2第二节频率特性的几种表示方法
合集下载
精品文档-自动控制原理(第二版)(千博)-第5章

24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
2第二节频率特性的几种表示方法

A(ω ) ϕ (ω ) ω =∞
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Wednesday, May 25, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
第二节 频率特性的几种表示方法
Wednesday, May 25, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Dec Dec Dec Dec
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Wednesday, May 25, 2011
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Wednesday, May 25, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
第二节 频率特性的几种表示方法
Wednesday, May 25, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Dec Dec Dec Dec
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Wednesday, May 25, 2011
自动控制原理 第5章 频率法_2-1

1 2
)
(5-28)
M (w )
0.2 0.5
1
0.9
0
Mr
wr
wn w c
w
振荡环节的幅频特性
2 2
1 Tw 1 2 2 2 1 T w 2
这是一个标准圆方程,其圆心坐标是 1 ,0 , 2 半径为 1 。且当ω 由 0 时, G( jw ) 由 0 90 , 2 说明惯性环节的频率特性在 G( jw ) 平面上是实轴下 方半个圆周。
20
1 T
和
(w ) 45
0
的交点为
工程上常用简便的作图法来得到L(w曲线,方法如下:
w
1 T
L(w ) 20 lg
1 T w
2
2
0 (dB)
即当频率很低时, L(w可用零分贝线近似; 低频渐近线
w
1 T
L(w ) 20 lg
1 T w
2
2
20 lg wT (dB)
当 w 10 时,20 lg G( j10) 20 lg 10 20(dB)
。
8
设 w'
10w
'
,则有
(5-36)
dB L(w )
60
20 lg w 20 lg 10w 20 20 lg w
可见,积分环节的对数幅频特 性是一条在w=1(弧度/秒)处 穿过零分贝线(w轴),斜率为 -20dB/dec的直线。 几何 意义 积分环节的相频特性是
(1) 幅相曲线 振荡环节的传递函数为: ( s) G
1 T w j 2Tw 1
2 2
第五章 频率特性法 (2)

1 1
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
§52频率特性的几种表示方法

A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。
3
Tuesday, November 20, 2018
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
第二节 频率特性的几种表示方法
Tuesday, November 20, 2018
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Tuesday, November 20, 2018
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
ቤተ መጻሕፍቲ ባይዱ
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
频率特性的几种表示方法

特性。
在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。
极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Monday, August 05, 2019
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
Monday, August 05, 2019
6
第二节 频率特性的几种表示方法
Monday, August 05, 2019
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
Monday, August 05, 2019
4
纵坐标分度:幅频特性曲线的纵坐标是以log A()或20log A() 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A() 或 20log A() 值标注在纵坐标上。
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
0 由于 | G( j) |是偶函数, 所以当 从 0 和 0变化时,奈 魁斯特曲线对称于实 轴。
Monday, August 05, 2019
3
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。
极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Monday, August 05, 2019
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
Monday, August 05, 2019
6
第二节 频率特性的几种表示方法
Monday, August 05, 2019
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
Monday, August 05, 2019
4
纵坐标分度:幅频特性曲线的纵坐标是以log A()或20log A() 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A() 或 20log A() 值标注在纵坐标上。
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
0 由于 | G( j) |是偶函数, 所以当 从 0 和 0变化时,奈 魁斯特曲线对称于实 轴。
Monday, August 05, 2019
3
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10
(a )
( )
0o
90o
(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dec Dec Dec Dec
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Monday, May 30, 2011
4
纵坐标分度:幅频特性曲线的纵坐标是以log A(ω )或20 log A(ω ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A(ω ) 或 20 log A(ω ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅值特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 = 20 log(幅值) 幅值 1 1.26 2 1.56 4 2.00 6 2.51 8 3.16 10 5.62 15 10.0 20
Monday, May 30, 2斯特曲线) 它是在复平面上用一条曲线表示ω 由 0 → ∞ 时的频率特性。 即用矢量 G ( jω ) 的端点轨迹形成的图形。 ω 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 ω Q(ω ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
A(ω ) ϕ (ω ) ω =∞
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Monday, May 30, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Monday, May 30, 2011
6
A(ω )
增益 0
Monday, May 30, 2011
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。
第二节 频率特性的几种表示方法
Monday, May 30, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Monday, May 30, 2011
4
纵坐标分度:幅频特性曲线的纵坐标是以log A(ω )或20 log A(ω ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A(ω ) 或 20 log A(ω ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅值特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 = 20 log(幅值) 幅值 1 1.26 2 1.56 4 2.00 6 2.51 8 3.16 10 5.62 15 10.0 20
Monday, May 30, 2斯特曲线) 它是在复平面上用一条曲线表示ω 由 0 → ∞ 时的频率特性。 即用矢量 G ( jω ) 的端点轨迹形成的图形。 ω 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 ω Q(ω ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
A(ω ) ϕ (ω ) ω =∞
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Monday, May 30, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Monday, May 30, 2011
6
A(ω )
增益 0
Monday, May 30, 2011
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。
第二节 频率特性的几种表示方法
Monday, May 30, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)