函数的和、差、积、商的导数

合集下载

函数的和、差、积、商的求导法则

函数的和、差、积、商的求导法则


(tan x ) sec 2 x .
同理可得 (cot x ) csc 2 x .
例5 求 y sec x 的导数 .

1 y (sec x ) ( ) cos x (cos x ) sin x sec x tan x . 2 2 cos x cos x
机动 目录

1
( x 3 4 cos x sin 1) x ( 3 x 2 4 sin x )
上页
下页
返回
结束
例4 求 y tan x 的导数 . 解
sin x y (tan x ) ( ) cos x
(sin x ) cos x sin x(cos x ) cos 2 x 1 cos 2 x sin2 x sec2 x cos 2 x cos 2 x
( 3) [
i 1
n
f1 ( x ) f 2 ( x ) f n ( x ) f i ( x )] f1 ( x ) f 2 ( x ) f n( x )
f i( x ) f k ( x );
i 1 k 1 k i
n
n
二、高阶导数的概念
问题: 变速直线运动的加速度.
y 2 cos x cos x ln x 2 sin x ( sin x ) ln x 1 2 sin x cos x x 1 2 cos 2 x ln x sin 2 x . x
1 例3. y (1 x ) (3 ) , x3
2
解:
x x0
x x0
二阶导函数记作
d 2 y d 2 f ( x) f ( x ), y , 2 或 . 2 dx dx

函数的求导法则.

函数的求导法则.

例3 f ( x ) x 4cos x sin 2 , 求f ( 2 ).
3 '


f ( x ) ( x 4cos x sin ) ( x ) (4cos x ) (sin )' 2 2 3 x 2 4sin x
' 3 '

3 '
'

2 3 所以f ' ( ) 3 ( )2 4sin 4 2 2 2 4
f1 ( x ) f 2 ( x )
f i( x ) f k ( x );
例1 解
求 y 2x 5x 3x 7 的导数.
3 2
y' (2 x 3 5 x 2 3 x 7)' (2 x 3 )' (5 x 2 )' (3 x)' 7'
2( x 3 )' 5( x 2 )' (3 x)' 2 3 x 2 5 2 x 3 6 x 2 10 x 3
推论
(1) [ f i ( x )] f i( x );
i 1 i 1 n n
(2) [Cf ( x )] Cf ( x );
(3) [ f i ( x )] f1 ( x ) f 2 ( x )
i 1 n
fn ( x) f n( x )

n n i 1 k 1 k i
'
(1 tan x)' (1 tan x) (1 tan x)(1 tan x)' | (1 tan x)2
sec2 (1 tan x) (1 tan x)( sec 2 x) (1 tan x)2

函数的求导法则

函数的求导法则
首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v

和、差、积、商的求导法则

和、差、积、商的求导法则

且 (ay) ayln a 0 , 在 Ix (0,) 内,有
(loga x) (a1y)
1 a y ln a
1. x ln a
特别地 (lnx) 1 .
x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
三、复合函数的求导法则
定理 如果函 u数 (x)在点 x0可导 , 而yf(u)
同理可得 (cx o) tcs2x c.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例4 求ysexc的导. 数
解 y(sex)c( 1 )
coxs

(cosx) cos2 x

sin x cos 2 x
se x tc a x .n
同理可得 (c x )s c cx scc x o . t
2sinxcoxs1 x
2co2xsln x1si2n x. x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例3 求ytaxn的导. 数 解 y(tax)n (six n)
coxs (sx i)n cc o x o 2 ssxsixn (cx o ) s co2scxo2ssxin2 x co12sxse2cx 即(tx a ) n se 2x.c
n3xn1co xns fn1[ n(sx in)n] n1(sx in)n f[ n(sx in)n] (sx in)n.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
五、双曲函数与反双曲函数的导数
(six n ) hcoxsh(cox)sh sin xh tanxhsinxh

