高数下册总结
高数下知识点总结

高数下知识点总结高等数学下涵盖了很多种不同的概念和知识点。
在本篇文章中,我们将为您总结高等数学下的主要概念和知识点,并讨论它们如何相互联系。
1. 极限极限是高等数学最重要的概念之一。
极限可以用于描述函数在点x趋近某一值a时的表现。
我们可以通过找到函数在a点两侧的极限,来确定a点处的函数值和导数。
此外,极限还可以用于计算积分和微分。
2. 导数和微分导数和微分是解析几何和微积分中最重要的概念之一。
导数用于描述函数在某一点上的切线斜率。
微分则将一个函数的微小变化与它的导数联系起来。
它们都是非常常用的工具,用于研究函数的各种属性,如最大值、最小值、零点和拐点。
它们还可以用于求取函数的近似值和方程组的解。
3. 积分和定积分积分是求解曲线下面的面积或体积的数学方法。
积分有两种形式:定积分和不定积分。
定积分用于计算从a到b之间函数f和坐标轴之间的面积。
不定积分则是求解函数f的原函数。
积分十分重要,因为它们可以用于求解物理、概率和计算机科学问题等领域的各种问题。
4. 泰勒级数泰勒级数用于描述函数在某一点附近的性质。
该级数是一个无限的多项式,可以将任意函数在任意点展开为该级数。
泰勒级数在物理、工程和计算机科学等领域广泛应用。
5. 偏导数和梯度偏导数和梯度是多变量函数中常用的概念。
偏导数用于计算函数在某一点上的斜率,但只在某个方向上的斜率。
梯度则是一组偏导数,用于描述函数在各个方向上的斜率。
以上是高等数学的主要概念和知识点,它们在课程中有不同的关联和联系。
例如,导数可以用于确定函数的切线,如果我们知道了函数的切线,我们就可以使用洛必达法则计算函数的极限。
此外,我们可以通过积分来找到函数的原函数,并通过这些原函数来解决微分和积分的各种问题。
在求解多变量函数时,我们可以使用梯度来找到该函数在某一点上的斜率。
这个概念在工程和物理学中很常用。
在控制问题中,我们可以使用梯度来计算控制器的响应,并优化控制器的性能。
总之,高等数学包含了许多核心概念和知识点,我们需要学习它们中每一个的特点和应用。
高数下册公式总结

高数下册公式总结高等数学下册是大多数理工类专业大学生必修的一门课程,难度较大且内容繁杂。
在学习高等数学下册的过程中,熟记常用的公式是非常重要的。
下面我将为大家总结高等数学下册常见的公式。
1. 极限与连续:- 函数极限的定义:设函数 f(x) 在点 x0 的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得当0 < |x - x0| < δ 时,有 |f(x) - A| < ε 成立,则称 A 是函数 f(x) 当x 趋于 x0 时的极限,记作lim(x→x0) f(x) = A。
- 函数极限的四则运算:设函数 f(x) 和 g(x) 的极限分别为 A 和 B,若A、B 均存在,则* lim(x→x0) [f(x) ± g(x)] = A ± B* lim(x→x0) [f(x) ⋅ g(x)] = A ⋅ B* lim(x→x0) [f(x) / g(x)] = A / B (B ≠ 0)- 洛必达法则:设函数 f(x) 和 g(x) 在 x0 的某个去心邻域内有定义且 f(x0) = g(x0) = 0,若lim(x→x0) [f'(x) / g'(x)] 存在或为∞,则有lim(x→x0) [f(x) / g(x)] = lim(x→x0) [f'(x) / g'(x)]。
2. 导数与微分:- 导数的定义:设函数 y = f(x) 在点 x0 的某去心邻域内有定义,若极限lim(h→0) [f(x0 + h) - f(x0)] / h 存在,则称该极限为函数 f(x) 在点 x0 处的导数,记作 f'(x0) 或 dy/dx∣(x=x0)。
- 基本导函数:设 u(x) = C (常数)、u(x) = x^n (n 为自然数) 和 y(x) = f(x) ± g(x) 是可导函数,C 为常数,则有以下基本导函数公式。
期末高数下册知识总结

期末高数下册知识总结本文将对高等数学下册的知识进行总结,主要分为以下几个部分:空间解析几何、多元函数与偏导数、重积分、无穷级数与幂级数、常微分方程五个部分。
一、空间解析几何(平面与直线、空间曲线与曲面、空间直角坐标系下的曲线与曲面)空间解析几何是指在空间情形下分析和研究几何形体、几何运动、数学方程和几何方程之间的联系的一门数学学科。
学习空间解析几何可以帮助我们理解空间形体之间的关系以及其运动规律。
