数学有理数知识点

合集下载

有理数知识点

有理数知识点

有理数知识点有理数是数学中的一种基本的数学对象,它包括整数和分数。

以下是有理数的一些基本知识点:一、有理数的定义有理数是可以写成两个整数的比值形式的数,其中分母不为零。

二、有理数的比较两个有理数a和b的比较有以下几种情况:1. 如果a和b都是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

2. 如果a和b都是负数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

3. 如果a是正数,b是负数,那么a<b。

4. 如果a是负数,b是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

三、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。

1. 加法:有理数a和b的和可以通过将a的分子与b的分母相乘再加上a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

2. 减法:有理数a和b的差可以通过将a的分子与b的分母相乘再减去a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

3. 乘法:有理数a和b的积可以通过将a的分子与b的分子相乘作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

4. 除法:有理数a除以b可以通过将a的分子与b的分母相乘作为新的分子,而将a的分母与b的分子相乘作为新的分母。

四、有理数的绝对值有理数的绝对值是该数到0的距离。

对于一个非负有理数a,其绝对值等于a本身;而对于一个负有理数a,其绝对值等于-a。

五、有理数的乘方有理数的乘方运算是一个数与自身连乘n次的运算,其中n是一个整数。

六、有理数的应用有理数在日常生活中的应用非常广泛,它们可以用来表示人口数量、货币金额、温度、距离等。

七、有理数的化简有理数化简是指将一个有理数写成最简分数的形式,即分子和分母没有公因子。

八、有理数的性质1. 有理数的加法和乘法封闭性:两个有理数的和或积仍然是有理数。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳数学是一门严谨而又精确的学科,有理数作为数学的基础之一,其在数学中起着重要的作用。

在本文中,将对有理数的一些常见知识点进行总结归纳,以便读者更好地理解和掌握这一概念。

一、有理数的定义与表达方式有理数由整数和分数两部分组成,可以用分数形式或小数形式表示。

分数形式为两个整数的比值,其中分子为整数,分母为非零整数;小数形式为无限循环小数或有限小数。

二、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。

对于加法和乘法,有理数符合交换律、结合律和分配律;对于减法和除法,有理数符合减法的延伸性和除法的唯一性。

三、有理数的大小比较有理数的大小比较可以通过求差、求商或化简等方法进行。

求差法即将两个有理数相减;求商法即将两个有理数相除;化简法即将两个有理数化成相同的分母,再进行大小比较。

四、有理数的奇偶性判断有理数的奇偶性判断可以通过其分子和分母的奇偶性进行推导。

当分子为偶数、分母为奇数或分子为奇数、分母为偶数时,有理数为偶数;当分子为奇数、分母为奇数时,有理数为奇数。

五、有理数的相反数与绝对值有理数的相反数是指与该有理数的绝对值相等,但符号相反的有理数。

有理数的绝对值是指该有理数去掉符号后的值。

相反数和绝对值都是有理数的重要概念,在四则运算和大小比较中经常用到。

六、有理数的约分与化简有理数的约分是指将有理数的分子和分母同时除以它们的最大公因数,使得有理数的分数形式缩小为最简形式。

有理数的化简是指将有理数的小数形式进行处理,使其变为简洁而易读的形式。

七、有理数在实际生活中的应用有理数在实际生活中有着广泛的应用。

例如,有理数可以用来表示温度、时间、距离、速度等实际量,方便我们对这些量进行计算、比较和分析。

此外,有理数还可以应用于金融、经济、科学等领域,帮助我们解决实际问题。

有理数作为数学中的基础概念,掌握它的定义和相关知识点对于学好数学来说至关重要。

通过对有理数的定义、四则运算、大小比较、奇偶性判断、相反数与绝对值、约分与化简以及在实际生活中的应用进行总结归纳,读者可以更好地理解和掌握有理数的概念和运用,为日后的学习打下坚实的基础。

七年级数学有理数的知识点

七年级数学有理数的知识点

七年级数学有理数的知识点在七年级数学中,有理数是一个重要的知识点。

本文将介绍有理数的概念、有理数的加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点。

一、有理数的概念有理数是指可以表示为两个整数的比的数,其中分母不为0。

有理数包括正有理数、负有理数以及0。

可以用分数形式表示,例如2/3、-3/4等,也可以用小数表示。

二、有理数的加减乘除1.有理数的加法:同号相加,异号相减,保留符号取绝对值相加。

例如:3+5=8,-3+(-5)=-8,-3+5=2,-3-(-5)=2。

2.有理数的减法:减去一个数等于加上这个数的相反数。

例如:3-5=3+(-5)=-2,-3-(-5)=-3+5=2。

3.有理数的乘法:符号相同为正,符号不同为负,绝对值相乘。

例如:3×4=12,-3×4=-12,-3×(-4)=12。

4.有理数的除法:除数不为0,符号相同为正,符号不同为负,绝对值相除。

例如:8÷2=4,-8÷2=-4,-8÷(-2)=4。

三、负数的概念1.负数的概念:小于0的整数即为负数。

例如:-1、-2、-3等。

2.相反数:两个数互为相反数,当且仅当它们的和等于0。

例如:2和-2互为相反数。

3.绝对值:一个数的绝对值,表示这个数到0的距离。

例如:|-3|=3,|5|=5。

四、有理数的比较1.相等与不等:两个有理数相等,当且仅当它们的差等于0。

例如:-4+6=2,所以-4和6不相等。

2.大小比较:可以用数轴比较大小,也可以比较绝对值。

例如:-5<2,|3|>|-5|。

总之,在数学学习中,有理数是一个非常基础且重要的知识点。

希望这篇文章能够对大家更好地掌握有理数的概念、加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点提供一定的帮助。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