函数的和、差、积、商的导数

函数的和、差、积、商的导数
函 数 的 和、差、积、商
的 导 数
常见函数的导数
1、常函数:
C 0
特别: 特别:
2、一次函数: (kx b) k
n 1 3、幂函数: ( x ) nx n
x 1
( x 2 ) 2 x
1 1 ( ) 2 x x
4、指数函数:(a
x
) a ln a(a 0且a 1)
1 ( A) x x 1 ( B) x (C ) 2 x
3
1 ( D) 2x3
(3)点P在曲线y=x3-x+2/3上移动时,过点P的曲线的 切线的倾斜角的取值范围是( D )
3 3 3 3 ( A)[0, ] ( B )[ , ) (C )[0, ) ( , ] ( D)[0, ] [ , ) 4 4 2 2 4 2 4
例:某运动物体自始点起经过t秒后的距离s满足
(1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点.
3 2 (2) s (t ) t 12t 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8,
2
练习1:已知曲线C:y=3x4-2x3-9x2+4;(1)求曲线C上横坐 标为1的点的切线方程;(2)第(1)小题中切线与曲线C是 否还有其它公共点?如果有,求出这些点的坐标. 解:(1)把x=1代入曲线C的方程得切点(1,-4). y 12x 3 6 x 2 18x ,所以切线的斜率k=12-6-18= -12.故切线方程为y+4=-12(x-1),即y=-12x+8. y 3x4 2x3 9x2 4 ( 2)由 3 x 4 2 x 3 9 x 2 12x 4 0, y 12x 8

高中数学同步教学课件 函数的和差积商求导法则

高中数学同步教学课件 函数的和差积商求导法则

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∵f(x)=14x2+sinπ2+x=14x2+cos x, ∴f′(x)=12x-sin x. 易知 f′(x)=12x-sin x 是奇函数,其图象关于原点对称,故排除 B,D. 由 f′π6=1π2-12<0,排除 C,故选 A.
A项中,(ax2+bx+c)′=a(x2)′+b(x)′,故正确;
B项中,(sin x-2x2)′=(sin x)′-2(x2)′,故错误;
C
项中,sixn2
x′=sin
x′x2-sin x22
xx2′ ,故错误;
D项中,(cos xsin x)′=(cos x)′sin x+cos x·(sin x)′,故正确.

随堂演练
1.已知 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值为
19
16
A. 3
B. 3
13 C. 3
√D.130
∵f′(x)=3ax2+6x, ∴f′(-1)=3a-6=4, ∴a=130.
1234
2.设函数y=-2exsin x,则y′等于
A.-2excos x
B.-2exsin x
推广式:(f1(x)±f2(x)±…±fn(x))′ =f′1 (x)±f′2 (x)±…±f′n (x). 注意点:


(logax)′

1 xln
a


们可






导:
(logax)′

ln ln
ax ′

1 ln a·(ln
x)′=xln1

和、差、积、商的求导法则

和、差、积、商的求导法则

注 1.基本初等函数的导数公式和上述求导法则
是初等函数求导运算的基础,必须熟练掌握
2.复合函数求导的链式法则是一元函数微分 学的理论基础和精神支柱,要深刻理解 ,熟 练应用——注意不要漏层
3.对于分段函数求导问题:在定义域的各个部 分区间内部,仍按初等函数的求导法则处理, 在分界点处须用导数的定义仔细分析,即分别 求出在各分界点处的左、右导数,然后确定导 数是否存在。
即 反函数的导数等于直接函数导数的倒数.
例6 求函数 y arcsin x 的导数.


x

sin
y在
I
y

(
2
,
)内单调、可导 2
,
且 (sin y) cos y 0, 在 I x (1,1)内有
(arcsin x) 1 1 (sin y) cos y
2
2
a
1 a2 x2 1 x2
a2
2
2 a2 x2 2 a2 x2
a2 x2.
例11 求函数 y ln x 2 1 ( x 2)的导数. 3 x2
解 y 1 ln( x 2 1) 1 ln( x 2),
2
3

y

1 2
1 x2 12x
先看一个例子
例8 y (1 x2 )2,求y
y (1 x2 )2 1 2x2 x4 y 4x 4x3 4x(1 x2 ) 这里我们是先展开,再求导,若像 y (1 x2 )1000 求导数,展开就不是办法,再像 y 5 1 x2 求导数,根本无法展开,又该怎么办?
一、和、差、积、商的求导法则

第二节函数的求导法则-精品

第二节函数的求导法则-精品
(e x ) e x (ln x ) 1
x
(arcsin x ) 1 1 x2
(arctan
x )

