可控硅参数符号意义

合集下载

可控硅的重要参数

可控硅的重要参数

可控硅的重要参数可控硅是一种重要的电子器件,广泛应用于电力电子技术和控制系统中。

它具有多个关键的参数,这些参数直接影响到可控硅的性能和应用范围。

本文将从多个方面介绍可控硅的重要参数。

1. 阻断电压(VDRM):阻断电压是指可控硅能够承受的最大反向电压。

在正常工作情况下,可控硅的正向电压应小于阻断电压。

2. 电导电流(IGT):电导电流是指可控硅在触发电流作用下开始导通的最小电流。

它反映了可控硅的触发灵敏度和稳定性。

3. 关断电流(IH):关断电流是指可控硅在正常导通状态下,通过其控制端流过的最小电流。

关断电流的大小直接影响到可控硅的工作稳定性和功耗。

4. 阻断电流(IDRM):阻断电流是指可控硅在阻断状态下通过的最大电流。

阻断电流的大小与可控硅的封装和散热性能有关,需要在设计中合理考虑。

5. 反向耐压(VR):反向耐压是指可控硅能够承受的最大反向电压。

反向耐压决定了可控硅在逆向应用中的安全性能。

6. 触发电压(VGT):触发电压是指可控硅开始导通所需的最小控制电压。

触发电压的大小直接影响到可控硅的触发灵敏度和可靠性。

7. 导通压降(VF):导通压降是指可控硅导通时的电压降。

导通压降的大小与可控硅的导通损耗和功耗有关,需要在设计中进行合理评估。

8. 可控硅的温度特性:可控硅的性能受温度影响较大,温度过高会导致可控硅的性能下降甚至损坏。

因此,需要在设计中考虑可控硅的散热和温度控制。

除了上述参数外,可控硅还有其他一些重要的参数,如触发延迟时间、触发脉冲电流等。

这些参数都会对可控硅的工作性能和应用范围产生影响,需要在设计和选择可控硅时予以考虑。

可控硅的重要参数涉及到其电压、电流、触发特性和温度等方面。

了解和掌握这些参数对于正确应用可控硅、确保系统的稳定性和安全性至关重要。

在实际应用中,需要根据具体的需求和系统要求选择合适的可控硅,并合理设计电路以保证可控硅的正常工作。

晶闸管(可控硅)参数符号说明

晶闸管(可控硅)参数符号说明

晶闸管(可控硅)参数符号说明晶闸管(可控硅)参数符号说明以下参数符号说明的1~11符合1985年颁布的国家标准GB4940-851、断态及反向重复峰值电压VDRM和VRRM控制极断路,在⼀定的温度下,允许重复加在管⼦上的正向电压为断态重复峰值电压,⽤VDRM表⽰。

这个数值是不重复峰值电压VDSM的90%,⽽不重复峰值电压即为正向伏安特性曲线急剧弯曲点所决定的断态峰值电压。

反向重复峰值电压⽤VRRM表⽰,它也是在控制极开路条件下,规定⼀定的温度,允许重复加在管⼦上的反向电压,同样,VRRM为反向不重复峰值电压VRSM的90%。

“重复”是指重复率为每秒50次.持续时间不⼤于10ms。

VDRM和VRRM随温度的升⾼⽽降低,在测试条件中,将对温度作严格的规定。

⽣产⼚把VDRM和VRRM中较⼩的⼀个数值作为管⼦的额定电压。

2、断态漏电流IDRM和反向漏电流IRRM对应VDRM和VRRM的漏电流为断态漏电流和反向漏电流,分别⽤IDRM 和IRRM表⽰。

这个数值⽤峰值表⽰。

3、额定通态电流IT在环境温度为40℃和规定的冷却条件下,在单相⼯频(即50Hz)正弦半波电路中,导通⾓为不⼩于170°,负载为电阻性,当结温稳定且不超过额定结温时,管⼦所允许的最⼤通态电流为额定通态电流。

