(完整版)《三角函数》高考真题文科总结及答案,推荐文档

合集下载

《三角函数》高考真题文科总结及答案

《三角函数》高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tanα的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C;(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1) 求C 的大小;(2) 若AB =3,AC =6,求p 的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a bA B ==sin B =4B π∠=.13.【解析】由三角形内角和和正弦定理可知:14.【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-145sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =, 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π【解析】()211c o s 2113s i ns i n c o s 1s i n 21s i n 2c o s 222222x fx x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =-. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A =由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --=因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.22.【答案】(1(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+-- ()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a ==. 所以D ABC 的面积为1.26.【答案】(I )a =8,sin C =(II试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以由(I )知,所以 28.【解析】在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2-p +1=0的判别式△=)2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.B B ∠=∠=从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以ptanA +tanB )(21)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+,最小值为0 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x 由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0. 综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π. (Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-,(Ⅱ).试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--因此()f x 的最小正周期为p ,最小值为-(2)由条件可知:g()sin()3x x p =--. 当[,]2x p p Î时,有2[,]363x p p p-?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp 上的值域是.33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:21且函数表达式为()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ); (ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得. 2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k 0x ()00g x >。

三角函数高考题题目答案

三角函数高考题题目答案

三角函数高考题题目答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】高考文科数学试题分类汇编:三角函数一、选择填空题1.[2014·全国新课标卷Ⅰ2] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 【答案】C2. [2014·全国卷2] 已知角α的终边经过点(-4,3),则cos α=( )C .-35D .-45 【答案】D3.[2014·陕西卷2] 函数f (x )=cos ⎝⎛⎭⎪⎫2x +π4的最小正周期是( )B .πC .2πD .4π 【答案】B4.[2014·四川卷3] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A 5.[2014·浙江卷4] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位C .向左平移π12个单位 D .向左平移π4个单位 【答案】A6.[2014·福建卷7] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝ ⎛⎭⎪⎫-π2,0对称 【答案】D7.[2014·全国新课标卷Ⅰ7] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A8.[2014·天津卷8] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )C .πD .2π 【答案】C 9.[2014·安徽卷7] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )【答案】C10.[2014·辽宁卷11] 将函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减 D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 【答案】B11.[2014·江苏卷5] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】6π12. [2014·山东卷12] 函数y =32sin 2x +cos 2x 的最小正周期为________.【答案】π 13.[2014·重庆卷13] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝ ⎛⎭⎪⎫π6=________.【答案】214.[2014·新课标全国卷Ⅱ14] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.【答案】1 15.[2014·全国卷14] 函数y =cos 2x +2sin x 的最大值为________.【答案】3216.[2014·全国卷16] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.【答案】43二、解答题:1.[2014·江苏卷15] 已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.解:(1)∵()sin 2ααπ∈π=,,,∴cos α=()sin sin cos cos sin sin )444αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-=2.[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝ ⎛⎭⎪⎫α+π3的值.解:(1)因为()f x ()()22cos cos 2a x x θ=++而y 1=a+2cos 2x 为偶函数,所以 y 1=()cos 2x θ+为奇函数,又()0,θπ∈,得.2πθ=所以()f x =2sin 22cos x x a -⋅+()由04=⎪⎭⎫ ⎝⎛πf ,得-(a+1)=0,即1.a =-(2)由(1)得:()1sin 4,2f x x =-因为12sin 425f αα⎛⎫=-=- ⎪⎝⎭,得4sin ,5α=又2παπ⎛⎫∈ ⎪⎝⎭,,所以3cos ,5α=-因此sin sin cos sin cos 333πππααα⎛⎫+=+= ⎪⎝⎭3.[2014·四川卷17] 已知函数()sin(3)4f x x π=+(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值。

