金属粉末注射成型设备和发展

合集下载

211172531_金属粉末注射成形技术发展探究

211172531_金属粉末注射成形技术发展探究

金属粉末注射成形技术发展探究顾海峰摘要:金属粉末注射成形(Metal powder injection molding,MIM)技术,是一种新型的近净成形技术,主要用来生产形状小、结构复杂的零部件。

文章针对MIM技术的发展应用进行探究,综述了MIM工艺流程和技术特点、气雾化粉末与水雾化粉末的对比、MIM技术的应用现状、MIM工艺中的常见问题及解决对策,以期促进MIM技术进一步发展。

关键词:MIM技术;工艺流程;应用现状;问题;解决对策MIM技术起源于20世纪70年代,由美国学者首次开发成功。

到了80年代,关于MIM技术的理论和应用研究活动广泛开展,这一时期脱脂工艺用时明显缩短,产品尺寸精度得以提高。

进入21世纪,随着新材料、新工艺的出现,MIM向着产业化发展,解决了难熔金属基复合材料的加工问题。

在金属材料加工领域,人类追求金属零件一体成形的梦想从未停止,MIM技术是当今金属零件制造的顶尖技术,被誉为“金属加工技术的未来”。

以下结合现有研究成果,对MIM技术的发展与应用进行探讨。

1 MIM工艺流程和技术特点1.1 MIM工艺流程MIM工艺流程为:金属粉末+粘结剂→混炼制粒→注射成形→脱脂→烧结→后处理→成品。

主要材料和关键工艺介绍如下。

1.1.1 金属粉末理论上,满足粉末冶金要求的金属,均能用在MIM工艺中。

目前常用的金属粉末有:①低合金钢,如Fe-2Ni、Fe-8Ni;②不锈钢,如304L、440C、17-4PH;③硬质合金,如WC-6Co;④重合金,如W-Ni-Fe、W-Cu;⑤钛合金,如TiAl、Ti-6Al-4V、TiMo;⑥新型合金,如Fe-Al-Si、无Ni奥氏体不锈钢。

制备金属粉末,主要方法有雾化法、羰基法、电解法、还原法、研磨法等。

实践证实,粉末粒度大小、粉末之间的摩擦力,均会影响混料的均匀度。

粉末粒度越小、摩擦力越小,混料均匀度越高,有助于提高工艺质量。

1.1.2 粘结剂MIM工艺中,对粘结剂的要求为:粘度与熔点低,固化性、流动性、湿润性好,各组分不会分离,不会与金属粉末发生反应,分解温度高于混料温度、成形温度,且产物无毒无害、可循环使用。

2024年金属粉末注射成型(MIM)市场前景分析

2024年金属粉末注射成型(MIM)市场前景分析

金属粉末注射成型(MIM)市场前景分析概述金属粉末注射成型(Metal Injection Molding,简称MIM)是一种通过将金属粉末与聚合物混合,并注射到模具中形成所需形状的金属件的制造工艺。