1.平面与直线- 平面方程:点法式、一般式、截距式、两平面交线、平面与平面垂直、平行关系- 直线方程:点向式、两点式、一般式、向量叉乘、直线与直线垂直、平行、斜率、角度的概念与求解2.空间曲线与曲面- 空间曲线的方程:参数方程、一般方程- 空间曲面的方程:二次曲面、旋转曲面、柱面、锥面的方程3.空间直角坐标系下的曲线与曲面- 参数方程下的曲线计算:弧长、速度、加速度、切线、法平面、法线- 参数化的曲面计算:一类曲面的面积、体积、切平面、切向量二、多元函数与偏导数多元函数是指具有多个自变量的函数,偏导数是研究多元函数对其中一个自变量求导数的方法。
学习多元函数与偏导数可以帮助我们更加深入地了解多元函数的性质和变化规律。
1.多元函数的极限- 多元函数极限的定义与性质- 极限存在的条件与计算- 多元函数极限与连续函数2.多元函数的偏导数- 偏导数的定义与性质- 高阶偏导数的计算与应用- 隐函数的偏导数3.多元函数的微分与全微分- 多元函数的微分定义与性质- 链式法则与全微分的计算4.多元函数的方向导数与梯度- 方向导数的概念与计算- 梯度的概念与计算- 梯度的几何意义5.多元函数的极值与最值- 多元函数的极值的判定与求解- 条件极值的求解- 二次型的矩阵表示与规范形三、重积分重积分是对多元函数在给定区域上的积分,通过重积分可以计算出在多元函数定义的区域上的一些量的总和。
1.二重积分- 二重积分的概念与性质- 直角坐标系下的二重积分的计算- 极坐标系下的二重积分的计算2.三重积分- 三重积分的概念与性质- 柱坐标系下的三重积分的计算- 球坐标系下的三重积分的计算3.坐标变换与积分- 坐标变换的概念与方法- 二重积分与三重积分的坐标变换4.重积分的应用- 质量、重心、质心的计算- 总质量与平均密度的计算- 转动惯量与转动半径的计算四、无穷级数与幂级数无穷级数是指所含项的个数为无穷多个的数列之和,幂级数是指形如∑\(a_n(x-a)^n\)的形式的级数。
大一下高数下册知识点总结

大一下高数下册知识点总结第一章:数列与极限1.1 数列的概念数列是按照一定规律排列的数字序列,常用递推公式或通项公式表示。
1.2 数列的极限数列的极限表示数列在n趋于无穷大时的稳定值,可以用极限符号进行表示。
1.3 极限的性质极限具有唯一性、有界性、保号性和四则运算性质。
1.4 常见数列的极限常见数列的极限有等差数列、等比数列和阶乘等。
第二章:函数与连续2.1 函数的概念函数是一种特殊的关系,每个自变量只对应一个因变量。
2.2 函数的性质函数具有定义域、值域和奇偶性等性质。
2.3 基本初等函数基本初等函数包括幂函数、指数函数、对数函数和三角函数等。
2.4 连续的概念函数在某一点连续表示函数在该点存在极限且与函数值相等。
第三章:导数与微分3.1 导数的概念导数表示函数在某一点的变化率,可以用极限形式进行定义。
3.2 导数的计算法则导数的计算法则包括常数法则、幂函数法则、和差法则和乘积法则等。
3.3 高阶导数高阶导数表示对函数进行多次求导得到的导数。
3.4 微分的概念微分表示函数在某一点的局部线性逼近,可以用导数表示。
第四章:微分中值定理与导数的应用4.1 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。
4.2 函数的单调性与极值函数的单调性用导数的正负表示,函数的极值出现在导数为零的点上。
4.3 函数的凹凸性与拐点函数的凹凸性用导数的增减性表示,函数的拐点出现在导数的变号点上。
4.4 特殊函数的导数与应用特殊函数包括反函数、参数方程函数和隐函数等,它们的导数计算与应用有特殊方法。
第五章:定积分5.1 定积分的概念定积分表示函数在一定区间上的面积或曲线长度,可以用极限的方法进行定义。
5.2 定积分的性质定积分具有线性性、可加性和区间可加性等性质。
5.3 定积分的计算方法定积分的计算方法包括换元法、分部积分法和变限积分法等。
5.4 应用问题定积分有许多应用,如求曲线长度、曲线面积、物体质量和统计学中的概率等。
高数下册复习知识点总结

高数下册复习知识点总结高数下册复习知识点总结高数下册复习知识点总结:8空间解析几乎与向量代数1.给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。
2.向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。
3.了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。
空间曲线在坐标平面上的投影方程。
4.平面方程和直线方程及其求法。