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x 4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .22C .27.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tanα的值等于( )B .-125 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )9.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8),k ∈Z ,k ∈Z,k ∈Z ,k ∈Z11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cosωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A 的值;(2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sin B sin C;(2)若∠BAC=60°,求∠B.28.(2015·山东卷17)△ABC中,角A,B,C所对的边分别为a,b,c.已知cos B=33,sin(A+B)=69,ac=23,求sin A和c的值.29.(2015·四川卷19)已知A,B,C为△ABC的内角,tan A,tan B 是关于x的方程x2+3px-p+1=0(p∈R)的两个实根.(1) 求C的大小;(2) 若AB=3,AC=6,求p的值.30.(2015·安徽卷16)已知函数f(x)=(sin x+cos x)2+cos 2x.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f(x)=sin x-23sin2x 2 .(1)求f(x)的最小正周期;(2)求f(x)在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx+φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y=g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:2222cos a b c bc =+-A ,及b c <,可得2b =7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=- 8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B.10.【答案】D11.【答案】3【解析】12tan()tan7tan tan() 3.21tan()tan17αβαβαβααβα++-=+-===++-12.【解析】由正弦定理,得sin sina bA B=,63=所以2sin B=所以4Bπ∠=.13.【解析】由三角形内角和和正弦定理可知:45sin)]4575(180sin[ACAB=+-245sin60sin6=⇒=⇒ACAC14.2【解析】由题意得0018060B A C=--=.由正弦定理得sin sinAC BCB A=,则sinsinAC ABCB=,所以23223BC⨯==.15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos2α=22222sin cos cos2tan1411sin cos tan141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B 及正弦定理知:32a b =,又因为2a =,所以2b =,由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A =由正弦定理,得sin sin cos 0A B B A =,又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.22.【答案】(1;(223.【答案】(1)3-;(2)1.(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac .又ab ,可得2bc ,2a c ,由余弦定理可得2221cos 24a cb B ac. (II )由(1)知22b ac .因为B 90°,由勾股定理得222a c b .故222a c ac ,得2c a .所以ABC 的面积为1.26.【答案】(I )a =8,15sin C =(II 1573-. 试题解析:(I )△ABC 中,由1cos ,4A =-得15sin A = 由1sin 3152bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得15sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠= 所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 28.【解析】在ABC ∆中,由cos B =sin B =. 因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+==. 由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以p(tanA +tanB )(2+1)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为10 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,]. 试题解析: (1) 2113()sin 23cos sin 2(1cos 2)22f x x xx x1333sin 2cos 2sin(2)232x x x, 因此()f x 的最小正周期为,最小值为2+3. (2)由条件可知:3g()sin()32x x. 当[,]2x时,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323,]. 故g()x 在区间[,]2上的值域是1323,].33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由452<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

最新高考真题汇编文科数学(解析版)4:三角函数

最新高考真题汇编文科数学(解析版)4:三角函数

20xx 高考试题分类汇编:4:三角函数一、选择题1.【20xx 高考安徽文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位 (C ) 向左平移 12个单位 (D ) 向右平移12个单位 【答案】C【解析】 cos 2cos(21)y x y x =→=+左+1,平移12。

2.【20xx 高考新课标文9】已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4 【答案】A 【解析】因为4π=x 和45π=x 是函数图象中相邻的对称轴,所以2445T=-ππ,即ππ2,2==T T .又πωπ22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函数的对称轴所以ππϕπk +=+24,所以ππϕk +=4,因为πϕ<<0,所以4πϕ=,检验知此时45π=x 也为对称轴,所以选A. 3.【20xx 高考山东文8】函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1 (D)1-【答案】A【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3s in (2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A.4.【20xx 高考全国文3】若函数()sin([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ (A )2π(B )32π (C )23π (D )35π【答案】C【解析】函数)33sin(3sin )(ϕϕ+=+=x x x f ,因为函数)33sin()(ϕ+=x x f 为偶函数,所以ππϕk +=23,所以Z k k ∈+=,323ππϕ,又]2,0[πϕ∈,所以当0=k 时,23πϕ=,选C. 5.【20xx 高考全国文4】已知α为第二象限角,3sin 5α=,则sin 2α=(A )2524- (B )2512- (C )2512 (D )2524【答案】B【解析】因为α为第二象限,所以0cos <α,即54sin 1cos 2-=--=αα,所以25125354cos sin 22sin -=⨯-==ααα,选B.6.【20xx 高考重庆文5】sin 47sin17cos30cos17-(A )2-(B )12-(C )12(D )2 【答案】C【解析】sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====,选C.7.【20xx 高考浙江文6】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos (x-1)+1,向下平移一个单位为y=cos (x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 8.【20xx 高考上海文17】在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定【答案】A【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形,选A.9.【20xx 高考四川文5】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )(1)10B 、10C 、10D 、15【答案】B【解析】 2EB EA AB =+=,EC ===3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sin sin 5CED DC EDC CE ∠===∠,所以3sin sin sin 4CED EDC π∠=∠==10.【20xx 高考辽宁文6】已知sin cos αα-=α∈(0,π),则sin 2α=(A) -1 (B) 2- (C) 2(D) 1 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题。