MIM技术结合了传统的塑料注射成型和金属粉末冶金加工的优势,可以用于生产复杂形状和高精度的金属零件。

本文将对金属粉末注射成型市场的前景进行分析。

市场规模随着制造业的迅猛发展和对高质量金属零件的需求增加,金属粉末注射成型市场正在快速扩大。

根据市场研究公司的数据,2019年全球金属粉末注射成型市场规模达到XX亿美元,预计到2026年将达到XX亿美元。

北美和欧洲是金属粉末注射成型市场的主要地区,但亚太地区的市场份额正在快速增长。

主要应用领域金属粉末注射成型技术在各个行业中得到广泛应用。

其中,汽车工业是金属粉末注射成型市场的主要驱动因素之一。

MIM技术可以用于生产汽车零部件,如发动机组件、传动系统零件和底盘部件等。

此外,电子行业也是金属粉末注射成型的重要市场,用于生产各种电子设备中的金属连接器、传感器和高精密零件。

医疗行业也是金属粉末注射成型的潜在市场,因为MIM零件可以用于生产人工关节、牙科设备和外科手术工具等。

优势和挑战金属粉末注射成型技术具有许多优势。

首先,MIM技术能够生产复杂形状和高精度的金属零件,与传统的加工方法相比具有成本优势。

其次,MIM技术可以在一次注射成型中完成多个零件的生产,提高了生产效率。

此外,金属粉末注射成型技术还可以实现材料的高度可控性,满足客户对材料性能的特殊要求。

然而,金属粉末注射成型技术还面临一些挑战。

首先,MIM设备和模具的投资成本相对较高,对小型企业来说可能是一个限制因素。

其次,金属粉末注射成型过程相对较复杂,需要专业的工艺控制和技术人员的支持。

最后,对于一些大型和厚壁零件的生产,金属粉末注射成型技术可能无法满足要求,需要采用其他加工方法。

发展趋势金属粉末注射成型市场在未来几年有望继续保持较快的增长势头。

金属粉末的注射成型

金属粉末的注射成型
纳米金属粉末
具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题

金属注射成形发展前景分析

金属注射成形发展前景分析
在数字化和智能制造的推动下,金属 注射成形工艺将会实现更加高效和智 能的生产。
随着新材料的不断涌现,金属注射成 形工艺将会涉及到更多的新材料领域 。
在未来,金属注射成形工艺将会在更 多的领域得到应用,如新能源、智能 家居和物联网等新兴领域。
THANKS
感谢观看
02
我国在金属注射成形技术领域 已取得了一系列重要成果,包 括高精度零件、复杂结构件、 高性能材料等方面的研究和应 用。
03
我国在金属注射成形技术方面 的人才队伍不断壮大,为技术 的进一步发展和应用提供了有 力保障。
技术瓶颈与挑战
金属注射成形技术在生产过程中存在一些技术瓶颈和挑战,如模具设计制造、材料 选择与处理、工艺参数优化等方面的技术难题。
模具中的浆料冷却凝固后形成 制品,脱模后得到最终产品。
金属注射成形技术可以实现复 杂形状、高精度、高密度、高 质量的金属零件制造。
技术特点
01
02
03
04
高度自动化
金属注射成形技术可以实现自 动化生产,减少人工操作,提
高生产效率。
高生产效率
由于采用注射成型,可以快速 填充模具,缩短成型时间,提
高生产效率。
智能化生产
自动化生产
采用机器人和自动化设备,实现 金属注射成形生产线的自动化和 智能化,提高生产效率和产品质 量。
数字化工厂
通过建立数字化工厂,实现生产 过程的可视化和优化,提高生产 计划的准确性和生产效率。
拓展应用领域
拓展应用领域
不断开发新的应用领域,如3D打印 、生物医学工程等新兴领域,扩大金 属注射成形技术的应用范围。
优化产品设计
通过设计优化,提高产品 的精度和性能,提高产品 的附加值和市场竞争力。

2024年金属粉末注射成型(MIM)市场分析报告

2024年金属粉末注射成型(MIM)市场分析报告

2024年金属粉末注射成型(MIM)市场分析报告1. 引言金属粉末注射成型(Metal Injection Molding,简称MIM)是一种先进的金属制造技术,通过将金属粉末与高聚物粉末混合,加入成型剂和活性粉末,经过注射成型、脱模和烧结等工艺步骤,最终获得具有高精度和复杂形状的金属零部件。

MIM技术具有能耗低、制造周期短以及材料利用率高等优势,因此在汽车、医疗器械、电子等领域得到了广泛应用。

2. 市场规模及趋势据市场研究机构统计,金属粉末注射成型市场在过去几年中呈现出稳定的增长趋势。

预计到2025年,全球金属粉末注射成型市场规模将达到xx.xx亿美元。

这一增长主要受到以下因素的推动:2.1 新材料开发带动需求增长随着科技的不断进步,新材料的研发取得了显著突破,为金属粉末注射成型技术提供了更广阔的应用空间。

新材料的不断涌现与市场需求之间的相互促进,推动了金属粉末注射成型市场的快速发展。

2.2 汽车和医疗器械行业的增长汽车行业和医疗器械行业是金属粉末注射成型市场的主要消费领域。

随着人们对于汽车和医疗器械品质和性能需求的不断提高,对金属粉末注射成型技术的需求也在不断增长。

预计未来几年,这两个行业的持续增长将进一步推动金属粉末注射成型市场的发展。

3. 市场竞争格局目前,金属粉末注射成型市场存在着一些主要的竞争企业,包括: - 公司A - 公司B - 公司C这些企业在产品品质、技术研发能力以及市场拓展能力等方面均具备一定优势。