5.平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6.点到直线以及点到平面的距离。
9多元函数微分法及其应用1.有关偏导数和全微分的求解方法,偏导要求求到二阶。
2.复合函数的链式法则,隐函数求导公式和方法。
3.空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。
4.利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。
10重积分1.二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。
2.选择合适的坐标系计算三重积分。
3.利用二重积分计算曲面的面积;利用三重积分计算立体体积;4.利用质心和转动惯量公式求解问题。
11曲面积分与曲线积分1.两类曲线积分的计算与联系;2.两类曲面积分的计算与联系;3.格林公式和高斯公式的应用。
12曲面积分与曲线积分1.常数项积分的敛散性判别:(1)正项级数;(2)交错级数;(3)一般级数2.幂级数的收敛域(1)标准型(2)非标准型幂级数的和函数,幂级数展开3.傅里叶级数的和函数以及展开式扩展阅读:高数下册总复习知识点归纳(1)高等数学(一)教案期末总复习第八、九章向量代数与空间解析几何总结向量代数定义与运算的几何表达定义向量模有大小、有方向.记作a或AB向量a的模记作a在直角坐标系下的表示aaxiayjazk(ax,ay,az)axprjxa,ayprjya,azprjzaaax2ay2az2和差cabca-b 单位向量cabaxbx,ayby,azbzaa0,则eaa设a与x,y,z轴的夹角分别为,,,则方向余弦分别为cos,cos,cosea(ax,ay,az)axayaz222方向余弦aaacosx,cosy,coszaaaea(cos,cos,cos)cos2+cos2cos21点乘(数量积)ababcos,为向量a与b的夹角abaxbxaybyazbziabaxbxjaybykazbzcabsin叉乘(向量积)为向量a与b的夹角cab向量c与a,b都垂直定理与公式垂直平行abab0abaxbxaybyazbz0a//bcosa//bab0axayazbxbybz2222交角余弦ab两向量夹角余弦cosab向量a在非零向量b上的投影axbxaybyazbzaxayazbxbybz22投影prjbaacos(ab)abbprjbaaxbxaybyazbzbxbybz222平面法向量n{A,B,C}点M0(x0,y0,z0)方程名称一般式点法式方程形式及特征直线方向向量T{m,n,p}点M0(x0,y0,z0)方程名称一般式点向式方程形式及特征A1xB1yC1zD10A2xB2yC2zD20AxByCzD0A(xx0)B(yy0)C(zz0)0xx0yy0zz0mnp高等数学(一)教案期末总复习xx1三点式yy1y2y1y3y1zz1z2z10z3z1两点式线线垂直线线平行线面平行参数式x2x1x3x1截距式面面垂直面面平行线面垂直xyz1abcA1A2B1B2C1C20A1B1C1A2B2C2ABCmnpxx0mtyy0ntzzpt0xx0yy0zz0x1x0 y1y0z1z0m1m2n1n2p1p20m1n1p1m2n2p2AmBnCp0点面距离M0(x0,y0,z0)AxByCzD0面面距离AxByCzD10AxByCzD20dAx0By0Cz0DABC222dD1D2ABC222面面夹角n1{A1,B1,C1}n2{A2,B2,C2}cos|A1A2B1B2C1C2|A1B1C1A2B2C2222222线线夹角s1{m1,n1,p1}s2{m2,n2,p2}线面夹角s{m,n,p}n{A,B,C}AmBnCpA2B2C2m2n2p2cosm1m2n1n2p1p2222m12n12p12m2n2p 2sinx(t),y(t),z(t),切“线”方程:切向量xx0yy0zz0(t0)(t0)(t0)空间(t)曲线:T((t0),(t0),(t0))法平“面”方程:(t0)(xx0)(t0)(yy0)(t0)(zz0)0切“线”方程:y(x)切向量z(x)T(1,(x),(x))xx0yy0zz01(x0)(x0)法平“面”方程:(xx0)(x0)(yy0)(x0)(zz0)0法向量切平“面”方程:Fx(x0,y0,z0)(xx0)Fx(x0,y0,z0)(yy0)F(x,y,z)0空间曲面:n(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))n(fx(x0,y0),fy(x0,y0),1)F