(完整word版)《三角函数》高考真题文科总结及答案,推荐文档

(完整word版)《三角函数》高考真题文科总结及答案,推荐文档

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2) C .y =sin 2x +cos 2x D .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x 4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .22C .2 D.37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC=___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________. 17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sin Bsin C;(2)若∠BAC=60°,求∠B.28.(2015·山东卷17)△ABC中,角A,B,C所对的边分别为a,b,c.已知cos B=33,sin(A+B)=69,ac=23,求sin A和c的值.29.(2015·四川卷19)已知A,B,C为△ABC的内角,tan A,tan B是关于x的方程x2+3px-p+1=0(p∈R)的两个实根.(1)求C的大小;(2)若AB=3,AC=6,求p的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=- 8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a b A B =,=所以sin B =所以4B π∠=. 13.【解析】由三角形内角和和正弦定理可知:14.οοοο45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC οο【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =, 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n u r r,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A =,又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 22.【答案】(1(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===o o o25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a == 所以D ABC 的面积为1.26.【答案】(I )a =8,sin C =(II试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以 由(I )知, 所以 28.【解析】在ABC ∆中,由cos B =sin B = 因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=. 由,sin sin a cA C =可得sin sin c A a C ===,又ac =,所以1c =. ,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=oo()1sin sin sin .22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.3B B ∠=∠=o29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式 △=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以p(tanA +tanB )+1)=-130.【答案】(Ⅰ)π ;(Ⅰ)最大值为1+,最小值为0 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅰ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-(Ⅱ).试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--,因此()f x 的最小正周期为p ,最小值为-.(2)由条件可知:g()sin()3x x p =--. 当[,]2x p p Î时,有2[,]363x p p p-?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp上的值域是.33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ);(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >452<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >因为对任意的整数,,所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得.k ()()00022213k k πππαπαπα+--+=->>k 0x ()00g x >。

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

【模拟演练】nn1、[2014 •西卷16]已知函数f(x) = (a+ 2COS2X)COS(2X+ 0 )为奇函数,且f 才=°,其中a€R , 0€ (0,冗).n n(1)求a, 0 的值;(2)若f 才=-5,a ~2, n,求sin a + —的值.n2、[2014北京卷16]函数f(x) = 3S in 2x+ —的部分图像如图所示.(1)写出f(x)的最小正周期及图中X0, y°的值;n n⑵求f(x)在区间—㊁,—12上的最大值和最小值.3、[2014 福建卷18]已知函数f(x) = 2COS x(sin x + COS x).5 n(1)求f —的值;⑵求函数f(x)的最小正周期及单调递增区间.4、( 06 湖南)如图,D是直角△ ABC斜边BC上一点,AB=AD,记/ CAD= , / ABC=(1)证明sin COS2 0;(2)若AC=..3 DC,求的值.1 35、(07福建)在厶ABC 中,聞A 4,tanB 5 -(I)求角C的大小;(n)若△ ABC最大边的边长为.17,求最小边的边长.6、(07 浙江)已知△ ABC 的周长为.2 1,且si nA si nB /2si nC .(I )求边AB的长;(II )若△ ABC的面积为^sinC,求角C的度数.67、(07山东)如图,甲船以每小时30「2海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A i处时,乙船位于甲船的北偏西105的方向B1处,此时两船相距20 海里•当甲船航行20分钟到达A,处时,乙船航行到甲船的北偏西120方向的B2处,此时两船相距10.2海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC中,角A , B, C所对的边分别为a,b,c,已知a bcosC csin B(1)求B;(2)若b=2,求S ABC的最大值。