随着市场竞争的加剧,这些企业将不断提升自身的竞争力,同时也面临着市场份额争夺的压力。

4. 市场机遇与挑战金属粉末注射成型市场具有广阔的发展前景,同时也面临着一些挑战。

4.1 市场机遇•创新技术的推动:随着新材料和新技术的不断出现,金属粉末注射成型市场将迎来更多的机遇。

新技术的应用将进一步拓宽市场的发展空间。

•新兴领域需求增加:随着人们对于高性能产品和高精度零部件的需求不断增加,金属粉末注射成型技术将在航空航天、能源等新兴领域中得到更广泛的应用。

金属注射成型简介演示

金属注射成型简介演示

应用领域和优势
节省材料,降低成本。
高度自动化,减少人工操作,提高产品质量和一致性 。
技术瓶颈和挑战
技术瓶颈 模具制造困难,尤其是形状复杂的模具。
注射成型过程中可能产生气孔、缩孔等缺陷。
技术瓶颈和挑战
• 需要精确控制注射速度和温度等参数,以保证产品质量。
技术瓶颈和挑战
挑战 技术创新和研究需要大量资金和人力资源投入。
汽车:用于制造高性能、高精度的汽车零部件,如发动机部件、齿轮等。
应用领域和优势
要点一
电子
为电子产品提供精密的金属零部件,如连接器、触点 等。
要点二
医疗
制造高精度、生物相容的医疗器械,如牙科种植体、 骨科手术器械等。
应用领域和优势
优势 可以制造出形状复杂的金属零件,无需进行大量切削加工。
生产效率高,可以大规模生产。
材料加工和后处理
加工工艺
金属注射成型是一种近净成形工艺,可 以减少后续加工量,提高生产效率。
VS
材料后处理
根据需要,可以进行热处理、表面处理等 后处理工艺,以进一步提高材料的性能。
05
金属注射成型的应用和发展趋势
应用领域和优势
应用领域
航空航天:作为高性能、轻量化的制造方法,广泛应用于飞机、火箭等高技术领域 。
THANKS
感谢观看
金属注射成型简介
金属注射成型是一种适用于制造复杂形状、高精度和高质量的金属零件的先进 成型技术。
发展历程
01
02
03
起源
起源于20世纪70年代,由 美国率先开始研究。
初期发展
初期主要应用于航空、航 天领域。
后期发展
随着技术的不断进步,金 属注射成型技术逐渐广泛 应用于汽车、电子、医疗 等各个领域。

2024年金属粉末注射成型(MIM)市场发展现状

2024年金属粉末注射成型(MIM)市场发展现状

金属粉末注射成型(MIM)市场发展现状概述金属粉末注射成型(MIM)是一种先进的制造技术,将金属粉末与聚合剂混合,制成可注射的糊状物,然后通过注射成型、脱脂、烧结等工艺,制造出具有复杂形状和高精度的金属件。

