外文翻译--生态景观设计的原则

合集下载

外文文献翻译景观设计

外文文献翻译景观设计

景观设计•介绍:住宅绿色绿色就是城市得重要组成部分,最接近居民,与居民日常生活最密切相关得,它提高生活质量得环境,提高居民得身心健康至关重要。

绿色住宅面积水平,体现城市现代化得一个重要标志。

小区在城市绿地系统中分布最广,就是普遍绿化得重要方面,城市生态学就是一个重要得系统得一部分。

得推进城市现代化、绿色住宅面积也应该相应得提高水平,更好地满足了不同需求得环境质量。

因此,加强住宅绿色建筑设计得主要任务就是做一个好工作。

改善设计应该尊重传统、尊重科学基础上得原始背后得拒绝环境,关注生态与景观设计、绿色住宅区域,使工作到一个新得水平。

下面从生态设计与景观设计来探讨设计得新思路。

•关键词:景观、景观设计绿色居住区就是城市绿化得重要组成部分,最近得居民,居民日常生活最密切相关得,它提高生活质量得环境,提高居民得身心健康至关重要。

绿色住宅面积水平,体现城市现代化得一个重要标志。

小区在城市绿地系统中分布最广,就是普遍绿化得重要方面,城市生态学就是一个重要得系统得一部分。

得推进城市现代化、绿色住宅面积也应该相应得提高水平,更好地满足了不同需求得环境质量。

因此,加强住宅绿色建筑设计得主要任务就是做一个好工作。

改善设计应该尊重传统、尊重科学基础上得原始背后得拒绝环境,关注生态与景观设计、绿色住宅区域,使工作到一个新得水平。

下面从生态设计与景观设计来探讨设计得新思路。

1。

生态设计绿化得居民区,必须基于城市生态系统,关注生态效率,改善环境质量,维护与保留居住区城市得生态平衡。

法位于贵州省中部,位于云贵高原东部隆起区边坡中部、西南得贵州梯子一般地形得特点就是高与低东北从西南到东北。

大波浪起伏得地形,最高海拔1705、2米,最低海拔506、5米,高山与深谷,沟壑方面,切削锋利,形成一个积极得环境多样性打开。

年平均气温为12、8℃,极端最高温度为35、4℃, 极端最低温度为-10、1℃,年平均降雨量1258、8毫米。

总之,开太阳,气候温与,雨量丰富,冬天冷,夏天热,适合各种园林植物得生长与繁殖。

生态景观设计

生态景观设计

生态景观设计生态景观设计是一种将自然生态系统与人类生活环境相结合的设计方法,旨在创造一个既美观又可持续的自然环境。

这种设计理念强调人与自然和谐共生,通过模拟自然生态系统的结构、功能和过程,实现景观的可持续发展和生态平衡。

生态景观设计不仅关注景观的视觉效果,更注重其生态价值和社会功能的发挥。

1. 生态景观设计的原则生态景观设计遵循以下原则:(1)尊重自然:充分了解和尊重当地的自然条件、生物多样性和文化传统,避免破坏原有生态系统。

(2)可持续性:采用可再生资源和环保材料,减少能源消耗和废物排放,实现景观的可持续利用。

(3)多功能性:满足人们的多种需求,如休闲、教育、文化等,提高景观的使用价值。

(4)参与性:鼓励公众参与景观设计和建设过程,提高人们对生态环境的认识和保护意识。

2. 生态景观设计的方法和技巧生态景观设计的方法和技巧包括:(1)生态修复:对受损生态系统进行修复和重建,恢复其原有的生态功能和生物多样性。

(2)生态廊道:建立生态廊道,连接不同的生态斑块,促进生物种群的交流和扩散。

(3)生态水景:利用雨水收集、净化和循环利用技术,打造生态水景,提高水资源的利用效率。

(4)生态植被:选择适应当地气候和土壤条件的植物种类,构建多层次、多样化的植被结构。

(5)生态道路:采用透水铺装、绿化带等措施,降低道路对生态环境的影响。

3. 生态景观设计的实践案例以下是一些生态景观设计的实践案例:(1)新加坡滨海湾花园:通过生态修复、生态廊道和生态水景等手段,打造了一个集休闲、教育和科研于一体的综合性生态公园。

(2)美国纽约高线公园:将废弃的铁路线改造成一条空中绿色走廊,连接了曼哈顿的两个社区,成为市民休闲娱乐的好去处。

(3)中国北京奥林匹克森林公园:采用了生态修复、生态廊道和生态植被等方法,打造了一个具有丰富生物多样性和优美景观的城市森林公园。

总之,生态景观设计是一种以人为本、尊重自然的设计方法,旨在创造一个既美观又可持续的自然环境。

生态景观设计原则

生态景观设计原则

生态景观设计原则第一部分生态优先 (2)第二部分整体规划 (4)第三部分生物多样性保护策略 (9)第四部分水资源的合理利用与管理 (12)第五部分可持续材料的选择与应用 (15)第六部分生态恢复与土壤保持技术 (19)第七部分人类活动对景观的影响评估 (21)第八部分景观设计中的文化融入 (25)第一部分生态优先生态景观设计原则:生态优先,尊重自然规律一、引言生态景观设计是一种综合性的设计方法,旨在通过创造和维护人类与自然之间的和谐关系来改善环境质量。

在这一过程中,“生态优先,尊重自然规律”的原则至关重要。

本文将探讨这一原则的重要性及其在实际应用中的体现。

二、生态优先原则生态优先原则强调在设计过程中优先考虑生态环境的保护和恢复。

这意味着设计师需要深入了解项目所在地的生态系统特征,包括生物多样性、水文循环、土壤类型等,以确保设计方案能够最大程度地减少对环境的负面影响。

三、尊重自然规律尊重自然规律意味着在设计过程中要充分考虑自然界的内在规律,如物种的迁徙习性、生态系统的自我修复能力等。

这要求设计师不仅要关注景观的美学价值,还要关注其生态功能和社会价值。

四、案例分析以某城市湿地公园的生态景观设计为例,该项目在规划阶段就充分考虑了当地的生态环境特点,如湿地的水文循环、生物多样性和土壤条件。

设计师通过对这些因素的分析,提出了一个既能保护现有生态系统,又能满足公众休闲需求的方案。

该方案包括恢复湿地植被、建立鸟类栖息地和设置生态教育展示区等多个方面。

五、结论生态景观设计作为一种新兴的设计理念和方法,越来越受到人们的关注和重视。

在实施过程中,坚持“生态优先,尊重自然规律”的原则,不仅能够保护和恢复生态环境,还能为人们提供一个健康、舒适的生活空间。

因此,这一原则应成为生态景观设计的核心指导思想。

第二部分整体规划生态景观设计原则:整体规划,景观与环境的和谐生态景观设计是一种综合性的设计方法,它强调在规划和设计过程中,将自然环境和人造环境融为一体,以实现人与自然的和谐共生。