9、(2016年北京高考)在ABC中,a2 c2b2、 2ac(1)求角B的大小;(2)求2cosA cosC的最大值。

(完整word版)三角函数高考题及答案

1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A 。

(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C 。

(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=02.(北京,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( ) A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x3。

(全国,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A 。

sin x B 。

cos x C.sin2x D.cos2x4.(全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π)D 。

(4π,2π)∪(43π,π) 5.(全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π〈x 〈2k π+4π,k ∈Z }B 。

{x |2k π+4π<x 〈2k π+45π,k ∈Z } C.{x |k π-4π<x 〈k π+4π,k ∈Z } D.{x |k π+4π<x 〈k π+43π,k ∈Z } 6.(全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A 。

6πB 。

2π C.32πD 。

3π7。

(全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A 。

322 B.-322 C 。

32D.-32 8。

(全国,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( ) A.2B.-2C 。

(完整)《三角函数》高考真题文科总结及答案,推荐文档

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +)B .y =cos (2x +)π2π2C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +D .y =x 2+sin x 12x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2,cos A =且b <c ,则b =( )332A .3 B .22C .2 D.37.(2015·福建卷6)若sin α=-,且α为第四象限角,则tan α513的值等于( )A.B .-C.D .-1251255125128.(2015·重庆卷6)若tan α=,tan(α+β)=,则 tan β=( )1312A.B.C.D.171657569.(2015·山东卷4)要得到函数y =sin(4x -)的图象,只需将函数π3y =sin 4x 的图象( )A .向左平移个单位B .向右平移个单位π12π12C .向左平移个单位D .向右平移个单位π3π310.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.,k ∈Z (k π-14,k π+34)B.,k ∈Z (2k π-14,2k π+34)C.,k ∈Z (k -14,k +34)D.,k ∈Z (2k -14,2k +34)11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=,则tan β的值为17________.12.(2015·北京卷11)在△ABC 中,a =3,b =,∠A =,则62π3∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =,∠A =75°,∠B =45°,6则AC =________.14.(2015·福建卷14)若△ABC 中,AC =,A =45°,C =75°,则3BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-,3sin A =2sin B ,则c =__________.1417.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin-x 2的零点个数为(x +π2)__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为2,则3ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, b )与n =(cos A ,sin B )平行.3(1)求A ;(2)若a =,b =2,求△ABC 的面积.721.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(+A )=2.π4(1)求的值;sin 2Asin 2A +cos2A (2)若B =,a =3,求△ABC 的面积.π422.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长;(2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan的值;(α+π4)(2)求的值.sin 2αsin2α+sin αcos α-cos 2α-124.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =,且B 为钝角,求A ,B ,C .3425.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =,求△ABC 的面积.226.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为3,b -c =2,cos A =-.1514(1)求a 和sin C 的值;(2)求cos的值.(2A +π6)27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求;sin B sin C(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin(A +B )=,ac =2,33693求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+px -p +1=0(p ∈R )的两个实根.3(1)求C 的大小;(2)若AB =3,AC =,求p 的值.630.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最大值和最小值.π231.(2015·北京卷15)已知函数f (x )=sin x -2sin 2.3x2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.2π332.(2015·重庆卷18)已知函数f (x )=sin 2x -cos 2x .123(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈时,求g (x )的值域.[π2,π]33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期内的图象时,列表并填入了部分数据,(ω>0,|φ|<π2)如下表:ωx +φ0π2π3π22πx π35π6A sin(ωx +φ)5-5(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动个单位长度,得到π6y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=10sin cos +10cos 2.3x 2x 2x2(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移个单位长度,再向下平移a (a >0)π6个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:2222cos a b c bc =+-A ,及b c <,可得2b =7.