MIM技术在汽车、航空航天、医疗器械等领域有广泛应用,因其高效、经济和环保等特点而备受关注。

市场规模及增长趋势MIM市场近年来呈现稳定增长的趋势。

据市场研究公司的数据显示,2019年全球MIM市场规模达到了XX亿美元,预计未来几年将保持年复合增长率在X%左右。

主要驱动市场增长的因素包括:1. 产品需求的增加电子产品、汽车、医疗器械等行业对高精度、复杂形状金属件的需求不断增加,推动了MIM技术的应用和市场发展。

2. 成本和时间的节约相比传统的加工制造方法,MIM技术具有较低的生产成本和较短的生产周期。

这使得MIM技术成为替代传统制造方法的优选选择,进一步推动了市场的发展。

3. 技术的不断进步和创新MIM技术在材料、设备和工艺等方面不断创新和发展,使其能够应对更加复杂和高要求的产品制造。

这为MIM市场的拓展提供了更多的机会。

市场竞争态势目前,MIM市场存在多家重要的参与者,包括供应商、制造商和研发机构。

这些参与者通过不同的战略竞争以获取市场份额和技术优势。

1. 供应商竞争金属粉末供应商是MIM市场的关键参与者之一。

这些供应商通过提供高质量、高纯度的金属粉末,满足市场对材料质量的要求,并与制造商建立战略合作关系。

2. 制造商竞争MIM制造商之间的竞争主要体现在产品质量、生产效率和成本方面。

制造商通过提高工艺技术和生产设备的水平,不断优化生产工艺,降低成本,提高产品质量和生产效率。

3. 技术创新竞争MIM市场也存在着技术创新的竞争。

通过开发新型材料、新工艺和设备,提高产品性能和生产效率,企业能够获得竞争优势。

市场前景和挑战MIM市场具有广阔的发展前景,但也面临一些挑战。

1. 技术门槛MIM技术涉及材料科学、工艺工程等多个学科领域,技术要求较高。

金属注射成型简介

金属注射成型简介
能源消耗
该工艺需要大量能源,如电和热能,能源消耗大且效率低。
废弃物排放
金属注射成型过程中会产生有害气体和废水,如未经处理直接排 放,会对环境造成严重破坏。
安全问题
高温环境
金属注射成型需要在高温环境下进行,操作人员可能面临烫伤风 险。
机械伤害
金属注射成型设备在运行过程中可能发生故障,导致机械伤害事故 。
04
金属注射成型的发展趋势和挑 战
技术发展趋势
智能化生产
随着工业4.0和智能制造的推进,金属 注射成型的生产过程将更加智能化, 实现自动化、数据驱动的生产决策。
增材制造集成
新型材料应用
新型金属材料和复合材料的开发与应 用,将拓展金属注射成型的领域和市 场。
金属注射成型将与增材制造技术结合 ,实现复杂结构的高效、精密成型。
金属注射成型简介
汇报人: 2024-01-06
目录
• 金属注射成型定义 • 金属注射成型的应用 • 金属注射成型的技术与设备 • 金属注射成型的发展趋势和挑

目录
• 金属注射成型与其他成型工艺 的比较
• 金属注射成型的环保与安全问 题
01
金属注射成型定义
金属注射成型的定义
金属注射成型是一种将金属粉末与有机粘结剂混合,通过注 射机注入模具中,经过加热、固化、脱脂和烧结等工艺过程 ,最终形成致密金属零件的成型技术。
研发环保型的金属注射成型工艺和材料,降低生产过程中的环境 污染。
高精度与高性能产品
通过工艺优化和技术创新,提高金属注射成型产品的精度和性能。
跨领域合作与创新
加强与其他制造领域的合作,共同推动金属注射成型技术的进步和 应用拓展。
05
金属注射成型与其他成型工艺 的比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属粉末注射成型技术(Metal Injection Molding,简称MIM)是近年来粉末冶金学科和工业中发展最迅猛的领域,是现代先进的塑料注射成型技术和传统粉末冶金技术相结合而形成的一项新型粉末冶金近净型成形技术。

一、MIM成型技术MIM基本丁艺过程是:将微细的金属或陶瓷粉末与有机黏结剂均匀混合成为具有流变性的物质,采用先进的注射机注入具有零件形状的模腔形成坯件,新技术脱除黏结剂并经烧结,使其高度质密成为制品,必要时还可以进行后处理。

i亥技术不仅具有常规粉末冶金技术生产效率高,产品一致性好,少切削或无切削,经济高效的优点,而且克服r传统粉末冶金制品密度低,材质不均匀,力学性能低,不易成型薄壁复杂件的缺点,特别适合大批量、小型、复杂以及具有特殊要求的金属零部件的生产加工.该工艺技术在20世纪8O年代中期实现产业化以来,已获得突飞猛进的发展,注射成型的产品已遍及计算机信息产业、汽车摩托车产业、医疗卫生器械、家用电器、仪器仪表、机械制造、化工、纺织、国防军工等领域。

到目前为止,已有20多个国家和地区的几百家公司从事该工艺技术的产品开发、研制与销售工作,粉末注射成型工艺技术也因此成为新型制造业中开发最为活跃的前沿技术领域,被誉为世界粉末冶金领域中的开拓性技术,代表着粉末冶金技术发展的主方向。

该工艺的主要特点如下:(1)可成型复杂结构的零件该工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件复杂结构的实现。

这一点是传统机械加工和常规粉末冶金工艺技术所无法比拟的,是注射成型工艺发展的坚强基础。

(2)注射成型制品尺寸精度高,注射成型工艺可直接成型薄壁、复杂结构件,制品形状已能够达到或接近最终产品要求,产品不必进行二次加工或只少罱精加工。

零件尺寸公差一般保持在±0.1%~±0.3%左右。

特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。

(3)与传统粉末压制工艺相比注射成制品微观组织均匀,密度高,性能好。

二、连续烧结设备的必要性随着MIM技术的规模产业化,传统粉末冶金和注塑行业的通用生产设备以及各种专门的金属注射成型:工业生产设备已广泛应用于金属注射成型的产业化生产中。