x(x0,y0,z0)(zz0)0法“线“方程:xx0yy0zz0Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)切平“面”方程:fx(x0,y0)(xx0)fy(x0,y0)(yy0)(zz0)0法“线“方程:zf(x,y)或n(fx(x0,y0),fy(x0,y0),1)xx0yy0zz0fx(x0,y0)fy(x0,y0)1高等数学(一)教案期末总复习第十章总结重积分计算方法(1)利用直角坐标系X型Y型积分类型二重积分典型例题f(x,y)dxdydxDab2(x)1(x)f(x,y)dyf(x,y)dxP141例1、例3f(x,y)dxdyDdcdy2(y)1(y)Ifx,ydD(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段);(2)被积函数用极坐标变量表示较简单(含(x2y2),平面薄片的质量质量=面密度面积为实数)P147例5f(cos,sin)ddDd2()1()f(cos,sin)d0202(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)0I2f(x,y)dxdyD1计算步骤及注意事项f(x,y)对于x是奇函数,即f(x,y)f(x,y)f(x,y)对于x是偶函数,即f(x,y)f(x,y)D1是D的右半部分P141例2应用该性质更方便1.画出积分区域2.选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3.确定积分次序原则:积分区域分块少,累次积分好算为妙4.确定积分限方法:图示法先积一条线,后扫积分域5.计算要简便注意:充分利用对称性,奇偶性高等数学(一)教案期末总复习三重积分(1)利用直角坐标投影投影法截面法bay2(x)f(x,y,z)dVdxy1(x)dyz2(x,y)z1(x,y)f(x,y,z)dzP159例1P160例2xrcos(2)利用柱面坐标yrsinzz相当于在投影法的基础上直角坐标转换成极坐标适用范围:1积分区域表面用柱面坐标表示时方程简单;如旋转体○If(x,y,z)dvP161例3空间立体物的质量质量=密度面积22222被积函数用柱面坐标表示时变量易分离.如f(xy)f(xz)○f(x,y,z)dVdzdabr2()r1()f(cos,sin,z)dxcosrsincos(3)利用球面坐标ysinrsinsinzrcosdvr2sindrdd适用范围:1积分域表面用球面坐标表示时方程简单;如,球体,锥体.○P16510-(1)2222被积函数用球面坐标表示时变量易分离.如,f(xyz)○Idd11222(,)1(,)f(sincos,sinsin,cos)2sind(4)利用积分区域的对称性与被积函数的奇偶性高等数学(一)教案期末总复习第十一章总结曲线积分与曲面积分积分类型参数法(转化为定积分)第一类曲线积分(1)L:y(x)IIf(x,y)ds计算方法典型例题(t)Iaf(x,y(x))1y"(x)dx曲形构件的质量(2)L:y(t)质量=线密度xr()cos弧长(3)rr()()L:f((t),(t))b"2(t)"2(t)dt2Lx(t)P189-例1P190-3yr()sinIf(r()cos,r()sin)r2()r"2()d平面第二类曲线积分(1)参数法(转化为定积分)x(t)L:(t单调地从到)y(t)P196-例1、例2、例3、例4LPdxQdy{P[(t),(t)](t)Q[(t),(t)](t)}dt(2)利用格林公式(转化为二重积分)条件:①L封闭,分段光滑,有向(左手法则围成平面区域D)②P,Q具有一阶连续偏导数结论:LPdxQdy(DQP)dxdyxy满足条件直接应用IPdxQdy应用:有瑕点,挖洞L不是封闭曲线,添加辅助线变力沿曲线所做的功P205-例4P214-5(1)(4)(3)利用路径无关定理(特殊路径法)等价条件:①QP②xy③PdxQdy0LLPdxQdy与路径无关,与起点、终点有关P211-例5、例6、例7④P dxQdy具有原函数u(x,y)(特殊路径法,偏积分法,凑微分法)(4)两类曲线积分的联系IPdxQdy(PcosQcos)dsLL空间第二类曲线积分(1)参数法(转化为定积分)PdxQdyRdz{P[(t),(t),(t)](t)Q[(t),(t),(t)](t)R[(t),(t),(t)](t)}dtIP