景观生态设计原则

景观生态设计原则

景观生态设计原则景观生态设计原则是指在设计和规划城市和自然环境时,考虑到生态系统的复杂性和生态过程的重要性,以及人类与环境的互动关系,从而提供可持续的生态系统服务和改善人类福利的方法。

以下是景观生态设计的几个原则:1. 生态系统服务:景观生态设计应该优先考虑生态系统服务,包括水循环、空气质量、土壤保持、生物多样性和景观美观等。

设计应该尽可能地模拟和增强自然生态系统的功能和过程,以提供可持续的生态系统服务。

2. 多样性和复杂性:景观生态设计应该尽量增加生物多样性和景观复杂性。

这可以通过种植多样性的植物、创造多样性的生境和增加景观元素的数量和类型来实现。

多样性和复杂性可以提高生态系统的稳定性和弹性。

3. 人与自然的互动:景观生态设计应该考虑到人类与自然的互动关系。

设计应该尽可能地满足人类的需求,同时尊重和保护自然环境。

例如,设计可以提供可持续的交通方式、公共空间和自然体验,以促进人类与自然的互动。

4. 可持续性:景观生态设计应该是可持续的,即能够满足当前需求,同时不损害未来世代的需求。

设计应该考虑到资源的使用和管理,以及对环境的影响。

例如,设计可以使用可再生能源、减少能源消耗和废弃物的产生,以及最小化对自然环境的破坏。

5. 社区参与:景观生态设计应该鼓励社区参与和合作。

设计应该尽可能地反映社区的需求和价值观,并提供机会让社区成员参与到设计和规划过程中。

社区参与可以提高设计的可持续性和社区的凝聚力。

总之,景观生态设计原则是为了提供可持续的生态系统服务和改善人类福利的方法。

这些原则可以帮助设计师和规划者在设计和规划城市和自然环境时,考虑到生态系统的复杂性和生态过程的重要性,从而创造出更加可持续和美丽的环境。

生态城市规划中景观设计的原则

生态城市规划中景观设计的原则

生态城市规划中景观设计的原则景观设计在生态城市规划中起着至关重要的作用,它不仅能提升城市的美观度和景观价值,还能营造出独特的生态环境。

在进行景观设计时,需遵循以下原则:1.生态优先原则:生态城市规划的核心是可持续发展,因此景观设计应以生态优先为原则。

该原则强调在设计中充分考虑自然生态系统的保护和恢复,促进城市与自然环境的和谐共生。

景观设计应尽量减少土地开发,并保留原有的生态系统,如湿地、森林和河流。

同时,应合理利用雨水、太阳能等自然资源,并采用生物滤池、绿色植物和生物多样性增加等手段来改善环境质量。

2.人文关怀原则:生态城市规划的目标是提高居民的生活质量和幸福感,因此景观设计应注重人文关怀,以满足人们对美的追求和情感需求。

设计师应通过合理的布局、绿化和景观元素的运用来提供舒适的生活环境,营造出具有人文特色的公共空间,如公园、广场和步行街等。

同时,应考虑到不同年龄段和群体的需求,提供多样化的休闲娱乐设施,促进社交互动和文化交流。

3.可持续发展原则:景观设计应符合可持续发展的原则,既要满足当前需求,也要考虑未来的发展。

设计师应挖掘和利用可再生的材料和能源,减少资源消耗和环境污染。

同时,应注重景观的可维护性和成本效益,选择适合当地气候和土壤条件的植物和材料,降低维护和管理的成本。

此外,景观设计中还应考虑交通、排水和能源系统等基础设施的规划和布局,以提高城市的整体效能。

4.创新性原则:生态城市规划要求景观设计具有一定的创新性和前瞻性。

设计师应结合当地的自然和文化特色,融入创意和艺术元素,打造独具特色的景观形象。

同时,应引入新的技术和理念,推动景观设计的发展和创新,如利用垂直绿化和屋顶花园改善空气质量和声环境,采用可降解的材料来减少废物产生等,以实现生态城市的可持续发展。

5.参与性原则:生态城市的建设需要广泛的参与和合作,而景观设计是一个多学科交叉的领域。

设计师应与城市规划师、环境科学家、社会学家等专业人士紧密合作,共同研究和解决问题。

生态城市规划中景观设计的原则

生态城市规划中景观设计的原则

生态城市规划中景观设计的原则1.生物多样性保护原则:景观设计应重视保护城市内外的自然生态系统,增加绿色空间,并采用多样的植被和栖息地类型,以提供适合不同生物物种生存的环境。

例如,可以设置湿地、森林、草地等多样的生态区域,以增加植物和动物的多样性。

2.水资源保护原则:景观设计应注重保护水资源,合理利用和管理水资源。

可以通过建设湖泊、河流和水田等水体,提供自然水循环和净化功能,促进水资源的保护和恢复。

3.循环利用原则:景观设计应注重资源的循环利用,减少资源的浪费和污染。

可以采用生态池塘和湿地等景观设计,实现水资源的循环利用;采用生态廊道和垂直绿化等设计,增加城市植被覆盖率,促进空气净化和气候调节。

4.社区互动原则:景观设计应注重社区居民的互动和参与,提供人与自然之间的连结。

可以设置休闲设施和运动场所,促进人们的健康和生活质量;设置庭院和公园等休闲空间,增加社区居民的活动区域。

5.可持续发展原则:景观设计应注重可持续发展,提高城市生态和社会经济的可持续性。

可以采用自然材料和可再生能源等设计,减少能源和资源的消耗;采用可回收和可再利用的材料,减少废弃物的产生和对环境的影响。

6.灾害防控原则:景观设计应考虑城市自然灾害的防控,提高城市的生态抵抗力。

可以采用防护设施和绿色基础设施,减轻自然灾害对城市的影响;设置相应的疏散通道和避难设施,保障居民的安全。

7.文化传承原则:景观设计应注重城市的文化传承和历史遗产的保护。

可以设计文化广场和纪念碑等,弘扬城市的文化和传统;保护和修复历史建筑和古迹,增加城市的历史魅力和吸引力。

8.生态评估原则:景观设计应进行生态评估,评估设计方案的生态效益和环境影响。

可以评估景观设计对水资源的利用效率、植被覆盖率的提高和空气质量的改善等,为设计提供科学依据。

综上所述,生态城市规划中景观设计的原则涵盖了生物多样性保护、水资源保护、循环利用、社区互动、可持续发展、灾害防控、文化传承和生态评估等方面,旨在实现城市与自然的和谐发展,为居民提供舒适宜居的生活环境。