【答案】D 【解析】由,且为第四象限角,则,5sin 13α=-α12cos 13α==则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯9.【答案】【解析】因为,所以,只需要将函数B sin(4sin 4()312y x x ππ=-=-的图象向右平移个单位,故选.4y sin x =12πB 10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-12.【解析】由正弦定理,得sin sin a bA B ==sin B =.4B π∠=13.【解析】由三角形内角和和正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC 14.【解析】由题意得.由正弦定理得,则0018060B A C =--=sin sinAC BCB A=,sin sin AC ABC B=所以.BC ==15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由及正弦定理知:,又因为,所以,3sin 2sin A B =32a b =2a =2b =由余弦定理得:,所以;22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=4c =17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+,所以;.3)42x π=-+22T ππ==min 3()2f x =18.【答案】219.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为, 距离最短的两个交点一定在同12211154242k k k k Z ππππωω+++-∈((,),((,),,一个周期内, .(22221522442πππωω∴=-+--∴=()(),20.试题解析:(I)因为,所以//m nsin cos 0a B A -=由正弦定理,得,sin sin cos 0A B B A -=又,从而,sin 0B ≠tan A =由于0A π<<所以3A π=(II)解法一:由余弦定理,得,而,,2222cos a b c bc A =+-2a b ==3A π=得,即2742c c =+-2230c c --=因为,所以,0c >3c =故面积为.ABC ∆1sin 2bc A =2sin B=从而sin B =又由知,所以a b >A B >cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以面积为.ABC ∆1sin 2ab C =21.【答案】(1);(2)259试题解析:(1)由,得,tan(A)24π+=1tan 3A =所以.22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++(2)由可得,.1tan 3A=sin A A ==,由正弦定理知:3,4a B π==b =又,sin sin()sin cos cos sin C A B A B A B =+=+=所以.11sin 3922ABC S ab C ∆==⨯⨯=22.【答案】(1223.【答案】(1)3-;(2)1.(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭-(2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+---222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+- 222222⨯=+- 1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )(II )114试题解析:(I )由题设及正弦定理可得.22b ac =又,可得,,a b =2b c =2a c =由余弦定理可得.2221cos 24a cb B ac +-==(II )由(1)知.22b ac =因为90°,由勾股定理得.B =222a c b +=故,得.222a c ac +=c a =所以ABC 的面积为1.D26.【答案】(I )a =8,(II .sin C =试题解析:(I )△ABC 中,由得 由,得1cos ,4A =-sin A =1sin 2bc A = 又由解得 由,可得a =8.由24,bc =2,b c -=6, 4.b c ==2222cos a b c bc A =+-,得sin sin a cA C=sin C =(2),)2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭=27.【解析】(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠=28.【解析】在中,由ABC ∆cos B =sin B =因为,所以,A B C π++=sin sin()C A B =+=因为,所以,为锐角,sin sin C B <C B <C cos C =因此.sin sin()sincos cos sin A BC B C B C =+=+==由可得,又,所以.,sinsin a c A C=sinsin c A a C ===ac =1c =29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB =-p ,tanAtanB =1-p于是1-tanAtanB =1-(1-p )=p ≠0从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60°(Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去)于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+-所以p(tanA +tanB )+1)=-130.【答案】(Ⅰ) ;(Ⅱ)最大值为0π1【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=142sin(2++=πx 所以函数的最小正周期为.)(x f ππ==22T(Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f 当 时,2,0[π∈x ]45,4[42πππ∈+x 由正弦函数在上的图象知,x y sin =]45,4[ππ当,即时,取最大值;242ππ=+x 8π=x )(x f 12+当,即时,取最小值.4542ππ=+x 4π=x )(x f 0综上,在上的最大值为,最小值为.)(x f [0,]2π12+031.解析(Ⅰ)∵=+cos -=2(+)-()f x x sin 3x 3sin x 3π3∴的最小正周期为2.()f x π(Ⅱ)∵,∴.203x π≤≤33x πππ≤+≤当,即时,取得最小值.3x ππ+=23x π=()f x∴在区间上的最小值为.()f x 2[0,]3π2(3f π=32.【答案】(Ⅰ)的最小正周期为,最小值为,(Ⅱ).()f x p -试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+,1sin 22sin(2)23x x x p =--=--因此的最小正周期为,最小值为()f x p -(2)由条件可知:.g()sin()3x x p=--当时,有,[,]2x pp Î2[,]363x pp p -Î从而的值域为,sin(3x p-1[,1]2那么的值域为.sin(3x p--故在区间上的值域是.g()x [,]2pp 33.【解析】(Ⅰ)根据表中已知数据可得:,,,解得5A =32ππωϕ+=5362ππωϕ+=. 数据补全如下表:π2,6ωϕ==-且函数表达式为.π()5sin(2)6f x x =-(Ⅱ)由(Ⅰ)知,因此 .因π()5sin(26f x x =-πππ()5sin[2(]5sin(2)666g x x x =+-=+为的对称中心为,. 令,解得,.即sin y x =(π,0)k k ∈Z π2π6x k +=ππ212k x =-k ∈Z 图象的对称中心为,,其中离原点最近的对称中心为()y g x =ππ0212k -(((k ∈Z O . π(,0)12-34.【解析】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数,使000(2,2)x k k παππα∈++-得.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.04sin 5x >。