企业对产业生产效率和设备自动化,加工连续化程度及设备性能要求的提高促进了金属注射成型产业化进程。

MIM产业的全面发展更需通过生产设备来提高企业的生产效率。

正确选择和掌握MIM生产过程中的各种设备,可提高产品的质量、产量以及劳动生产率,加速产业化发展。

目前,混合工序主要采用传统的双行星混料机、单螺杆挤出机、活塞挤压机、双螺杆挤出机、偏心轮混料器、z形叶轮混料器等,能够保证混料的均匀性与高效率。

注射工序也可以借鉴传统的注射设备,如双回路注射成型机、双模板注射机、无拉杆注射机、全自动注射机、电磁动态注射成型机等,都能够较好地满足充填的技术要求。

对于脱脂工序,由于脱脂是相关行业中以前从未涉及过的领域,其原理为:在保证注射成型所得的零件不变形的前提下,运用黏结剂中各种成分随着温度的升高不断的发生物理、化学变化的原理,逐渐变为气态或液态物质,脱离开注射成型毛坯,以达到把黏结剂脱出的目的。

因而,该工序在整个MIM技术中的地位得尤其的特殊和重要。

脱脂后的零件几乎没有任何强度,稍微有些振动都有可能使零件遭到破坏。

同时考虑脱脂、烧结阶段尽町能地减少零件重复加热造成的能源浪费,考虑将传统的脱脂、烧结、热处理等单一工序集成为综合工序,这样可以减少生产中不确定的因素,提高成型零件质量,也大大提高了生产效率。

综合工序的提出,便诞生了连续烧结设备的概念。

为了不使我国在激烈的同际竞争中落败,并占据国际行业的领先地位,积极地发展MIM 技术是十分必要的,尤其是对传统的单一工艺进行集成与综合,以形成有效的综合工艺,并尽快对综合上艺没备进行研发。

三、连续烧结设备及其控制技术大量的热脱脂研究表明,热脱脂的关键在于控制脱脂温度在低温阶段(150~350%)慢速升温(1~C/min),不产牛变形或缺陷,所以要求真守脱脂炉具有良好的温度稳定性和均匀性。

真空热脱脂与气氛热脱脂相比,真空压力低,有利于黏结剂的挥发及分解物的排,所以脱脂速率大于常压下的气氛脱脂。

由于这一特点,使得MIM脱脂与其他相关工艺存在很大的差异,介绍市面上几种品牌的连续烧结设备。

各种烧结炉从操作方式上分有立式和卧式两种,立式烧结炉存在的缺点为容易在气氛存在的情况下温度上非常不均匀;卧式烧结炉存炉体的曲端也存在温度与内部温度偏差现象,这样使得烧结产品质节大打折扣。

脱脂烧结一体炉有以下六部分组成,捕集系统、真空系统、充气系统、外循环系统、电气控制部分和真空控制部分。

其炉体采用夹层水冷结构,炉胆由内向外分别由小锈钢波纹外隔热毡、锆毡、发热体和耐高温不锈钢波纹内隔热屏组成。

内隔热屏可防止脂类物质逸散到炉体其他部位,同时便于清理。

炉采用内封门,可有效地阻止热量的散失和脂类物质的逸散。

捕集系统由多级水冷碟片式捕集器、除脂罐、多级过滤器和起动阀组成。

脂类物质可顺畅地白:接流入到除脂罐内。

真空系统由两级真空系统组成,旋片式真空泵和罗茨泵可根据产品材料和脱脂要求的真空度选择使用。

充气系统可通过三个玻璃转于流量计摔制,实现宽流量调节。

外循环系统由密封的风机和热交换器组成,可实现快速冷却。

电气控制系统由炉温控制系统、真空控制系统、充气控制、冷却循环系统组成。

通过热电偶测定实际温度并与设定温度进行比较,改变电流及设备加热功率,实现温控,使得三个加热区同时升温,真空热脱脂通过在运行时不断地通入保护性气体,使内外炉膛形成一个较小的压力差,实现气体单向流动,有效地避免了脂类物质污染发热体和内炉膛因温差过大而变形,实现脱脂的目的随着金属注射成型技术的不断发展,其技术层面也越来越广,其中德国研制开发一种快速催化脱脂技术。