dxQdyRdz(2)利用斯托克斯公式(转化第二类曲面积分)L条件:①L封闭,分段光滑,有向②P,Q,R具有一阶连续偏导数PdxQdyRdzL变力沿曲线所做结论:的功QpRQPR()dydz()dzdx()dxdyyzzxxyP240-例1 高等数学(一)教案期末总复习应用:满足条件直接应用不是封闭曲线,添加辅助线第一类曲面积分投影法:zz(x,y)投影到xoy面If(x,y,z)dv曲面薄片的质量Dxy质量=面密度类似的还有投影到yoz面和zox面的公式面积(1)投影法Pdydzp(x(y,z),y,z)dydz1○Dyz:zz(x,y),为的法向量与x轴的夹角前侧取“+”,cos0;后侧取“”,cos0Qdzdxp(x,y(x,z),z)dzdx2第二类曲面积分○Dyz:yy(x,z),为的法向量与y轴的夹角右侧取“+”,cos0;左侧取“”,cos02If(x,y,z)dvf(x,y,z(x,y))1zx2zydxdyP217-例1、例2P226-例2IPdydzQdzdxR3QdxdyQ(x,y,z(x,y))dxdy○Dyz流体流向曲面一侧的流量:xx(y,z),为的法向量与x轴的夹角上侧取“+”,cos0;下侧取“”,cos0(2)高斯公式右手法则取定的侧条件:①封闭,分片光滑,是所围空间闭区域的外侧②P,Q,R具有一阶连续偏导数结论:PdydzQdzdzRdxdy(PQR)xyzP231-例1、例2应用:满足条件直接应用不是封闭曲面,添加辅助面(3)两类曲面积分之间的联系PdydzQdzdxRdxdy(PcosQcosRcos)dSP228-例3转换投影法:dydz( 所有类型的积分:z)dxdyxdzdx(z)dxdyy1定义:四步法分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
大一高数知识点总结下册

大一高数知识点总结下册在大一学习高等数学过程中,我们接触到了许多重要的知识点,这些知识点对于我们的数学基础和后续学习都非常重要。
下面将对大一高数下册的知识点进行总结和梳理。
1. 多元函数及其极限- 多元函数的概念和表示方法- 极限的定义和性质- 多元函数的连续性与间断点- 偏导数与全微分- 多元函数的极值与最值2. 重积分- 二重积分的概念和性质- 二重积分的计算方法(直角坐标系和极坐标系)- 三重积分的概念和性质- 三重积分的计算方法(直角坐标系和柱面坐标系)3. 曲线与曲面积分- 曲线积分的定义和性质- 曲面积分的定义和性质- 参数方程下曲线积分的计算- 参数化曲面下曲面积分的计算4. 傅里叶级数- 傅里叶级数的基本概念和性质 - 傅里叶级数的收敛性- 傅里叶级数展开和求和的方法 - 傅里叶级数在实际问题中的应用5. 偏微分方程- 偏微分方程的基本概念和分类 - 线性偏微分方程的一般解法- 热传导方程和波动方程的解法 - 边值问题和特征线法以上五个部分是大一下学期高等数学的重点内容,通过对这些知识点的学习,我们可以建立起良好的数学思维和方法论。
同时,我们也可以将这些知识应用到其他学科中,例如物理、工程等领域。
在学习这些知识点的过程中,我们需要掌握基本的概念和定义,理解其背后的思想和原理,并学会运用相应的公式和方法进行计算和推导。
同时,我们还需要通过大量的习题和练习来加深对这些知识点的理解和掌握。
为了更好地学习高等数学,我们可以采取以下几点策略:1. 注重基础知识的理解。
高等数学是建立在基础数学知识之上的,因此我们要确保自己对基础知识的理解扎实。
2. 多做习题,提高解题能力。
通过大量的练习可以巩固知识,提高解题的速度和准确度。
3. 学会思考与总结。
高等数学不仅仅是机械的计算,更需要我们发散思维,运用所学知识解决实际问题。
4. 多与同学交流与合作。
相互讨论、互相帮助是提高数学能力的重要途径。
总之,大一高数下册的知识点是我们数学学习中的关键内容,掌握这些知识点对于我们的数学基础与日后的学习发展至关重要。
高数下册总复习知识点.pptx

F ( x, G( x,
y, z) y, z)
0 ,
0
(取 x为参数)
i jk
取T Fx Fy Fz
切线方程为
Gx Gy Gz M
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为
Fy Gy
Fz Gz
M
(x
x0 )
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