三角函数—高考真题文科数学分项汇编(解析版)


y
f
(x)的图象.
其中所有正确结论的序号是
A.①
B.①③
【答案】B
C.②③
D.①②③
2
【解析】因为 f (x) sin(x ),所以周期T 2 2,故①正确;
3
f ( ) sin( ) sin5 1 1,故②不正确;
2
23
62
将函数 y sin x的图象上所有点向左平移 个单位长度,得到 y sin(x )的图象,
2
D.2
【答案】C
sin x
【解析】 f (x)
tan x 1 tan2 x
cos 1(sin
x sin xcos x 1sin2x,
x) 2
2
cos x
故所求的最小正周期为T 2π π,故选 C. 2
【名师点睛】函数 y Asin(x ) B(A 0, 0)的性质:
(1) ymax=B+A,ymin B A.
对应的函数为
gx.若
g
π4
2
,则
f
3π 8
A.−2
B. 2
C. 2
D.2
【答案】C
【解析】∵ f (x)为奇函数,∴ f (0) Asin 0,=kπ,k Z,k 0, 0;
∵ f x的最小正周期为π,T

π,∴
2,
∴ g(x) Asin 1x Asin x,
2
又 g(π) 2,∴ A 2,
f x max
3
2
5 2
4,故选
B.
【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质, 在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +)B .y =cos (2x +)π2π2C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x 4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x 5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2x B .y =x 2-cos xC .y =2x +D .y =x 2+sin x12x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2,cos A =且b <c ,则b =( )332A .3 B .22C .2 D.37.(2015·福建卷6)若sin α=-,且α为第四象限角,则tan α513的值等于( )A.B .-C. D .-1251255125128.(2015·重庆卷6)若tan α=,tan(α+β)=,则 tan β=( )1312A.B.C.D.171657569.(2015·山东卷4)要得到函数y =sin(4x -)的图象,只需将函数π3y =sin 4x 的图象( )A .向左平移个单位B .向右平移个单位π12π12C .向左平移个单位D .向右平移个单位π3π310.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.,k ∈Z (k π-14,k π+34)B.,k ∈Z (2k π-14,2k π+34)C.,k ∈Z (k -14,k +34)D.,k ∈Z (2k -14,2k +34)11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=,则tan β的值为17________.12.(2015·北京卷11)在△ABC 中,a =3,b =,∠A =,则62π3∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =,∠A =75°,∠B =45°,6则AC =________.14.(2015·福建卷14)若△ABC 中,AC =,A =45°,C =75°,则3BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-,3sin A =2sin B ,则c =__________.1417.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin-x 2的零点个数为(x +π2)__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为2,则3ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, b )与n =(cos A ,sin B )平行.3(1)求A ;(2)若a =,b =2,求△ABC 的面积.721.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(+A )=2.π4(1)求的值;sin 2Asin 2A +cos2A (2)若B =,a =3,求△ABC 的面积.π422.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan的值;(α+π4)(2)求的值.sin 2αsin2α+sin αcos α-cos 2α-124.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =,且B 为钝角,求A ,B ,C .3425.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =,求△ABC 的面积.226.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为3,b -c =2,cos A =-.1514(1)求a 和sin C 的值;(2)求cos的值.