外文翻译 园林设计

外文翻译   园林设计

外文资料翻译Shady Attia.The role of landscape design in improving the microclimate in traditional courtyard-buildings in hot arid climates[C].PLEA2006 - The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland,2006,6-8.英文原文(节选)AbstractArab Islamic landscape design forms a unique source of inspiration for landscapearchitecture in barren open spaces in the Middle East. Arab Islamic gardens adopted a systemmarked by perfect responsiveness to the environment. The design of urban landscapes and gardens in Arab Islamic culture was similarly guided by the dictation of aridity. The need to provide shade, to prevent dust and to conserve water meant that urban open spaces and gardens were sheltered and enclosed. Alhambra in Moorish Spain and the Al-Suhaymi House in Islamic Cairo are two useful historical references for vernacular Islamic landscape designs. This paper presents an overview of landscape design considerations for the composition of vegetation and water and initial observations of their influence in controlling and improving the microclimate in courtyard buildings as a way of passive cooling in the Middle East region. This paper is a part of a Master’s thesis in the field of passive landscape strategies at Wageningen University. The objective is to identify the comfort improvements potential of successfully-planned and integrated landscape design in traditional courtyard buildings. The layout and plant material of Alhambra, Generalife courts and Al-Suhaymi court in Islamic Cairo are examined and evaluated. This study demonstrates that in arid environments, the landscape planning, the composition of vegetation and water and choice of planting material all have important consequences in creating thermally-pleasant environments.1. INTRODUCTIONIn most Islamic designs, the role of landscape design is highly appreciated. In examining traditional courtyard gardens, it is clear that the role of urban landscape design was not only restricted to a purely ornamental or theological function. It was additionally used to control and improve the microclimate around and inside the building. This paper attempts to present the role of landscape in traditional Islamic garden courtyards by analysing the design characteristics of Al Suhaymi house courtyards in Cairo and the layout of three courtyard gardens in Alhambra and Generalife palaces in Granada, Spain. Some physical parametermeasurements regarding temperature and humidity were made, in addition to a shade study. In fact, shades in courtyard-buildings were insufficient in improving the microclimate during hot summers. Therefore, vegetation and water were used to compensate for the lack of improvement provided by the shade.2. AL SUHAYMI HOUSE:Bayt al Suhaymi is one of the most important examples of a Cairene traditional courtyard house representing the Islamic landscape design around the 16th and 17th centuries. This house stands in El Darb EL Asfar alley and is directly located off the famous Fatimid street called El Moez street. The house witnessed several building phases before reaching its final layout, which covers 2000 square meters and includes 115 spaces distributed on five levels. The house is marked by perfect responsiveness to the environment and contains architectural elements of the traditional Cairean house. The bent entrance, which assures privacy to the house, leads to an inner courtyard surrounded by rooms and is overlooked by a maqaad (a roofed balcony facing the cool northern breeze) and a takhtaboosh (a space annexed by the court for receiving male visitors during the summer).2.1 The House layoutBy analysing the Al Suhaimy house layout, we find that this house layout was based on creating a passive ventilation system in order to ameliorate the microclimate. The passive ventilation system was created by locating two inner courtyards with two different pressures within the house. The north courtyard (Fig. 1c), called the rear garden, was a large open space and was meant to have low surrounding walls in order to keep the space sunny and relatively hot. The rear garden was designed to occupy 28 percent of the total plot area of the house with a 2.6:1.3:0.5 ratio (l:w:h). On the other hand, the south courtyard (Fig. 1b), simply called the courtyard, was a rectangular courtyard covering only 200 square meters and was designed to occupy only 10 percent of the total house area with a 1.8:1:1.3 ratio (l:w:h).This passive ventilation design solution is confirmed by comparing the shade in the rear garden to the courtyard. During winter (21 December, 2:00 p.m.) I found that the amount of shade in the rear garden was more than 53% compared to 100% in the courtyard space. During summer (21 June, 2:00 pm), the amount of shade in the rear garden is more than 12% compared to 40% in the courtyard space . Moreover, measurements have proved that when temperatures rise in the rear garden of the Al Suhaymi house, the air flows against the north prevailing wind directions during most daily hours. The wind flows from the south entrance, passing the courtyard and then into the takhtaboosh, with wind speeds of 1.3 m/s, and finally reaching the rear garden . On the other hand, during the stillness of the previously mentionedwind movement, the prevailing wind flows from the rear garden when the sun drops down after noon through the takhtaboosh to the courtyard with wind speeds reaching 0.7 m/s.2.2 Landscape design in Al Suhaymi house:Based on the previous design theory, we find that the role of landscape architecture in this design was essential. By analysing the plan, we find that the landscape design aimed to emphasize the passive ventilation in the Al Suhaymi house. The Islamic landscape design considerations for the composition of vegetation and water included the following environmental-responsive design principals:Quadripartite layoutReferences to the quadripartite design occurred more than once in the Koran; therefore, Islamic gardens adopted the geometrical and often symmetrical layout. Planning the layout was based on creating two axes perpendicularly crossing each other in the middle. The quadripartite layout was also considered as an environmental landscape design principle because the axes were planned as narrow water canals or walkways while the left rectangles were planted or used as water ponds. The quadripartite layout assured a combination between plant materials, water and pavement in courtyards, all of which improved the microclimate in the buildings.In the Al Suhaymi house, the courtyard had a quadripartite layout with slightly raised narrow walkways leading to the focal fountain at the centre of the courtyard. The walkways created four relatively large planted rectangular shapes , while the rear garden had two different planned layouts. The left part of the garden followed a quadripartite layout, while the right part of the garden had circular planning with a well in the centre. The quadripartite design helped the designer to manipulate the site and create a variety for the water, vegetation and pavement composition.Use of waterThe Al Suhaymi house had a focal fountain in the courtyard and some other fountains in the halls. The focal fountain was located at the centre of the courtyard. Next, a water wheel in the north-east corner of the house supported the fountains and house dweller with water. Using the fountain inside the courtyards helped to create a cold air reservoir, in addition to humidifying Cairo’s dry air. Using the fountains in the halls also helped in soothing the internal climate of the halls, reflecting the importance of having elements from the natural environment, such as water inside the house.Vegetation and shadeThe courtyard and rear garden were both planted, but to serve the passive ventilationconcept and create a relatively hot open area, the rear garden was mainly paved and planted with some flowers, medicinal herbs and palms. On the other hand, the courtyard was mainly planted with ground covers, evergreen trees and fruitful trees to provide maximum shade for the ground within the inner courtyard walls . Moreover, greenery inside the courtyard and rear garden absorbed dust and dirt in the atmosphere in addition to reducing the amount of glare. This study measured the differences in temperature between the planted courtyard and the house roof and it was found that the temperature was between 4oC to 7oC lower in the planted courtyard. Furthermore, by comparing the relative humidity in the house inner courtyard with El Darb EL Asfar alley, the humidity in the house inner courtyard ranged between 11 to 19 percent lower than in the alley.Walls and pavilionsIn the Koran, paradise is described as an enclosed garden, surrounded by “walls” and accessible through “gates”. In Al Suhaymi House, the courtyard was surrounded with thick high walls to achieve protection from the hot, dusty, and noisy environment, and to provide a refreshing shade and cool air, all of which are essential for human comfort. Moreover, the rear garden was surrounded by low walls in order to minimize shade and to create a hot open space. The surrounding walls of Al Suhaymi gardens are considered as part of an environmental landscape design element of the Islamic garden.译文摘要阿拉伯伊斯兰园林设计的独特灵感源于中东地区的贫瘠而又开放的景观空间。

