-4)+(-5)=-(),…取相同的符号4+5=9……把绝对值相加∴(-4)+(-5)=-9. 2.异号两数相加(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.5+(-5)=0 可知,互为相反数的两个数相加,和为零.(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.就是 5+(-3)=2.(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.就是 3+(-5)=-2.请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?归纳;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.例如(-8)+5……绝对值不相等的异号两数相加8>5(-8)+5=-()……取绝对值较大的加数符号 8-5=3 ……用较大的绝对值减去较小的绝对值(-8)+5=-3.口答练习用算式表示:温度由-4℃上升7℃,达到什么温度.(-4)+7=3(℃)3.一个数和零相加(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?显然,5+0=5.结果向东走了5米.(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.由(1),(2)得出:一个数同0相加,仍得这个数.总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.有理数加法运算的三种情况:特例:两个互为相反数相加;(3)一个数和零相加.每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.(四)例题解析,展示例1 计算(-3)+(-9).分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).解:(-3)+(-9)=-12.例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)解题时,先确定和的符号,后计算和的绝对值.(五)巩固练习1.计算(1)5+(-22);(2)(-1.3)+(-8)(3)(-0.9)+1.5;(4)2.7+(-3.5)四.课堂小结:今天我们学到了什么?这样步步升入突破难点。

第一章 “有理数加减”重、难点

第一章 “有理数加减”重、难点

“有理数加减法”重、难点2009-10-3一、有理数的加法1. 有理数加法法则正+正:取相同的符号,并把绝对值相加。

如:(+3+(+4=+(3+4=+7. 注:前面的正号“+”可以省略。

负+负:取相同的符号,并把绝对值相加。

如:(-3+(-4=-(3+4=-7. 注:-4一定要加括号;第一个负号可加括号,也可不加。

(-3+-4这种写法是错误的。

正+负:取绝对值大的符号,并用较大的绝对值减去较小的绝对值。

如:(+8+(-3=+(8-3=5,(-8+(+3=-(8-3=-5.注:互为相反数的两个数相加得0.如:(+5+(-5=0.正+0=正,负+0=负,0+0=0.如:(+3+0=3, (-4+0=0, 0+0=0.2.有理数加法得出的若干结论正+正>0, 负+负<0, 正+0>0,负+0<0.“正+负”可能大于0,可能小于0,也可能等于0.难点:正+负:i. 若a>0,b<0,且|a|>|b|,则a+b>0.ii. 若a>0,b<0,且|a|<|b|,则a+b<0.3.加法的交换律和结合律交换律:a+b=b+a. 如:(+3+(+4=(+4+(+3.结合律:(a+b+c=a+(b+c. 如:(3+4+(-2=3+[4+(-2].4. 加法运算律的运用计算:18.56+(-5.16+(-1.44+(+5.16+(-18.56.原式=[18.56+(-18.56]+[(-5.16 +(+5.16]+(-1.44=0+0+(-1.44=-1.44注:互为相反数的两个数可以先加。

计算:(+26+(-14+(-16+(+18.原式=[(+26 +(+18]+[(-14+(-16]=44+(-30=14注:符号相同的数可以先加。

计算:.注:能凑整数的可以先加。

计算:注:同分母的分数可以先加。

5. 易错题错误:正确:错误一:错误二:错误三:.正确:错误:正确:6. 难题若m是有理数,则|m|+m的值是()A.不可能是正数B.一定是正数C.不可能是负数D.可能是正数,也可能是负数答案:当m>0时,|m|+m=m+m=2m>0;当m=0时,|m|+m=0+0=0;当m<0时,|m|+m=-m+m=0.所以选C.计算:-1+2-3+4-5+6-…-99+100.答案:原式=(-1+2+(-3+4+(-5+6+…+(-99+100=1+1+1+…+1=50变换一:(+1+(-2+(+3+(-4+…+(+2007+(-2008=[(+1+(-2]+[(+3+(-4]+…+[(+2007+(-2008] =(-1+ (-1+…+(-1=-1004变换二:(-2+4+(-6+8+…+(-98+100=50 计算:答案:原式====.变换一:变换二:变换三:二、有理数的减法1. 有理数减法法则正-正=正+负;正-负=正=正;负-正=负+负;负-负=负+正。