2、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式 a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz
ax2
函数连续
函数可导
有极限
函数可微 偏导数连续
4、多元复合函数求导法则
中间变量均为一元函数的情形
定理1 若函数
在点t处可导,z f (u, v)
在点 处偏导连续, 则复合函数 z f ( (t), (t))
在点 t 可导, 且有链式法则
dz z du z dv dt u dt v dt
z
u v
1
旋 转 椭 球 面
z
o
y
x
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
x2 a2
y2 a2
z2 c2
高数下知识点总结

高数下知识点总结一、微积分1. 函数和极限函数是自然界和社会现象中的一般规律性联系的数学抽象。
以实数域为定义域和值域的实函数是微积分的主要研究对象。
极限是微积分的基本概念,它是描述函数在某点附近的性质的数学工具。
在微积分中,我们讨论函数在某一点的极限,以及函数在无穷远处的极限和无穷大的极限等各种情况。
2. 导数和微分导数是函数在某一点的变化率的极限,用来描述函数的局部性质。
微分是导数的几何意义,它是关于函数的线性逼近的一种数学方法。
在微积分中,我们讨论导数的定义、求导法则、高阶导数、微分和微分中值定理等内容。
3. 积分和微积分基本定理积分是导数的逆运算,它描述了函数在一定区间内的总体变化量。
微积分基本定理是微积分中的核心定理,它建立了积分和导数之间的联系。
在微积分中,我们讨论不定积分、定积分、变限积分、积分中值定理等内容。
4. 微分方程微分方程是微积分的一个重要应用领域,它是描述自然和社会现象中变化规律的数学模型。
微分方程可以分为常微分方程和偏微分方程两大类,涵盖了许多重要的理论和方法。
在微积分中,我们讨论微分方程的基本概念、解的存在唯一性、解的性质、微分方程的分类和常见的解法等内容。
二、矩阵论1. 矩阵和行列式矩阵是线性代数的基本工具,它是一个按照矩形排列的数的集合。
行列式是矩阵的一个重要性质,它是由矩阵的元素按照一定规则组合而成的一个数。
在矩阵论中,我们讨论矩阵的基本操作、矩阵的性质、矩阵的代数运算、矩阵的逆、行列式的性质和展开等内容。
2. 线性方程组线性方程组是矩阵论的一个重要应用领域,它是由线性方程组成的一种数学模型。
线性方程组的解是矩阵的一个重要性质,它描述了线性方程组的解空间和解的个数。
在矩阵论中,我们讨论线性方程组的标准形、增广矩阵、线性方程组的解的性质、线性方程组的解的分类和解的存在唯一性等内容。
3. 特征值和特征向量特征值和特征向量是矩阵的一个重要性质,它描述了矩阵的变换规律和对称性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
篇一:高数下册总结高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解.一阶微分方程的解法小结:二阶微分方程的解法小结:非齐次方程y???py??qy?f(x)的特解y?的形式为:主要:一阶1、可分离变量方程、线性微分方程的求解;2、二阶常系数齐次线性微分方程的求解;3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法1、显函数的偏导数的求法在求?z?x时,应将y看作常量,对x求导,在求?z?y时,应将x看作常量,对y求导,所运用的是一元函数的求导法则与求导公式.2、复合函数的偏导数的求法设z?f?u,v?,u???x,y?,v???x,y?,则?z?x?z?u?u?x?z?v?v?x????,?z?y???u?y??z?v??v?y几种特殊情况:1)z?f?u,v?,u???x?,v???x?,则2)z?f?x,v?,v???x,y?,则?z?xdzdx???f?vdzdu???u?x??z?v?dvdx?v?y??f?x?v?x,?z?y??f?u?3)z?f?u?,u???x,y?则3、隐函数求偏导数的求法 1)一个方程的情况?z?x?dzdu??u?x,?z?y?dzdu??u?y设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则?z?xfxfz???0?,?z?y??fyfz?fz?0?或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出2)方程组的情况 ?z?x(或?z?y).?f?x,y,u,v??0?z?z)即可. 