生态景观设计理念

生态景观设计理念

生态景观设计理念生态景观设计理念在当今社会中显得尤为重要,随着城市化进程的加速和人们生态意识的增强,人们对于环境友好、生态健康的生活方式迫切需要。

生态景观设计以绿色、可持续、生态友好为原则,注重与自然环境的协调,追求人与自然和谐共处。

本文将从生态景观设计的定义、原则和实践三个方面进行深入探讨。

一、生态景观设计的定义生态景观设计是指在自然、社会和文化环境的基础上,通过科学的手段和技术手段,利用植物、土壤、水和微生物等自然要素,打造一个生态良好、功能完善、具有公共价值的户外环境。

生态景观设计注重通过绿化、水景、地形、材料等手段,使人们在空间中感受到自然、平衡和和谐。

生态景观设计的核心是生态系统,其目的是建立一个生态平衡、美观宜人且对整个生态系统有益的场所,以满足人们的生活和休闲需求,并增强生态系统的稳定性和可持续性。

二、生态景观设计的原则1. 生态原则:生态景观设计必须遵循自然生态系统的运行规律,以自然为师,尊重自然,依循自然,实现人与自然的和谐共生。

在设计过程中,要尽可能地保留和恢复自然植被和动物栖息地,尊重植物生长规律,避免环境破坏和生态破坏。

在植物选择、绿化配置等方面,要注重引入具有本地特色的植物,提高植被的原生性和多样性。

2. 可持续发展原则:生态景观设计必须注重可持续性,即在满足当前需求的不损害未来世代的生活质量。

要采用环保、节能、资源循环利用的设计手段和技术,注重植物的生长适应性和节水性,保障景观的长期维护和发展。

3. 社会原则:生态景观设计应充分考虑社会需求,满足人们对于美好生活的追求,尊重人文精神,为人们提供休闲、娱乐、社交等功能场所。

要结合当地文化和历史特色,为人们提供具有文化底蕴的宜居环境,促进社会和谐与进步。

4. 艺术原则:生态景观设计要追求美学价值,注重景观布局的美感和艺术性,创造出具有观赏价值的景观。

要注重景观的色彩、形态、空间、光影等艺术因素,使设计成果符合审美需求,激发人们的美感和创造力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生态景观设计的原则Principles of Ecological LandscapeDesign学部(院):建筑与艺术学院专业:艺术设计(环境艺术设计)学生姓名:学号:指导教师:完成日期:4ComplexCreations:Designing and ManagingEcosystemsA dragonflyflitsoverthesun-mirroredsurfaceofapond,snappingathatchingmosquitoesbeforecom- ing to rest on an overhanging rush. This is an ecosystem: animals, plants, and theirphysicalenviron- mentlinked together in the exchange of energy and materials. If this were our pond,ourecosystem,wewouldhaveitall:abeautifullandscapefeature,enlivenedbycreaturesweneve rhadto carefor,andhassle-freepestcontrol.Ecosystemslikethisponddoquiet,crucialwork,keepingalivethebiosphereofwhichweareapart.W heresuchanaturalpond,oraforestorfloodplain,exists,itbehoovesustoprotectit.Whereonehasbeen degraded,wewouldbewellservedtorestoreit(seechap.10).Butwheresuchecosystemshavebeenplo wedunderorpavedover,wecanendeavortoreplacethembyfillingthebuiltenvironmentnot justwithlaw nsandplazasandfountainsbutwithecosystems.Anecosystemconsistsofallofthelivingorganismsinanareaalongwiththeirphysicalenviron-ment,anditspropertiesarisefromtheinteractionsbetweenthesecomponents.Anoceanbayisanecos ystem,asisanalpinemeadoworagreenroof.Perhapsbecauseoftheirclearboundaries,lakes andstreams wereimportantobjectsofstudyinthedevelopmentofecosystemecology.Wherebound- ariesarelessdistinct,thelimitsofanecosystemcanbe defined,evenarbitrarily,basedonthequestionanecol ogistisstudyingortheboundariesofa designer’s site.Designedlandscapesalreadybringtogetheramanipulatedphysicalenvironmentandlivingor-ganisms.Theydonotnecessarilyfunctionasnaturalecosystemsdo,however.Theyaredisconnect-ed,toooftenwastefulanddemanding,orelsetheysimplyfailtothrive.Whenwesucceedincreat-ingintegratedecosystems,theresultscanberemarkable.Lifecanspringforth,almostunbidden.Waste scanbetransformedintoresources.Thevariousmembersofalivingcommunitycanreacha tentativebalance.Thebuiltenvironmentcanpurifywater,protectusfromfloods,andstrengthenour sense ofwell-being.T.Beck,PrinciplesofEcologicalLandscapeDesign,DOI10.5822/978-1-61091-199-3_4,©2013TravisBeckComplex Creations: Designing and ManagingTHE ECOSYSTEMCONCEPTTheideathatplantsandanimalsandtheirenvironmentformanintegratedwholeisattherootofthedi sciplineofecology,althoughittookdecadestoarticulateinitsmodernform.In1887,inanaddresstothe Peoria ScientificAssociation,StephenForbesdescribedthelakeas“amicrocosm.”In orderforascientisttounderstandanyonespecies,heargued,Hemustevidentlystudyalsothespeciesuponwhichitdependsforitsexistence,andthevariouscondi tions upon which these depend. He must likewise study the species with which it comesincompetition,andtheentiresystemofconditionsaffectingtheirprosperity;andbythetimehe has studiedallthese sufficiently hewillfindthathehasrunthroughthewholecomplicatedmechanismofthe aquaticlifeofthelocality,bothanimalandvegetable,ofwhichhisspeciesformsbutasingleelement. (Forbes 1887:537)Theterm microcosm didnotenterintowiderecologicaluse.However,theideaofmanyorganisms formi ngalargerentitygainedexpressionintheturn-of-the-centuryconceptoftheclimaxcommu-nity(seechap.2).ThisconceptwassingledoutbyBritishecologistArthurTansleyina1935articleprovoca tively titled“TheUseandAbuseof VegetationalConceptsand Terms.”Theabusetowhichhereferredwas theinsistenceofClementsandotherecologistsonapplyingtheterm organism tothe climaxcommunity.“Thereisnoneedtowear ythe reader,”hewrote,“withalistofthepointsinwhichthebiotic communitydoes n ot resemblethesingleanimal orplant”(Tansley1935:290).However,hedidnot holdbackfrommentioningtha ta community’sprocessofdevelopmentisverydifferentfromthelife cycle of animals and plants. At best, Tansley offered, vegetation might resemble a“quasi-organism,”thoughonenotnearlysowellintegratedasahumansocietyorahiveofbees.Thisacceptance ofa quasi-organismalstatusforcommunitiesdifferentiatesTansley’s criticismofClementsianecology fromGleason’s purelyindividualisticfocus.Thereisacertaintruthtotheideaoftheclimaxcommunitybeing wellintegrateda ndself-regulating,Tansleyargued,butitcouldbestatedmoreaccuratelyanotherway.Tansleypreferredtothinkintermsofintegratedsystems.Hisnotionofsystemswasborrowedfrom thephysical sciences.