巧用运算规律简化有理数计算的六种方法重难点题型

巧用运算规律简化有理数计算的六种方法重难点题型

巧用运算规律简化有理数计算的六种方法【题型1 归类法】【例1】阅读下面的解题过程并解决问题计算:53.27﹣(﹣18)+(﹣21)+46.73﹣(+15)+21解:原式=53.27+18﹣21+46.73﹣15+21(第一步)=(53.27+46.73)+(21﹣21)+(18﹣15)(第二步)=100+0+3(第三步)=103(1)计算过程中,第一步把原式化成的形式,体现了数学中的思想,为了计算简便,第二步应用了.(2)根据以上的解题技巧进行计算下列式子:−2123+314−(−23)−(+14).【变式1-1】计算:(−23)+(516)+(−416)−913.【变式1-2】计算:123+212−334+13−4.25.【变式1-3】计算:3712+(﹣114)+(﹣3712)+114+(﹣418).【题型2 凑整法】【例2】计算:(﹣347)+12.5+(﹣1637)﹣(﹣2.5)【变式2-1】计算下列各题:(1)20.36+(﹣1.4)+(﹣13.36)+1.4; (2)(+325)+(﹣278)﹣(﹣535)+(−18).【变式2-2】计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4) (2)(﹣1.75)﹣(﹣234)+(﹣345)﹣(﹣145)【变式2-3】计算下列各题:(1)(0.5)+(+92)+(−192)+9.5;(2)(−12)+(−25)+(+32)+(185)+(+395);(3)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(﹣5.2);(4)(﹣3.5)+(−43)+(−34)+(+72)+0.75+(−73).【题型3 逆向法】【例3】计算:−52×(−115)+133×(−115)+56×2.2.【变式3-1】计算:235×127+2.6÷711−135×67.【变式3-2】计算:−13×23−0.34×27+13×(−13)−57×0.34【变式3-3】计算:0.7×149+234×(−15)+0.7×59+14×(−15);【题型4 拆项法】【例4】阅读下面的计算过程,体会“拆项法” 计算:﹣556+(−923)+1734+(−312).解:原式=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=(−114) 启发应用用上面的方法完成下列计算:(−3310)+(−112)+235−(212)【变式4-1】阅读下列解题方法,然后根据方法计算.﹣516−(﹣923)=[(﹣5)﹣(﹣9)]+[(−16)﹣(−23)]=4+12=412.计算:(﹣201956)+(﹣201823)+4037+112【变式4-2】计算:﹣991517×34.【变式4-3】计算:399498399×(−6)【题型5 组合法】【例5】计算:1﹣3+5﹣7+9﹣11+…+97﹣99【变式5-1】计算:1﹣2+3﹣4+…+97﹣98+99.【变式5-2】计算:1﹣2﹣3+4+5﹣6﹣7+8+…+2013﹣2014﹣2015+2016.【变式5-3】计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+…+2005+2006﹣2007﹣2008.【题型6 裂项相消法】【例6】阅读材料,回答下列问题. 通过计算容易发现: ①12−13=12×13;②14−15=14×15;③16−17=16×17(1)观察上面的三个算式,请写出一个像上面这样的算式: 17−18=17×18;(2)通过观察,计算11×2+12×3+13×4+14×5+15×6+16×7的值. (3)探究上述的运算规律,试计算11×3+13×5+15×7+17×9+19×11+⋯+197×99的值.【变式6-1】12+13=2+32×3=56;13+14=3+43×4=712;14+15=4+54×5=920(1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果)1342= = ,1772= = .(2)利用以上所得的规律进行计算:32−56+712−920+1130−1342+1556−1772【变式6-2】类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:12−13=32×3−23×2=3−26=16,我们将上述计算过程倒过来,得到16=12×3=12−13,这一恒等变形过程在数学中叫做裂项.类似地,对于12×4可以用裂项的方法变形为:12×4=12×(12−14).类比上述方法,解决以下问题. (1)猜想并写出:1n(n+1)= .(2)探究并计算下列各式: ①11×2+12×3+13×4+⋅⋅⋅+149×50;②1−2×4+1−4×6+1−6×8+⋅⋅⋅+1−2018×2020.【变式6-3】阅读理解题 第1个等式:12=2−12×1=1−12; 第2个等式:16=3−23×2=12−13;第3个等式:112=4−34×3=13−14;……观察以上等式,请解答下列问题:(1)按以上规律列出第5个等式: ; (2)计算:11×5+15×9+19×13+⋯⋯+12017×2021.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加减法重难点突破教学案例
一、教学目标
知识与技能:使学生理解有理数加法运算的意义,初步掌握有理数加法法则,并能准确熟练地进行有理数的加法运算.过程与方法:通过有理数的加法运算练习,培养学生的基本的运算能力.
情感与态度:激发学生学习数学的兴趣。

二、教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算.
难点:有理数的加法法则的理解及应运.
三、教学过程
(一)复习提问(回顾已学知识)
1.有理数的俩个分类标准是什么?怎么分类?
2.有理数的绝对值代数意义?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-4与-9;|7|与|-7|;|-3|与0;
-2与|+1|;-|+4|与|-3|.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将仍适应吗?(利用类比思想,降低学习难度)
(三)新课教学有理数的加法。

显示课本上例题:
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里有必要规定向东走为正,向西走为负.这两数相加分以下三种情况:
1.号两数相加同
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8,
用数轴表示如图(板书)从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.再举几个例子说明,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了(-8)米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
归纳,同号两数相加,取相同的符号,并把绝对值相加.(板书)例如,(-4)+(-5),……同号两数相加
(-4)+(-5)=-( ),…取相同的符号
4+5=9……把绝对值相加
∴ (-4)+(-5)=-9.
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是 3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
归纳;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.例如(-8)+5……绝对值不相等的异号两数相加8>5
(-8)+5=-( )……取绝对值较大的加数符号
8-5=3 ……用较大的绝对值减去较小的绝对值
(-8)+5=-3.
口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.
(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题解析,展示
例1 计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)
解题时,先确定和的符号,后计算和的绝对值.
(五)巩固练习
1.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
四.课堂小结:今天我们学到了什么?
这样步步升入突破难点。

相关文档
最新文档