这个值⽤平均值和有效值分别表⽰。

4、通态电压VTM在规定环境温度和标准散热条件下,管⼦在额定通态电流IT时所对应的阳极和阴极之间的电压为通态电压,即⼀般称为管压降。

此值⽤峰值表⽰。

这是⼀个很重要的多数,晶闸管导通时的正向损耗主要由IT与VTM之积决定,希望VTM越⼩越好。

5、维持电流IH在室温下,控制极开路,晶闸管被触发导通后,维持导通状态所必须的最⼩电流。

也就是说,在室温下,在控制极回路通以幅度和宽度都⾜够⼤的脉冲电流,同时在阳极和阴极之间加上电压,使管⼦完全开通。

然后去掉控制极触发信号,缓慢减⼩正向电流,管⼦突然关断前瞬间的电流即为维持电流。

可控硅参数注释范文

可控硅参数注释范文

可控硅参数注释范文可控硅(SCR)是一种具有控制能力的半导体器件,它主要用于功率电子应用中的开关和控制。

可控硅的特殊之处在于,一旦启动,它将一直处于导通状态,直到电流降至零或有外部信号来控制其关断。

以下是可控硅的一些重要参数的注释。

1. 负阻抗比例器(Negative Impedance Proportioner,NIP):负阻抗比例器是此器件的一项重要参数。

它是可控硅的输入特性的度量标准,它表示了控制电压和控制电流之间的关系。

只有当控制电压的变化导致控制电流的相反变化时,负阻抗比例器才被视为合适的。

2. 正向阻抗(Forward Impedance):正向阻抗是指从可控硅正向电压到正向电流之间的阻抗。

通常使用恒定的电流作为输入,并测量输出的电压。

正向阻抗的数值约低,可控硅的性能越好,因为这意味着它能更好地通过电流。

3. 反向阻抗(Reverse Impedance):反向阻抗是指从可控硅反向电压到反向电流之间的阻抗。

类似于正向阻抗,较低的数值代表了更好的性能。

反向阻抗通常很高,以防止在正向电压下产生反向电流。

4. 触发电压(Trigger Voltage):触发电压是指可控硅所需的最低电压,以便使其从关断状态转变为导通状态。

较低的触发电压意味着它更容易被启动,而较高的触发电压可能导致可控硅无法正常启动。

5. 保持电流(Holding Current):保持电流是可控硅在导通状态下所需的最低电流。

一旦电流低于保持电流,可控硅将自动从导通状态切换到关断状态。

保持电流的数值取决于设备的特性和工作要求。

6. 最大正向电压(Maximum Forward Voltage):最大正向电压是可控硅所能承受的最大正向电压。

超过这个值,可控硅可能被损坏或无法正常工作。

因此,在设计和使用可控硅时,必须确保正向电压不超过最大正向电压。

7. 极限温度(Junction Temperature Limits):极限温度是可控硅能够承受的最高温度和最低温度。

可控硅(晶闸管)符号及含义

可控硅(晶闸管)符号及含义

可控硅(晶闸管)符号及含义
可控硅(晶闸管)符号及含义
转载▼I2t 电流平⽅时间积 di/dt 通态电流临界上升率
I d直流输出电流 dv/dt 断态电压临界上升率
I DRM 断态重复峰值电流 Q rr 反向恢复电荷
I F(AV) 正向平均电流 R T 通态斜率电阻
I FM 正向输出电流 R F 正向斜率电阻
I F(RMS) 正向电流有效值 R th 热阻抗
I FSM ⼀周波正向不重复浪涌电流 R th(j-c) 结⾄壳热阻抗
I G 门极电流 R th(j-hs) 结⾄散热器热阻抗
I GD 门极不重复电流 R th(c-hs) 壳⾄散热器热阻抗
I GT 门极电流 R th(h-a) 散热器⾄环境热阻抗
I H 维持电流 T a 环境温度
I RRM 反向重复峰值电流 T HS 散热器温度
I T(AV) 通态平均电流 T j 结温
I T(RMS) 通态电流有效值 T jm 最⾼额定结温
I TM 通态峰值电流 T vjm 最⾼等效结温
I TSM ⼀周波通态不重复浪涌电流 t p 脉冲时间
V DRM 断态重复峰值电压 t q 关断时间
V DSM 断态不重复峰值电压 t r 上升时间
V FM 正向峰值电压 t rr 反向恢复时间
V G 门极电压 t d 延迟时间
V GT 门极触发电压
V GD 门极不触发电压
V ISO 绝缘电压
V RRM 反向重复峰值电压
V FO 正向门槛电压
V TO 通态门槛电压
V RGM 门极反向峰值电压
V RSM 反向不重复峰值电压
V TM 通态峰值电压。

可控硅参数说明(精)

可控硅参数说明(精)

符号说明:VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。

此电压小于反向最高测试电压100V。

反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。

V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。

V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。

规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。

IT(AV/ IF(AV--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。

I T(RMS, I F(RMS――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50HzI2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。

P GM--门极峰值功率;门极触发电压与最大触发电流的乘积;P G(AV --门极平均功率;门极触发电压与正常触发电流的乘积;di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏V ISO--绝缘电压;芯片与可控硅的底板之间的绝缘电压。