“These ecosystems,aswemaycall them,”hewrote,“areofthemost variouskinds andsizes.Theyformonecategoryofthemultitudinousphysicalsystemsoftheuniverse,whichrange from the universe as a whole down to the atom” (Tansley1935: 299). An essential partof T ansley’sdescriptionoftheecosystemisthatheincludedinitnotonlyalloftheplantsandanimalsandoth erlivingthingsinagiven“weboflife”butalsothe entiretyofthephysicalcomponentsoftheir environmen t,suchassoil,sunlight,andwater.CREATEECOSYSTEMSBuiltlandscapesalsohavephysicalandbiologicalcomponents:crudely,inindustryterms, hardscapeandsoftscape.Toooften,thesecomponentsarefarfromintegrated.Thehardscapeissetin respo nse to programmatic needs, and plants are tucked into the remaining spaces. If thephysicalenvironmentisnotrightforthebiologicalcomponents,thenitisaltered,byprovidingirrigati on,forinstance (seechap.1).Complex Creations: Designing and Managing Consideratypicallandscapepond.Anestateownermightpayacontractortoclearanarea,ex-cavateahole,lineit,fillitfullofwaterfromawell,andtrimthewholesetupneatlywithrocksorlawnandpe rhapsafewaquaticplantsonaplantingshelf.Aswaterevaporatesfromtheunshadedpond,thewellpum pkicksinandtopsoffthepond.Evensuburbanhomeownerswanttheirownpondsandwaterfalls,fullofmunicipalwaterandlinedwithdwarfconifersorJapaneseiris(Irisensata)sittinglike rockyp uzzlepiecesontheirlawns.Thesesystemsare fullyartificial,rely onsupplementalwater,and often require filtration or even sterilization to remain aesthetically acceptable. Physical andbiological elements are divorced from each other and from theirsurroundings.Bycontrast,apondthatisconceivedofasanecosystemfusesphysicalandbiologicalelements intoawholethatintegrateswith,ratherthansitsapartfrom,ndscapearchitectsAndropogonAssociatescreatedsuchapondonapropertyinGreenwich,Co nnecticut.Naturally,throughout NewEngland’s forests,inthespringsmalldepressionsintheland-scapefillwithwater,which infiltrates asgroundwaterlevelsdropinthesummer.Thesevernalpoolsprovid eimportanthabitatforamphibianssuchassalamandersandfrogs.Onthispropertysuchadepressionexi sted,setagainstagraniticoutcrop,onlyithadlongbeenfilledwithbranches,leaves,andothergreenwast ebygenerationsofgardeners.WhenColinFranklin,foundingprincipalatAndro-pogon,discoveredtherockydellandthesmallspringatitsbase,hesawanopportunity.AndropogonAssoci ates’design philosophy haslongbeentobuild“d ynamic,holisticsystems,”thatis,ecosystems.Franklin’s approachwastolinethecenterofthedepressioninordertomaintainaminimumwaterlevelbutleavethe edgesunlined.Waterfromthespringiscollectedinasumpbeneaththepondandpumpedviaaslenderw aterfallofftherockoutcropandintothepond.Inspringthepond overflows,recharginggroundwaterinthe area(fig.4.1).Themarginsareplantedwithtreesandotherplantsthatareadaptedtothisseasonalflooding.Betweentheopenwater,theplantedwetlandatthepond’sedge,a ndtheseasonalwetlandbeyond,thedesignprovidesdiversehabitat(seechap.7).When waterlevelsdroptotheleveloftheliner,thewettedmarginsdry,mimickingthecycleofvernalpools.Ifwa terlevelsdropfurther,thesumppumpandwaterfallcanmakeupthedifferencefromthe rechargedgroundwater.Becausethepondisintheforest,however,evaporationandthe needformakeupwaterareminimal.Thisforestedpondisnowahuboflifeandthecenteroftheentirelandscape.Ratherthancreatea sterilewaterfeatureofdissociatedelements,Andropogoncreatedanecosystem,withnaturalphysicalcycle sandplantsandanimalsadaptedtothem. ECOSYSTEMSARECOMPLEXADAPTIVESYSTEMSEcologists’ understanding of the multitudinous systems of the universe has evolved since Tansleywrote hiscritiqueofClementsin1935.Mostrecently,ecosystemshavebeenregardedascomplex adap-tivesystems.SimonLevin(1998,1999),abiologistatPrinceton,isachiefproponentofthisview.Incompl exadaptivesystems,asexplainedbyLevin,heterogeneousindividualagentsinteractlocallytocreatelar gerpatterns,andtheoutcomeofthoselocalinteractionsaffectsthefurtherdevelopmentofthesystem(fig.4.2).Itiseasytoseehowthisappliestoecosystems.Theplantsandanimals,rocks andwateranddetrit usthatmakeupapondarealldifferent,yettheyinteracttocreatearecognizableComplex Creations: Designing and ManagingFigure4.1SchematicdesignoftheAndropogon-designedpondecosystem.Duringnormaldryweatherconditions(a)alinerandgroundwaterpumpmaintainaper manentwaterlevel.Duringnormalwetseasonconditions (b) overflow enters peripheral seasonal wetlands and recharges groundwater. (Drawing