1 1 x2
(arccosx) 1 1 x2
(
arccot
x)


1
1 x
2
2.函数的和、差、积、商的求导法则
设 u u( x), v v( x)都可导,则
则复合 yf函 {[(数 x)]的 } 导数为
dydydu dv. dx du dv dx
例8 求函y数 lnsix n的导 . 数
解 yln u,usix n .
dy dy du
1 cos
x

cos
x
dx du dx u
sin x
coxt
例9
2x
y

s
in 1
lim [
]
x 0
v( x x )v( x )x
[u ( x x ) u ( x )]v ( x ) u ( x )[ v ( x x ) v ( x )]
lim
x 0
v( x x )v( x )x
u(x x) u(x) v(x) u(x) v(x x) v(x)
lim[u(x x) u(x) v(x x) u(x) v(x x) v(x)]
x0
x
x
lim u(x x) u(x) lim v(x x)
x0
x
x0
v(x x) v(x)
u(x) lim
]
x0
x
u(x)v(x) u(x)v(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 2x 3x2 1 x sin x cos x cos x (6) y ; ( 7 ) y . 2 (1 x )2 (1 x )4 (sinx cos x )
例2:(1)命题甲:f(x),g(x)在x=x0处均可导;命题乙:F(x)= f(x)+g(x)在x=x0处可导,则甲是乙成立的( A ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)即不充分也不必要条件 (2)下列函数在点x=0处没有切线的是( D ) (A)y=x3+sinx (B)y=x2-cosx (C)y=xsinx (D)y= x +cosx 1 (3)若f ( x ) x 2 , 则f(x)可能是下式中的( B )
例5:在曲线y=x3-6x2-x+6上,求斜率最小的切线所对应 的切点,并证明曲线关于此点对称. 2 2 解:由于 y 3 x 12x 1 3( x 2) 13,故当x=2时, y 有最小值. 而当x=2时,y=-12,故斜率最小的切线所对应的切点 为A(2,-12). 记曲线为S,设P(x,y)∈S,则有y=x3-6x2-x+6. 又点P关于点A的对称点为Q(4-x,-24-y),下证Q∈S. 将4-x代入解析式:(4-x)3-6(4-x)2-(4-x)+6=64-48x +12x2-x3-96+48x-6x2-4+x+6=-x3+6x2+x-30 =-(x3-6x2-x+6)-24=-24-y. 即Q(4-x,-24-y)的坐标是S的方程的解,于是Q∈S. 这就证明了曲线S关于点A中心对称.
例3:某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
x x x
即: y (u v ) u v.
2.积的导数: 法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数 的导数 ,即( uv ) u v u v . 证: y f ( x ) u( x )v( x ),
2
事实上,在曲线y=x3+ax2+bx+c是只有横坐标为a/3的唯一一点M,过该点的切线与曲线除切点外不再有 其它公共点.而点M实际上就是这条三次曲线的对称中 心. 练习2:设三次曲线y=x3-3x2/2-3x过原点的切线l1,平行 于l1的另一条切线为l2. (1)求l1、l2的方程; (2)当l1、l2的斜率为m时,求斜率为-m的两切线 l3、l4的方程. (3)求l1、l2 、l3、l4所围成的平行四边形的面积. 答案:(1).l1:y=-3x;l2:y=-3x-1/2. (2).l3:y=3x+7/2;l4:y=3x-10. (3).9/8.
练习1:已知曲线C:y=3x4-2x3-9x2+4;(1)求曲线C上横坐 标为1的点的切线方程;(2)第(1)小题中切线与曲线C是 否还有其它公共点?如果有,求出这些点的坐标. 解:(1)把x=1代入曲线C的方程得切点(1,-4). y 12x 3 6 x 2 18x ,所以切线的斜率k=12-6-18= -12.故切线方程为y+4=-12(x-1),即y=-12x+8. y 3x4 2x3 9x2 4 ( 2)由 3 x 4 2 x 3 9 x 2 12x 4 0, y 12x 8
y [u( x x) v( x x)] [u( x) v( x)] [u( x x) u( x)] [v( x x) v( x)] u v; y u v ,
y u v u v lim lim( ) lim lim u( x ) v( x ); x 0 x x 0 x x x 0 x x 0 x