Tj--工作结温;可控硅在正常工作条件下允许的PN结温度。

Tjm--额定结温;可控硅在正常工作条件下允许的最高PN结温度。

可控硅符号含义

可控硅符号含义

参数符号说明:IT(A V)--通态平均电流VRRM--反向重复峰值电压IDRM--断态重复峰值电流ITSM--通态一个周波不重复浪涌电流VTM--通态峰值电压IGT--门极触发电流VGT--门极触发电压IH--维持电流dv/dt--断态电压临界上升率di/dt--通态电流临界上升率Rthjc--结壳热阻VISO--模块绝缘电压Tjm--额定结温VDRM--通态重复峰值电压IRRM--反向重复峰值电流IF(A V)--正向平均电流CT---势垒电容Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。

在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。

锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。

在额定功率下,允许通过二极管的最大正向脉冲电流。

发光二极管极限电流。

IH---恒定电流、维持电流。

Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。

在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(A V)---反向平均电流IR(In)---反向直流电流(反向漏电流)。

可控硅符号含义

可控硅符号含义

参数符号说明:IT(A V)--通态平均电流VRRM--反向重复峰值电压IDRM--断态重复峰值电流ITSM--通态一个周波不重复浪涌电流VTM--通态峰值电压IGT--门极触发电流VGT--门极触发电压IH--维持电流dv/dt--断态电压临界上升率di/dt--通态电流临界上升率Rthjc--结壳热阻VISO--模块绝缘电压Tjm--额定结温VDRM--通态重复峰值电压IRRM--反向重复峰值电流IF(A V)--正向平均电流CT---势垒电容Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。

在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。

锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。

在额定功率下,允许通过二极管的最大正向脉冲电流。

发光二极管极限电流。

IH---恒定电流、维持电流。

Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。

在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(A V)---反向平均电流IR(In)---反向直流电流(反向漏电流)。

可控硅符号与性能介绍

可控硅符号与性能介绍

一、可控硅符号与性能介绍可控硅符号:可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极,阳极A,阴极K和控制极G。

可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。

在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。

可控硅分为单向的和双向的,符号也不同。

单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极。

单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。

一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。

要想关断,只有把阳极电压降低到某一临界值或者反向。

双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。

加在控制极G上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。

与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。

而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分。

电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等。

这是TLC336的样子:二、向强电冲击的先锋—可控硅可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。

实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。

可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。

它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V
dV/dt
Critical Rate of Rise of Off-state Voltage
断态临界电压上升率
dv/dt 指的是在关断状态下电压的上升斜率,这是防止误触发的一个关键参数。此值超限将可能导致可控硅出现误导通的现象。由于可控硅的制造工艺决定了A2与G之间会存在寄生电容,如图2所示。我们知道dv/dt的变化在电容的两端会出现等效电流,这个电流就会成为Ig,也就是出现了触发电流,导致误触发
V/uS
dICOM/dt
切换时负载电流下降率
dICOM/dt 高,则dVCOM/dt承受能力下降。结面温度Tj越高,dVCOM/dt承受能力越下降。假如双向可控硅的dVCOM/dt的允许值有可能被超过,为避免发生假触发,可在T1 和T2 间装置RC缓冲电路,以此限制电压上升率。通常选用47~100Ω的能承受浪涌电流的碳膜电阻,0.01μF~0.47μF的电容,晶闸管关断过程中主电流过零反向后迅速由反向峰值恢复至零电流,此过程可在元件两端产生达正常工作峰值电压5-6倍的尖峰电压。一般建议在尽可能靠近元件本身的地方接上阻容吸收回路。
A/ms
dVCOM/dt
Critical rate of change of commutating voltage
临界转换电压上升率
切换电压上升率dVCOM/dt。驱动高电抗性的负载时,负载电压和电流的波形间通常发生实质性的相位移动。当负载电流过零时双向可控硅发生切换,由于相位差电压并不为零。这时双向可控硅须立即阻断该电压。产生的切换电压上升率(dVCOM/dt)若超过允许值,会迫使双向可控硅回复导通状态,因为载流子没有充分的时间自结上撤出。
A/mS
tgt
Gate Controlled Delay Time
门极控制延迟时间
-
us
Tq
Circuit Commutated Turn-off Time
周期转换关断时间
恢复晶闸管电压阻断能力所需的最小电路换流反压时间。
us
Rd
Dynamic Resistance ( Tj=125℃)
动态阻抗
-