byColinFranklin.)systemwithpropertiesofitsown.Ifaplantthatproducesmorebiomasscompetitivelyexcludesothe rs alongthe pond’s margins,thentheaccumulationofdetritusinthepond,thepopulationsof bottomfeeders,andotherecosystempropertieswillallbeaffected.Levinfurtherdescribedfourcharacteristicsofcomplexadaptivesystems.Theyarediverse,ag-gregated,nonlinear,andconnected byflows.Ecosystemsincludeindividualorganismswithdiversechar acteristics.Throughtheirinteractions,theindividualagentsinanecosystembecomegrouped intolargerorganizationalentities.Forexample,populationsaregroupsofinteractingindividualsofthe sames pecies(seechap.2).Themostaccuratewaytoviewaggregationisthroughthecompositionofahierarchy (seechap.9).Nonlinearitymeansthatsmallchangesinanecosystemcanleadtooutsizedeffects.Remov alofasinglekeystonespecies,forinstance,canchangethecompositionofanentire community(seechap.7).Nonlinearityalsoreferstothefactthatecosystemsareaffectedbyhistoryas muchasbypresentconditio ns.Finally,asweshallseeinthefollowingsections,ecosystemsclearly exhibitflowsofenergyandmaterial sthatconnectalltheirindividualparts.LET CONSTRUCTED ECOSYSTEMSSELF-DESIGNIf ecosystems are complex adaptive systems that develop from the interaction oftheir componentsandtheeventsofhistory,thensuccessfulecosystemsareunlikelytospringforthfromour headsfullyformedbutshouldemergeinsteadthroughaprocesswemightcallself-design.Complex Creations: Designing and ManagingFigure4.2Turingpatterns,likethisone,areanexampleofacomplexsystemformedfromlocalinteractions.Inthisc ase,each pixel’s colorisdeterminedbythecolorofthesurroundingpixelsaccordingtoacomputer algorithm.Startingfromarandomi nitialstate,thepatterncontinuestoevolve.(ImagebyJonathanMcCabe,underCreativeCommons2.0GenericLicense.) BillMitschandhiscolleaguesexploredself-designattheWilmaH.SchiermeierOlentangyRiver WetlandResearchParkinColumbus,Ohio(Mitschetal.1998).Theyintentionallyleftoneoftwobasinsintheir newlycreatedexperimentaloxbowunvegetated.Theyknewthatwind,water,andanimalswould bringinne wplantssoonenough,andtheywantedtoseehowcloselytheunplantedwetlandwouldresembletheon etheyplanted.Within3years,thetwowetlandswereremarkablysimilarintermsofvegetativecover,dive rsityofplants,waterchemistry,andseveralothermeasuresofecologicalfunc-tion(fig.4.3).Thiscongruenceresultsnotsimplyfromtheunplantedwetlandcomingtoresemblethepla ntedonebutfrombothwetlandschangingto reflect siteconditionsandmigrations.Ofthethirteenorigin alspeciesintheplantedwetland,fourdiedoff.Thesurvivingspecieswerejoinedbyanaddi-tionalfifty-twounplantedspecies.BecausethewetlandswereconnectedhydrologicallytothenearbyOlentangyRi ver,thenatural inflow ofspecieshadamuchgreater influence onthemakeupoftheplant communitiesinthetwowetlandsthandidtheinitialplantingofonebasin.Thesuccessofthetwobasinsasself-designedecosystemsisindicatedbytheOlentangyRiver Wetland’s designation under the RamsarConvention as a Wetland of International Importance.Complex Creations: Designing and ManagingFigure4.3AerialviewofthetwoOlentangyRiverWetlands.(CourtesyofWilliamJ.Mitsch,WilmaH.Schierm eierOlentangy River Wetland ResearchPark.)ECOSYSTEMSAREORGANIZEDINTROPHICLEVELSAs complex adaptive systems, ecosystems are animated by the interactions betweentheirconstituentpartsandtheflowsthatconnectthem.Inthe1940sayoungAmericanecologi st,RaymondLindeman, suggestedawayofanalyzingecosystemsintermsofenergyflow.AswithForbesbeforehim,Linde-man’s focuswasonlakes.After5yearsoffieldworkonthesmallCedarBogLakeneartheUniversityofMin nesota,LindemansignedupforapostdoctoralyearatYaleUniversitywithG.EvelynHutchinson (wholateradvisedRobertMacArthuronhisstudyofresourcepartitioninginwarblers)(seechap.3).Duri ngthatyearheandHutchinsonworkedonthearticlethatwas tobecome“The Trophic–DynamicAspectof Ecology”(Lindeman1942).Tragically,Lindemandiedattheageof27,afewmonthsbe forehisarticle,whichwasinitiallyrejectedasbeingtootheoretical,wasfinallypublishedintheflagshipj ournaloftheEcologicalSocietyofAmerica.Theideasheputforthhavehadalastingimpactonthefieldofecosystemecology.Lindeman’s focus was on the trophic, or “energ y-availing,” relationships within an ecosystem.Bor- rowingfromGermanlimnologistAugustThienemann,heabstractedthefamiliarfoodwebsthatnatural-istsandecologistshadproducedforlakesandothersystemsintotrophiclevels:Producersareorgan-ismssuchasplantsandphytoplanktonthatobtaintheirenergyfromthesun,consumersareorganisms suchaszooplanktonandfishthatobtaintheirenergyfromeatingproducers,anddecomposersarethe bacteriaandfungithatobtaintheirenergyfrombreakingdowntheorganicsubstancesinthewastes and remainsofotherorganisms.Byabstractinganecosystemtotrophiclevels,Lindeman sacrificed aComplex Creations: Designing and Managingcertainamountofbiologicalreality.Healsocreatedtheproblemofhowtoclassifyorganismsthateat