《有理数》的数学知识点总结

《有理数》的数学知识点总结

《有理数》的数学知识点总结(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类有理数是整数和分数的统称。

通常有两种分类:3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)全部有理数都可以用数轴上的点来表示,但数轴上的点不肯定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

4、绝对值与相反数(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:。

一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(2)相反数:符号不同、绝对值相等的两个数互为相反数。

假设a、b互为相反数,那么a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号全都,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的'绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

有理数知识点总结

有理数知识点总结

有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。

在数学中,有理数的性质和运算规律是我们学习的基础,下面将从有理数的定义、性质和运算规律三个方面进行总结。

一、有理数的定义有理数是可以用两个整数的比表示出来的数,即有理数是整数和分数的统称。

其中,整数是有理数的一种特殊形式,而分数则是整数的推广。

有理数的特点是可以用分数表示为有限小数或无限循环小数。

二、有理数的性质1. 有理数可以进行比较大小。

对于任意两个有理数a和b,有且只有以下三种情况之一成立:a<b,a=b,a>b。

2. 有理数可以进行加、减、乘、除运算。

有理数的加法、减法、乘法、除法运算仍然是有理数。

3. 有理数的加法和乘法满足交换律、结合律和分配律。

三、有理数的运算规律1. 加法运算规律:对于任意三个有理数a、b、c,有(a+b)+c=a+(b+c);a+b=b+a。

2. 减法运算规律:对于任意三个有理数a、b、c,有(a-b)+c=a+(b-c);a-b=-(b-a)。

3. 乘法运算规律:对于任意三个有理数a、b、c,有(a*b)*c=a*(b*c);a*b=b*a。

4. 除法运算规律:对于任意三个非零有理数a、b、c,有(a/b)/c=a/(b/c);a/b=(c/b)*a。

5. 分配律:对于任意三个有理数a、b、c,有a*(b+c)=a*b+a*c。

有理数是数学中的基本概念之一,它在实际生活中有着广泛的应用。

比如,在商业活动中,我们需要进行货币的加减乘除运算,这就涉及到有理数的运算规律;在科学研究中,我们需要对数据进行分析和比较,这也需要用到有理数的性质。

有理数是数学中重要的概念之一,它包括了整数和分数,并具有比较大小和四则运算的性质。

掌握有理数的定义、性质和运算规律,对于我们学习数学和应用数学知识都具有重要意义。

有理数知识点整理

有理数知识点整理

有理数知识点整理有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零以及所有可以表示为分数的数。

在数学中,有理数是一种基本的数学概念,我们在日常生活和学习中经常会接触到它们。

下面将整理一些有关有理数的知识点。

1. 有理数的定义和表示:有理数可以通过一个分子和一个非零的分母的比值来表示,分子和分母都是整数。

通常用分数的形式来表示有理数,例如1/2、3/4等。

有理数可以是正数、负数或零。

2. 有理数的加法和减法:有理数的加法和减法可以通过分数的加减法来进行。

当两个有理数的分母相同时,只需将分子进行相应的加减操作即可。

当两个有理数的分母不同时,可以通过通分的方法,将两个有理数的分母变成相同的,然后进行相应的加减操作。

3. 有理数的乘法和除法:有理数的乘法和除法可以通过分数的乘除法来进行。

乘法要将两个有理数的分子相乘,分母相乘;除法要将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘。

4. 有理数的大小比较:有理数的大小比较可以通过它们的绝对值来判断。

绝对值是一个数的大小与符号无关的值,即该数与0的距离。

绝对值大的数比绝对值小的数要大。

当两个有理数的绝对值相同时,可以根据它们的符号来判断大小。

5. 有理数的相反数和倒数:有理数的相反数是指与该有理数的绝对值相等,符号相反的数。

例如,-2是2的相反数,2是-2的相反数。

有理数的倒数是指与该有理数的乘积为1的数。

例如,2的倒数是1/2,-3的倒数是-1/3。

6. 有理数的约分和分数的化简:有理数的约分是指将一个分数的分子和分母同时除以同一个非零整数,得到一个相等的分数。

分数的化简是指将一个分数的分子和分母同时除以它们的公因数,得到一个最简形式的分数。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学有理数知识点
数学有理数知识点
在日常的学习中,大家都背过各种知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

那么,都有哪些知识点呢?以下是小编帮大家整理的数学有理数知识点,希望能够帮助到大家。

1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.
6.互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的'交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-
b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:
把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:
先乘方,后乘除,最后加减.。

相关文档
最新文档