A
IGM
ForwardPeakGate Current
门极峰值电流
-
A
I2T
Circuit Fusing Consideration
周期电流平方时间积
-
A2ses
dIT/dt
Repetitive rate of rise of on-statecurrent after triggering (IGT1~IGT3)
为了使可控硅可靠触发,触发电流Igt选择25度时max值的α倍,α为门极触发电流—结温特性系数,查数据手册可得,取特性曲线中最低工作温度时的系数。若对器件工作环境温度无特殊需要,通常选型时α取大于1.5倍即可。
mA
IH
Holding Current
维持电流
维持可控硅维持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。
V/uS
(dI/dt)c
Critical rate of decrease of commutatingon-state current
通态电流临界上升率
指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。如果电流上升太快,则晶闸管刚一开通,便会有很大的电流集中在门极附近的小区域内,从而造成局部过热而使晶闸管损坏。
门极正向峰值电压
-
V
VRGM
Peak Reverse Gate Voltage
门极反向峰值电压
-
V
IFGM
Peak Forward Gate Current
门极正向峰值电流
-
A
VTM
Peak Forward On-State Voltage
通态峰值电压
它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅
A/μs
VDRM
Repetitive peak off-state voltage
断态重复峰值电压
断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压UDRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo,所留裕量大小由生产厂家自行规定。
A
VTM
Peak on-state voltage drop
通态峰值电压
指器件通过规定正向峰值电流IFM(整流管)或通态峰值电流ITM(晶闸管)时的峰值电压也称峰值压降该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力。
V
IDRM
Maximum forward or reverse leakage current
门极触发电压
—可以选择Vgt 25度时max值的β倍。β为门极触发电压—结温特性系数,查数据手册可得,取特性曲线中最低工作温度时的系数。若对器件工作环境温度无特殊需要,通常选择时β取1~1.2倍即可。
V
VGD
Non-triggering gate voltage
门极不触发电压
-
V
VFGM
Peak Forward Gate Voltage
Rth(j-mb)
Thermal Resistance Junction to mounting base
热阻-结到外壳
-
℃/W
Rth(j-a)
Thermal Resistance Junction-to-ambient
热阻-结到环境
-
℃/W
IGT
Triggering gate current
门极触发电流
mA
IL
Latching Current (IGT3)
接入电流(第三象限)/擎住电流
擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。对同一晶闸管来说,通常IL约为IH的2--4倍。
mA
ID
Off-state leakage current
断态漏电流
voltage
引脚到外壳最大绝缘电压
-
V
PG(AV)
Average gate power dissipation
门极平均散耗功率
-
W
PGM
Peak gate power
门极最大峰值功率
-
W
PG(AV)
Average Gate Power
门极平均功率
-
W
Tj
OperatingJunctionTemperatureRange
可控硅参数符号意义
2010年01月29日 星期五 15:42
符号
英文单词参数
中文参数
说明
单位
IT(AV)
AVERAGE ON-STATE CURRENT
通态平均电流
国标规定通态平均电流为晶闸管在环境温度为40oC和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。这也是标称其额定电流的参数。同电力二极管一样,这个参数是按照正向电流造成的器件本身的通态损耗的发热效应来定义的。因此在使用时同样应按照实际波形的电流与通态平均电流所造成的发热效应相等,即有效值相等的原则来选取晶闸管的此项电流定额,并应留一定的裕量。一般选取其通态平均电流为按此原则所得计算结果的1.5-2倍。
通态临界电流上升率
当双向可控硅或闸流管在门极电流触发下导通,门极临近处立即导通,然后迅速扩展至整个有效面积。这迟后的时间有一个极限,即负载电流上升率的许可值。过高的 dIT/dt可能导致局部烧毁,并使T1-T2 短路。假如过程中限制dIT/dt到一较低的值,双向可控硅可能可以幸存。因此,假如双向可控硅的VDRM在严重的、异常的电源瞬间过程中有可能被超出或导通时的dIT/dt有可能被超出,可在负载上串联一个几μH的不饱和(空心)电感。
断态重复峰值漏电流
为晶闸管在阻断状态下承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时流过元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出。
mA
IRRM
Maximum reverse leakage current
反向重复峰值漏电流
mA
IDSM
断态不重复平均电流
门极断路时,在额定结温下对应于断态不重复峰值电压下的平均漏电流。
V
VRRM
反向重复峰值电压
在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。
VPP
Non repetitive line peak pulse voltage
最高不重复线路峰值电压
-
v
Visol
R.M.S. isolation voltage from all three terminals to external heatsink
工作结温
为了长期可靠工作,应保证
Rth j-a足够低,维持Tj不高于80%Tjmax ,其值相应于可能的最高环境温度。

Tstg
StorageTemperatureRange
贮存温度
-

TL
Max.Lead Temperature for Soldering Purposes
引脚承受焊锡极限温度
-

A
VTO
On state threshold voltage

槛电压
-
V
IT(RMS)
On-State RMS Current (full sine wave)
通态电流均方值
相关文档
最新文档