由方程组?两边同时对x(或y)求导解出(或?x?y??gx,y,u,v?0 ?二、全微分的求法方法1:利用公式du??u?xdx??u?ydy??u?zdz方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:??zdu???u?dz???z?dx??x???z?v?z?ydvdy三、空间曲线的切线及空间曲面的法平面的求法?x???t??1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点?z???t??p0?x0,y0 ?,z0?处的切线方向向量为t???t0?,???t0?,??t0??,切线方程为x?x0??t0??y?y0??t0??z?z0??t0?法平面方程为 ??t0??x?x0????t0??y?y0????t0??z?z0??02)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量?n??fx,fy,fz?p0,切平面方程为fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为x?x0fx?x0,y0,z0??y?y0fy?x0,y0,z0??z?z0fz?x0,y0,z0?若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量?n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为x?x0fx?x0,y0??y?y0fy?x0,y0??z?z0?1四、多元函数极值(最值)的求法 1 无条件极值的求法设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,fy?x,y??0,解出驻点?x0,y0?,记a?fxx?x0,y0?,b?fxy?x0,y0?,c?fyy?x0,y0?.2c?b1)若a?0,则f ?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0时有极小值.2)若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3)若ac?b2?0,不能判定f?x,y?在点?x0,y0?处是否取得极值.2 条件极值的求法函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题.2)拉格朗日乘数法作辅助函数f?x,y??f?x,y?????x,y?,其中?为参数,解方程组篇二:高数下册总结(同济第六版)高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解.一阶微分方程的解法小结:二阶微分方程的解法小结:?非齐次方程y???py??qy?f(x)的特解y的形式为:主要:一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解; 3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法1、显函数的偏导数的求法在求?z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y用的是一元函数的求导法则与求导公式.2、复合函数的偏导数的求法设z?f?u,v?,u???x,y?,v???x,y?,则?z?z?u?z?v?z?z?u ?z?v????,???? ?x?u? x?v?x?y?u?y?v?y几种特殊情况:1)z?f?u,v?,u???x?,v???x?,则2)z?fdzdz?u?zdv???? dxdu?x?vdx?f?v?x,v?,v???x,y?,则?x??x??v??x,?z?f?z?f?v?? ?y?u?y 3)z?f?u?,u???x,y?则3、隐函数求偏导数的求法 1)一个方程的情况?zdz?u?zdz?u????, ?xdu?x?ydu?y设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则f?z??x?xfz?fz?z?0?, ???yfyfz?fz?0?