(2A +π6)27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求;sin B sin C(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin(A +B )=,ac =2,33693求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+px -p +1=0(p ∈R )的两个实根.3(1)求C 的大小;(2)若AB =3,AC =,求p 的值.630.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最大值和最小值.π231.(2015·北京卷15)已知函数f (x )=sin x -2sin 2.3x2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.2π332.(2015·重庆卷18)已知函数f (x )=sin 2x -cos 2x .123(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈时,求g (x )的值域.[π2,π]33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期内的图象时,列表并填入了部分数据,(ω>0,|φ|<π2)如下表:ωx +φ0π2π3π22πxπ35π6A sin(ωx +φ)05-50(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动个单位长度,得到π6y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=10sin cos +10cos 2.3x 2x 2x2(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移个单位长度,再向下平移a (a >0)π6个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:2222cos a b c bc =+-A ,及b c <,可得2b =7.【答案】D 【解析】由,且为第四象限角,则,5sin 13α=-α12cos 13α==则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯9.【答案】【解析】因为,所以,只需要将函数B sin(4sin 4()312y x x ππ=-=-的图象向右平移个单位,故选.4y sin x =12πB 10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-12.【解析】由正弦定理,得sin sin a bA B ==sin B =.4B π∠=13.【解析】由三角形内角和和正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC 14.【解析】由题意得.由正弦定理得,则0018060B A C =--=sinsin AC BCB A=,sin sin AC ABC B=所以.BC ==15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由及正弦定理知:,又因为,所以,3sin 2sin A B =32a b =2a =2b =由余弦定理得:,所以;22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=4c =17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+,所以;.3)42x π=-+22T ππ==min 3()2f x =18.【答案】219.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为, 距离最短的两个交点一定在同12211154242k k k k Z ππππωω+++-∈((,),((,),,一个周期内, .(22221522442πππωω∴=-+--∴=()(),20.试题解析:(I)因为,所以//m nsin cos 0a B A -=由正弦定理,得,sin sin cos 0A B B A -=又,从而,sin 0B ≠tan A =由于0A π<<所以3A π=(II)解法一:由余弦定理,得,而,,2222cos a b c bc A =+-2a b ==3A π=得,即2742c c =+-2230c c --=因为,所以,0c >3c =故面积为.ABC ∆1sin 2bc A =2sin B=从而sin B =又由知,所以a b >A B >cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以面积为.ABC ∆1sin 2ab C =21.【答案】(1);(2)259试题解析:(1)由,得,tan(A)24π+=1tan 3A =所以.22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++(2)由可得,1tan 3A =sin A A ==,由正弦定理知:3,4a B π==b =又,sin sin()sin cos cos sin C A B A B A B =+=+=所以.11sin 3922ABC S ab C ∆==⨯⨯=22.【答案】(1;(223.【答案】(1)3-;(2)1.