1 1 x2 1 4 ; ; ( 3) y 答案: (1) y 2 3 ; (2) y 2 2 2 (1 x ) cos x x x 6x3 x ( 4) y ; (5) y 2 x cos x x 2 sin x cos x 2 sin x ; 3 1 x2 x2 3 x3 x2
y u( x x )v( x x ) u( x )v( x ) u( x x )v( x x ) u( x )v( x x ) u( x )v( x x ) u( x )v( x ), y u( x x ) u( x ) v ( x x ) v ( x ) v ( x x ) u( x ) . x x x
即: y (uv ) uv uv. 推论:常数与函数的积的导数,等于常数乘函数的导数, 即: (Cu) Cu. 3.商的导数: 法则3:两个函数的商的导数,等于分子的导数与分母 的积,减去分母的导数与分子的积,再除以分母 的平方,即: ( u ) uv uv (v 0).
例6:用求导的方法求和: (1) Pn ( x ) 1 2 x 3 x 2 nx n1 ( x 1);
x(1 x ) 解: (1) x x x x ( x 1), 1 x n 1
2 3 n
2 3 n
( 2) S n 1 2 2 3 x ( n 1)nx n 2 ( x 1). n n1 ( x ) nx , 可联想到它是另一个和式 对(1)由求导公式 x+x2+x3+…+xn的导数. n
x x Pn ( x ) ( x x x x ) ( ) 1 x ( x x n1 )(1 x ) ( x x n1 )(1 x ) 1 ( n 1) x n nx n1 . 2 2 (1 x ) (1 x )
( 2) Sn [ Pn ( x )]
n(1 n) x n1 2( n2 1) x n n( n 1) x n1 2 . 3 (1 x )
例7:已知抛物线C1:y=x2+2x和C2:y=-x2+a,如果直线l 同时是C1和C2的切线,称l是C1和C2的公切线,公切线 上两个切点之间的线段,称为公切线段. (Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出 此公切线的方程; (Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线 段互相平分.(2003天津高考(文)题) (Ⅰ)解:函数y=x2+2x的导数y′=2x+2,曲线C1在点P (x1,x12+2x1)的切线方程是y-(x12+2x1)=(2x1+2) (x-x1),即 y=(2x1+2)x-x12①; 函数y=-x2+a的导数y′=-2x,曲线C2 在点Q(x2, -x22+a)的切线方程是y-(-x22+a)=-2x2(x-x2).即 y=-2x2x+x22+a . ② 如果直线l是过P和Q的公切线,则①式和②式都 是l的方程.
y ( 3)求极限,得导函数 y f ( x ) lim . x 0 x
y f ( x x ) f ( x ) ; x x
公式3: (sin x ) cos x . 公式4:
. (cos x ) sin x
二、新课:
由上节课的内容可知函数y=x2的导数为y’=2x,那 么,对于一般的二次函数y=ax2+bx+c,它的导数又是什 么呢?这就需要用到函数的四则运算的求导法则. 1.和(差)的导数: 法则1:两个函数的和(差)的导数,等于这两个函数的导 数的和(差),即: ( u v ) u v . 证: y f ( x ) u( x ) v( x ),
1 4 t 4
例4:已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程. 解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2). 对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
( A) 1 x ( B) x 1 x (C ) 2 x 3 ( D) 1 2x3
(4)点P在曲线y=x3-x+2/3上移动时,过点P的曲线的 切线的倾斜角的取值范围是( D )
3 3 3 3 ( A)[0, ] ( B )[ , ) (C )[0, ) ( , ] ( D)[0, ] [ , ) 4 4 2 2 4 2 4
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4. 所以所求l的方程为:y=0或y=4x-4. 注:此题为p.238第12题.
2 即( x 1) ( x 2)(3 x 2) 0, x 1,2, . 3 4 3 2 代 入y 3 x 2 x 9 x 4求 得y 4, 32 , 0, 即公共点为 : (1,4)切 点, ( 2,32), ( 2 ,0). 3 故除切点以外,还有两个交点(-2,32),(2/3,0).
相关文档
最新文档