both producers and consumers. There can be several levels of consumers in anecosystem,although earlier ecologists had noted that rarely are there more than five trophic levels intotal.Lindeman’s analysisexplainedthisphenomenon.Unlikethechemicalelements,whichcan cycleindefinitely inanecosystem(seechap.6),energy flow sthroughanecosysteminonedirectiononly:fromthesuntoproducerstoconsumerstosecond-aryconsumerstodecomposers.Ateachtransferofenergybetweentrophiclevels,Lindemannoted,a certainamountislost (fig.4.4).Primaryconsumerssuchasbrowsingsnailsexpendacertainamountofenergyjustlivingand findingproducerstoeat.Someofthemdiebeforetheyareeatenbybenthic predat ors.SomeoftheenergycontainedinthebodiesofthosethatareeatenistiedupintissuessuchFigure4.4Lindeman’s diagramofthefoodwebanddifferenttrophiclevelsinageneralizedlake.Energyandnu trientsenterthesystemfromtheoutside.Thesearecapturedandtransformedbybothmicroscopicand macrosco pic producers (phytoplanktersand pondweeds, A 1). Primary consumers (zooplankters and browsers, A 2)eattheproducersandinturnareeatenbysecondaryconsumers(planktonpredatorsandbenthicpre dators,A 3).Tertiaryconsumers(planktonpredatorsandbenthicpredators,A 4)areatthetopofthe foodchain.Alltheorganicmatterinthesystemultimatelycyclesthroughthebacterialdecomposersintheoozeatthebottomofthelake,whichinturnfeedszooplanktersandbrowsers.(FromLindeman,R.L.Copyright©1942,Ecolo gicalSocietyofAmerica.Thetrophic –dynamicaspectofecology.Ecology 23:399–417.WithpermissionfromtheEcologicalSocietyofAmerica.)Complex Creations: Designing and Managingλasshellsthatare difficult todigestandwhoseenergyisnotpassedalong.Theavailableenergyineacht rophiclevel,then,islessthanthatintheprecedinglevel.Lindemanexpressedthisrelationship usingthep roductivitysymbollambda(λ):0 >λ1 >λ2 . . . >λn .Aswemovetohigherandhighertrophiclevels,lessandlessenergyisavailable.Becausehigher-orderconsumersalsoneedever-greaterlevelsofenergytoseekouttheirprey,atsomepointin everyecosystem,thereisnolonger sufficientenergy tosupportanothertrophiclevel.Lindemancalculatedtheproductivityand efficiency ofenergytransferbetweentrophiclevelsforse verallakesforwhichhehaddataanddrewsomepreliminaryconclusions.This prefigured themore precisemodelingofecosystemsthatwastocomeinthenextphaseofecosystemecology.INTEGRATEPRODUCERS,CONSUMERS,ANDDECOMPOSERSAllecosystemsaregovernedbytherulesofenergy flowthatLindemanoutlined.Aswemanageexisti ngecosystemsandstrivetocreatefunctioningecosystemsofourown,weneedtobesurethedifferenttr ophiclevelsarerepresentedintheirproperratios.Ifalevelismissingortherearetoofeworganismsattha tlevel,energy,intheformoforganicmatter,willaccumulateaswaste,orundesirableorganismsmaytakea dvantageofthebounty.Iftherearetoomanylevelsortoomanyorganisms,theywill need supplemental inputs to survive, or else they will die or move away. Using anecosystemapproach,wecancreateamorebalanceddesignedlandscapeinwhichvariouscomponen tssupport eachotherandproducelittlewaste.AtElMonteSagrado,anecologicallymindedluxuryresortinTaos,NewMexico,alinkedseriesofcaref ullydesignedaquaticecosystemsprovidewastewatertreatmentandanessentialpartofthelandscape.The systems’ability to filterwaterdependsontheintegrationofdifferenttrophiclevels.Attheheartofth ewastewater filtrationprocessisaLivingMachine.LivingMachineswereoriginallydeveloped by ecological designer John Todd in the 1970s and 1980s (Todd and Todd 1993).Theyhavesincebeen refined andarenowdesignedandsoldbyLivingMachineSystems.Inthewor dsofgeneralmanagerEricLohan,oneofthedesignersofthesystematElMonteSagrado,theyworkby tak ingnaturalecosystemprocessesand “turbo -charging”them.Inthewastewater system,muchoftheinitialenergycomesnotfromsunlightbutfromthewa steproductsthemselves,whichareconsumedby bacterialdecomposers.Thusfartheprocessresembles aconventionalsepticsystem,inwhichexcessbacterialbiomasssettlesoutassludgethateventuallyhast oberemoved.IntheLivingMachine,the bacteriathatperformtheinitialdecompositionarecentraltoanen tireecosystem(justasbacteriaarein Lindeman’s diagramofalakeecosystem),inwhichtheyareconsumed byprotozoans,microcrusta-ceans,andsnails.Plants floatingabovethewastewaterasitistreatedtakeupaportionofthenewly availa blenutrientsandprovideintheirrootsalivingsubstrateforthisdiversecommunity.Afterdisinfectionand finalpolishinginanoutdoorwetland,thenowclearwaterentersindoordis-playpondsandanotheraquaticecosystem.Hereproducersincludeavarietyoftropicalplants,phyto-plankton,andalgae,and fishplaytheroleofconsumers.Resortguestsalsoserveasconsumerswhen they enjoystarfruit(Averrhoacarambola )andkumquatfromtheplantsthatareirrigatedbythetreatedwastewa ter.Byincludingallthetrophiclevels,thissystemfullyusestheenergyandnutrientspresentComplex Creations: Designing and Managing inthewastewatergeneratedbyresortguests,resultinginclearwaterandvaluableendproductsrath erthanmurkygraywaterandsewagesludge.Ontopofthis,thankstothe efficient reuseofwater thatthea quaticecosystemsallowandtheircentralitytotheoveralldesignoftheresort,eveninthehigh desertElMont eSagradohasalushambiencethatinvitesgueststorelaxandfeelthemselvesapartof living processes (fig.4.5).Figure4.5TreatedwaterfromtheLivingMachineentersanindoordisplaypondatElMonteSagrado resortinTao s,NewMexico.