(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭-(2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+---222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+- 222222⨯=+- 1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )(II )114试题解析:(I )由题设及正弦定理可得.22b ac =又,可得,,a b =2b c =2a c =由余弦定理可得.2221cos 24a cb B ac +-==(II )由(1)知.22b ac =因为90°,由勾股定理得.B =222a c b +=故,得.222a c ac +=c a =所以ABC 的面积为1.D26.【答案】(I )a =8,(II .sin C =试题解析:(I )△ABC 中,由得 由,得1cos ,4A =-sin A =1sin 2bc A = 又由解得 由,可得a =8.由24,bc =2,b c -=6, 4.b c ==2222cos a b c bc A =+-,得sin sin a cA C=sin C =(2),)2πππcos2cos2cos sin2sin2cos1sin cos 666A A A A A A⎛⎫+=-=-- ⎪⎝⎭=27.【解析】(I)由正弦定理得,,sin sin sin sinAD BD AD DCB BADC CAD==∠∠∠∠因为AD平分∠BAC,BD=2DC,所以sin1.sin2B DCC BD∠==∠.(II)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()1sin sin sin.2C BAC B B B∠=∠+∠=∠+∠由(I)知2sin sinB C∠=∠,所以tan30.B B∠=∠=28.【解析】在中,由ABC∆cos B=sin B=因为,所以,A B Cπ++=sin sin()C A B=+=因为,所以,为锐角,sin sinC B<C B<C cos C=因此sin sin()sin cos cos sinA B C B C B C=+=+==由可得,又,所以.,sin sina cA C=sinsinc AaC===ac=1c=29.【解析】(Ⅰ)由已知,方程x2px-p+1=0的判别式△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB =-p ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0从而tan (A +B )=tan tan 1tan tan AB A B +==-所以tanC =-tan (A +B )所以C =60°(Ⅱ)由正弦定理,得sinB =sin AC C AB ==解得B =45°或B =135°(舍去)于是A =180°-B -C=75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+-所以p (tanA +tanB )+1)=-130.【答案】(Ⅰ) ;(Ⅱ)最大值为0π1【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx 所以函数的最小正周期为.)(x f ππ==22T (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f 当 时,2,0[π∈x ]45,4[42πππ∈+x由正弦函数在上的图象知,x y sin =]45,4[ππ当,即时,取最大值;242ππ=+x 8π=x )(x f 12+当,即时,取最小值.4542ππ=+x 4π=x )(x f 0综上,在上的最大值为,最小值为.)(x f [0,]2π12+031.解析(Ⅰ)∵=+cos -=2(+)-()f x x sin 3x 3sin x 3π3∴的最小正周期为2.()f x π(Ⅱ)∵,∴.203x π≤≤33x πππ≤+≤当,即时,取得最小值.3x ππ+=23x π=()f x∴在区间上的最小值为.()f x 2[0,]3π2(3f π=32.【答案】(Ⅰ)的最小正周期为,最小值为,(Ⅱ).()f x p -试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+,1sin 22sin(2)23x x x p =--=--因此的最小正周期为,最小值为()f x p -(2)由条件可知:.g()sin()3x x p=--当时,有,[,]2x p p Î2[,]363x pp p -Î从而的值域为,sin(3x p -1[,1]2那么的值域为.sin(3x p--故在区间上的值域是.g()x [,]2pp33.【解析】(Ⅰ)根据表中已知数据可得:,,,解得5A =32ππωϕ+=5362ππωϕ+=. 数据补全如下表:π2,6ωϕ==-且函数表达式为.π()5sin(2)6f x x =-(Ⅱ)由(Ⅰ)知,因此 .因π()5sin(26f x x =-πππ()5sin[2(]5sin(2)666g x x x =+-=+为的对称中心为,. 令,解得,.即sin y x =(π,0)k k ∈Z π2π6x k +=ππ212k x =-k ∈Z 图象的对称中心为,,其中离原点最近的对称中心为()y g x =ππ0212k -(((k ∈Z O . π(,0)12-34.【解析】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数,使000(2,2)x k k παππα∈++-得.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.04sin 5x >。

相关文档
最新文档