或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出2)方程组的情况由方程组??z?z(或). ?x?y ?f?x,y,u,v??0?z? z两边同时对x(或y)求导解出(或)即可.?x?y?g?x,y,u,v?? 0二、全微分的求法方法1:利用公式du??u?u?udx?dy?dz ?x?y?z方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:?z??zdu?dv??v??udz???z?z?dx?dy?y???x三、空间曲线的切线及空间曲面的法平面的求法?x???t??1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点?z???t???p0?x0,y0,z0?处的切线方向向量为t???t0?,??t0?,??t0?,切线方程为??x?x0y?y0z?z0???t0?t0?t0法平面方程为 ??t0??x?x0????t0??y?y0????t0??z?z0??02)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量?n??fx,fy,fz?p0,切平面方程为fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为x?x0y?y0z?z0??fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量?n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为x?x0y?y0z?z0??fxx0,y0fyx0,y0?1四、多元函数极值(最值)的求法 1 无条件极值的求法设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,fy?x,y??0,解出驻点?x0,y0?,记a?fxx?x0,y0?,b?fxy?x0,y0?,c?fyy?x0,y0?.c?b1)若a时有极小值.2)若ac?b2?0,则f?x,y?在点?x0,y0?处无极值.3)若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值.22?0,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?02 条件极值的求法函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题.2)拉格朗日乘数法作辅助函数f?x,y??f?x,y?????x,y?,其中?为参数,解方程组篇三:高数下册公式总结第八章向量与解析几何- 2 -- 3 -第十章重积分- 4 -- 5 -第十一章曲线积分与曲面积分- 6 -篇四:高数下册积分方法总结积分方法大盘点现把我们学了的积分方法做个大总结。
1、二重积分1.1 x型区域上二重积分(必须的基本方法)(1)后x先y积分,d往x轴上的投影得区间[a,b];(2)x [a,b],x=x截d得截线y1(x)#yy2(x)(小y边界y=y1(x)大y边界y=y2(x));(3)by(x)蝌f(x,y)dxdy=蝌dx2f(x,y)dyayd1(x)1.2 y型区域上二重积分(必须的基本方法)(1)后y先x积分,d往y轴上的投影得区间[c,d];(2)y [c,d],y=y截d得截线x1(y)#xx2(y)(小x边界x=x1(y)大x边界x=x2(y));(3)dx蝌f(x,y)dxdy=蝌dy2(y)f(x,y)dxcxd1(y)1.2 极坐标二重积分(为简单的方法)(1)总是后q先r 积分;(2)br蝌f(x,y)ds=蝌dq2(q)f(rcosq,rsinq)rdrar(q)d1其中,在d上a 是最小的q,b是最大的q;q [a,b],射线q=q截d得截线r1(q)#rr2(q)(小r边界r=r1(q)大r边界r=r2(q))。
用坐标关系x=rcosq,y=rsinq 和面积元素ds=dxdy=rdqdr代入(多一个因子r)。
当积分区域d的边界有圆弧,或被积函数有x2+y2时,用极坐标计算二重积分特别简单。
离散数学2、三重积分2.1 二套一方法(必须的基本方法)(1)几何准备(i) 将积分区域w 投影到xoy面,得投影区域dxy;(ii) 以dxy的边界曲线为准线,作一个母线平行于z轴的柱面.柱面将闭区域w的边界曲面分割为上、下两片曲面s2:z=z2(x,y()大z边界);s1:z=z1(x,y()小z 边界)((x,y) dxy,过(x,y)点平行于z轴的直线截w得截线z1(x,y)#zz2(x,y));(2)z蝌蝌f(x,y,z)dxdydz=蝌dxdy2(x,y)f(x,y,z)dzz。