(PhotocourtesyofWorrellWaterTechnologies.)NEGATIVEFEEDBACKLOOPSHELPECOSYSTEMSMAINTAINSTABILITYOne of the aspects of ecosystems that fascinated the early ecologists who studied themwas that ecosystems can demonstrate, in Arthur Tansley’swords, a “relatively stabledynamic equilibrium.”Fifteenyears afterthepublicationofLindeman’sarticleontrophic dynamics,HowardOdum(1957)am assedlargeamountsofdataintoamuchmoreexactpictureofthesurgingdynamics behind such apparentstability.TheecosystemOdumstudiedwastheheadwatersofSilverSprings,Florida.Sincethenineteenth cen turySilverSpringshasbeenatouristattractiontowhichvisitorsflocktoadmirethecrystalclearwa-ter,schoolsoffish,andwavingfreshwatereelgrass(Sagittariasubulata)(fig.4.6).Theglass-bottomed boatwasinventedatSilverSprings,infact,andtothisdayonecantakeaboatridearoundthethr ee quartermilesofwateryattractionswithfolksynamessuchasFishReceptionHall.SilverSpringsmadeComplex Creations: Designing and ManagingFigure4.6ResearchdiversinmainboilofSilverSpringsholdherbivorousturtlesamidalgae-coveredeelgrass.(FromOdum,H.T.Copyright©1957,EcologicalSocietyofAmerica.Trophicstructureandproducti vityofSilver Springs,Florida.EcologicalMonographs27:55–112.WithpermissionfromtheEcologicalSocietyofAmerica.)an excellent natural laboratory for Odum because of the constancy of its flow, temperature,and chemi-calproperties.Odumnotedthatthesprings’“hydrographicclimate”wasata steadystateand thatalong-standingclimaxcommunityhadresulted.Odumandhisteamofresearcherswenttoremarkablelengthstocapturedataoneveryaspectofthe SilverSpringsecosystem.Bendingoverthebowofamotoringboat,theymeasuredthetempera-turechangesinwaterasitflowedoutofthemainboilanddownstream.Byharvestingandweighingsampl esofeelgrassandthealgaethatcoveredit,theydeterminedthebiomassoftheseproducers.Theygrews nailsincagesonthebottomofthestreamandmeasuredtheirincreaseinweight.Theysnuckuponquadr atsmarkedintheeelgrassandpartedtheleavestocountatypeof sunfishcalled stumpknockers(Lepomisp unctatus)wheretheyhid.Cleverly,Odumandhisteamwereabletomeasuretheoverallmetabolismofthecommunitybycomparingoxygen levels in the water during the day and at night. The regular flow of SilverSprings carried all the “waste products” of the ecosystem past the measuring station three quarters of amiledownstreamfromtheboil.Atnightalltheorganismsinthecommunityrespired,loweringoxygenlevelsto apoint that reflected their cumulative metabolism. During the day, respiration continued, butthe photosyntheticproducersalsogaveoffoxygen.Thedifferencebetweendaytimeandnighttimeoxygenlevel s,multipliedbythevolumeofthecurrent,thereforeprovidedameasureofthedifferencebetweenphotosynthesisand respiration, which is the ecosystem’s net primaryproduction.Combiningallthesemeasurements,Odumwasabletocreateadetaileddescriptionoftheflowofenergyin the entire ecosystem. This analysis also allowed him to explain how Silver Springs maintained itself inaseeminglyunchangingstate.Basedontheratioofcommunityproductivitytostandingbio-mass,Odum estimatedthattheentirecommunityturnedover(diedandwasreplaced)eighttimesperyear.Clearly,smaller organi smsturnedovermanytimesmorethantheaverageandlargerlonger-livedorganismsless.Becauseofthedifferentamountofsunlightreachingtheprimaryproducersinwinterands ummer,therewasanaturalpulseinproductioninthesystem.Onemightexpectthisburstofproductivitytober eflected inaflushofnewgrowthintheeelgrassoranincreaseinthepopulationofprimaryconsumers.Infact,sta ndingbiomassandpopulationlevelswerestablethroughouttheyear.Odumevenreportedanoldboatcaptain askinghim whethertheeelgrassevergrew.Seasonalspikesinconsumer reproduction seemedto betimedto matchtheincreasedproductivity,andtheextrayounginonetrophiclevelwerequicklyeatenbytheextrayounginthenext,so thatalthoughmoreenergymayhavebeenflowingthrough,standingbiomassintheecosystemremained const ant.Negativefeedbackloopssuchasanincreaseinconsumptionthatabsorbsanincreaseinproduction helpecosystemsre-mainstable.Wherenegativefeedbackloopsmeetaconstantenvironment,asatSilver Springs,overall stabilitycanbemaintainedforanextendedperiod.第4章复杂的作品:生态景观设计的原则Principles of Ecological LandscapeDesign设计和管理生态系统一只蜻蜓掠过波光粼粼的池塘表面,抓住孵化后的蚊子之前在一个悬臂冲旁休息。

相关文档
最新文档