该技术对脱脂炉的要求较高,需要专门的耐酸性的脱脂设备,设计炉子时要考虑环保问题。

这种技术脱脂后的零件毛坯件强度很低,极易损坏(实际上任何脱脂后的毛坯件强度都不高);并且在烧结前总会有黏结刺残留住毛坯件中。

这种情况下,减少产品的中问环节对提高产品成品率起到了相当重要的作用。

为了实现脱出黏结剂、脱除剩余黏结剂和烧结工序之问的真正连续操作,德国开发了MIM—MASTER催化脱黏和烧结系统。

此系统包括催化脱黏部分和连续烧结部分及其附属装置,包括废气烧除、气体对流干燥装置、旁路运输带、注酸系统、电气控制柜和全过程控制系统(PIC)。

连续催化脱脂部分设计为马弗式网带结构,采用Ni-Cr加热元件。

金属注射成型零件被放置到传送网带上,在预热带加热到一定的温度,这样,在通过脱黏结剂带时,酸就不会凝结在工件。

通过脱黏结剂带时,上件在载气(一般为氮气)和催化剂(常用硝酸)作用下脱出黏结剂。

炉内气氛流动方向很重要,在预热带,气氛流动方向与工件运动方向相同,直到进入废气烧除装嚣。

在脱出黏结剂带,炉内气氛流动方向与工件运动方向相反,保证已基本脱除黏结剂的零件能够遇到最高浓度的酸。

此炉的烧除装置尺寸可小于相同生产率的批料炉,因为废气足在整个脱除过程中期连续产生的,不会像批料炉那样,较大量的废气在一定的时期内产生,其烧除废气装置设计为两段式结构:第一阶段通人燃料气如天然气等,与甲醛(废气成分之一)共同作用,在欠氧的情况下燃烧,还原氮的氧化物和残余的硝酸;第二阶段,剩余的甲醛和燃料气与过量的空气混合充分燃烧,生成二氧化碳和水。

金属注射成型零件经过脱脂炉后,通过一条密封的横向传送带送入连续烧结炉。

零件在脱剩余的黏结剂和烧结过程中应避免振动,因此采用特殊设计的步进梁传送结构。

烧结部分主要分为升温、烧结、冷却三段。

升温段担负脱剩余黏结剂与预烧的作用,采用Ni-cr线圈作为加热元件,一般最高温度为800℃。

烧结带承担了主要的烧结作用,加热元件为丝,最高温度可达l600oC。

金属粉末注射成型零件在惰性或还原性气氛中进行烧结,生产中产生的废气由一个位于人口段的排气烟筒经燃烧后排出。

冷却带设计为双层壁式水冷结构,冷却水流速及冷却水温度均可以手动调节。

烧结质量虽然与各个工序都有关系,但是最主要的还是由温度的均匀性和烧结工艺的稳定性决定的。

所以,要求用于金属粉末注射成型的烧结设备具有非常好的温度均匀性,使得MIM产品达到各向同性收缩,从而减少烧结变形和提高产品精度;要求烧结炉密封性能好,漏气率小,保证所需温度和压力及气氛,从而实现烧结质密化;要求温度准确,控制灵敏,可实现MIM产品稳定的批量化生产。

并且,目前国内生产的烧结炉主要问题是温度控制精度不高,这样在生产过程中难以确定稳定的生产工艺。

德国生产的连续性烧结炉在控制精度上都是走在同行业最前沿的,同样也存在着弊端,高度自动化的设备要求操作十分规范.稍有差错就会耽误整个设备的运转,造成的损失也是巨大的。

另外,脱脂烧结过程中产生的脂类废弃物质很容易依附在炉内各元部件上,对设备的性能也会造成很大的影响。

从整体上看该烧结炉尽管也实现了脱脂、烧结的综合,但仍存在着温度控制不够灵活,脱脂与烧结之间的预热段压力不稳等问题,也没有考虑与后续热处理进行综合的口行性。

综上所述,连续烧结设备的理想目标为:(1)融合传统的单一工序,实现脱脂、烧结、热处理等工序的综合。

增加热处理功能段,在烧结后对零件直接进行热处理,可以大大节省生产成本,降低生产周期,同时更能保证生产质量。

(2)实现脱脂区域和高温烧结区域温度及产品在区域内停留时间等的灵活控制,这样可以满足有不同工艺要求的各类产品生产需要,同时也可以改善因控制不灵活而耽误生产的状况。

(3)提高设备自动化控制与自调节能力,提高设备运行可靠性,降低操作人员劳动强度,提高生产效率。

四、结论通过对MIM成型工艺过程的分析以及粉未注射成型零件特点的分析,应将传统脱脂、烧结乃至后处理等单一工序融合为综合工序的必要性,并给出了连续烧结设备的结构与控制模式。

相关文档
最新文档