二阶与三阶行列式

合集下载

二阶与三阶行列式

二阶与三阶行列式
二阶与三阶行列式
一、二元线性方程组与二阶行列式 二、三阶行列式
一、二元线性方程组与二阶行列式
a11x1+a12x2=b1 用消元法解二元线性方程组 a21x1+a22x2=b2

b1a22 - a12b2 a11b2 - b1a21 x2 = x1 = a11a22 - a12a21 a11a22 - a12a21
2 2
下页
a11 a1 =a11a22 -a12a21 a2 2 1 a2 2 例1 求解二元线性方程组 3x1 - 2x2 =12 2x + x =1 1 2 解 由于
D = 3 - 2 = 3- (-4) = 7 0 2 1 D1 = 12 - 2 =12 - (-2) =14 1 1 D2 = 3 12 = 3- 24 = -21 2 1 因此 D1 14 D2 - 21 x1 = = = 2 x2 = = = -3 D 7 D 7
a11 a12 a13 为了便于记忆和计算 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31
下页
二、三阶行列式
a11 a12 a13 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33 a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31 并称它为三阶行列式
1 例2 计算三阶行列式 D= -2 -3 解 按对角线法则 有
2 2 4
D =12(-2)+21(-3)+(-4)(-2)4 -114 -2(-2)(-2) -(-4)2(-3)

二阶三阶行列式计算方法

二阶三阶行列式计算方法

二阶三阶行列式计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用于描述矩阵的性质和变换。

在实际应用中,行列式经常用于求解线性方程组、计算矩阵的逆、判断矩阵是否可逆等问题。

本文将介绍二阶三阶行列式的计算方法。

二阶行列式二阶行列式是一个2×2的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$是矩阵中的元素。

例如,对于矩阵$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,它的二阶行列式为:$$\begin{vmatrix}1 &2 \\3 & 4\end{vmatrix} = 1\times4 - 2\times3 = -2$$三阶行列式三阶行列式是一个3×3的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$是矩阵中的元素。

矩阵论基础1.1二阶和三阶行列式

矩阵论基础1.1二阶和三阶行列式

矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。

即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。

定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。

⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。

可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。

若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。

例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。

例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。

§1二阶与三阶行列式

§1二阶与三阶行列式

性质
总结词
二阶行列式具有交换律、结合律、代数余子式等性质。
详细描述
二阶行列式满足交换律,即|A|=|AT|,其中AT是矩阵A的转置矩阵。结合律表现为|AB|=|A|*|B|,其中A、B为可 乘矩阵。代数余子式是去掉一个二阶行列式中的一个元素后得到的二阶行列式,其值等于原行列式除以被去掉元 素所在的行和列的乘积。
等于零、代数余子式的乘积等于零等。
应用
03
代数余子式在计算高阶行列式的值、求解线性方程组等领域有
广泛的应用。
转置行列式
定义
转置行列式是将n阶行列式的行和列互换后得到的新 行列式。
性质
转置行列式的值等于原行列式的值,即|A|=|AT|。
应用
转置行列式在求解线性方程组、判断矩阵是否可逆等 领域有广泛的应用。
性质
线性性质
三阶行列式满足线性性质,即|ka b c| = k|a b c|,其中k是标量。
交换律
|a b c| = |c b a|。
结合律
(|a b c| + |d e f|) = |a b c| + |d e f||a d|。
分配律
|a+b c d| = |a b c| + |b c d||a b c|。
矩阵的转置
行列式可以用于计算矩阵的转置,通过计算转置矩阵的行列式,可以得到原矩阵 的行列式。
05
CATALOGUE
二阶与三阶行列式的扩展
高阶行列式
定义
高阶行列式是n阶方阵的展开式,其一般形式为D=∑(-1)^t * M(t1,t2,...,tn) * A(t1,t2,...,tn),其中t为对角线上的元素下标的排列顺序,M为排列数,A为n阶行列式中 元素的下标构成的排列。

二阶与三阶行列式

二阶与三阶行列式

(2)对角线法则 a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
2
3 (4) 7 0,
21
12 D1 1
2 14,
1
3 D2 2
12 1
21,
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
二、三阶行列式
定义 设有9个数排成3行3列的数表
a11 a12 a13
a21 a22 a23
(5)

a31 a32 a33
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标 三阶行列式的计算
a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22
a31 a32 a33 a31 a32 D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31.
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶

二阶和三阶行列式

二阶和三阶行列式

a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41

a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D

二阶与三阶行列式分析

二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。

例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。

二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。

根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。

三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。

例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。

三阶行列式的计算方法可以通过展开定理来计算。

展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。

根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。

行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。

以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。

2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。

3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。

4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。

总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。

三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。

行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。

行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。

二阶、三阶行列式


1 − 2 =
例5用三阶行列式解线性方程组ቐ2 − 3 = 的值。
1 + 3 =

由于
1
= 0
1
−1 0
1 −1 =1+1=2≠ 0
0
1
1
2 = 0
1
0
−1 =b−a+c
1

1 =

−1
1
0
1 −1
3 = 0 1
1 0
0
−1 =a+b+c
1

=c−b−a
定行列式等于零。
线 性 代 数
31 32 33
−1322131 −122133 −112332
11 12 13
= 21 22 23 称为三阶行列式,它由三行、三列共9个元素组成,
31 32 33
是6项的代数和,每一项都是三个元素的乘积并适当附上正号或负号,而且
这三个元素必须来自不同的行和不同的列。如图1-2所示,可用对角线法则
2
(1)当λ 为何值时,D=0;

λ
1
,问:
(2)当λ 为何值时,D≠0。
λ2 λ
因为 =
= λ2 − λ = λ(λ − 2),所以
2 1
(1)当λ=0或λ=2时,D=0;
(2)当λ≠0且λ≠2时,D≠0。
3 − 42 = 2
例3用二阶行列式解线性方程组ቊ 1
1 + 22 = 4

=
表示a11a22-a12a21,称为
21 22
二阶行列式,即
a11
a12
D
a11a22 - a12 a21

二阶三阶行列式

二阶三阶行列式1.引言1.1 概述二阶行列式和三阶行列式是线性代数中常见的概念。

行列式是一个整数或实数的方阵,它具有很多重要的性质和应用。

二阶行列式是一个2×2的方阵,而三阶行列式是一个3×3的方阵。

在本文中,我们将介绍二阶行列式和三阶行列式的定义以及计算方法,并总结它们的特点和重要性。

在二阶行列式部分,我们将详细介绍二阶行列式的定义和计算方法。

二阶行列式的定义是由其中的四个元素按一定的规则相乘再相减得到的一个数值。

计算二阶行列式可以使用简单的公式,即将对角线上的两个元素相乘再相减。

我们将提供详细的计算示例,并讨论二阶行列式在几何学和线性方程组中的应用。

在三阶行列式部分,我们将进一步介绍三阶行列式的定义和计算方法。

三阶行列式的计算比较复杂,需要按一定的规则进行乘法和加减运算。

我们将解释这些规则,并提供实际的计算例子。

此外,我们还将探讨三阶行列式在向量空间和线性方程组中的应用,以及它们与二阶行列式之间的关系。

通过本文的学习,读者将能够理解二阶行列式和三阶行列式的概念和计算方法。

同时,他们还将认识到行列式在数学和实际应用中的重要性。

了解行列式可以帮助我们解决各种问题,包括求解线性方程组、计算向量的正交性和计算面积和体积等。

行列式是线性代数中的基础知识,对于进一步学习和应用线性代数的内容具有重要的意义。

1.2文章结构1.2 文章结构本文将首先介绍二阶行列式的概念和定义,详细阐述其计算方法。

然后,我们将进一步探讨三阶行列式的定义和计算方法。

在分析和比较二阶行列式与三阶行列式的异同之后,我们将总结这两者的特点和应用。

本文的主要目的是通过对二阶和三阶行列式的研究,帮助读者更好地理解和应用行列式的相关概念和计算方法。

具体来说,本文的内容安排如下:2. 正文2.1 二阶行列式2.1.1 定义在这一部分中,我们将引入二阶行列式的概念,并详细解释其定义。

通过具体的例子,我们将展示如何构建并计算二阶行列式。

1-1 二阶与三阶行列式

aij ( i 1ቤተ መጻሕፍቲ ባይዱ2 ; j 1,2) 称为元素. 其中:
ai j
行标
即元素 aij 位于第 i 行第 j 列.
列标
二阶行列式的计算 —— 对角线法则
主对角线 副对角线
a11 a12 a11a22 a12a21 a21 a22
例1 计算行列式 D
5 10
29 8
.
解 D 5 8 29 ( 10) 330 例2 当 a 为何值时,行列式 解 因为
三阶行列式的计算 —— 对角线法则
a11 D a21 a31
a12 a22 a32
a13 a23 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
a2 3 a 1 a
2
a 1
3
的值不为 0?
a 3a a(a 3),
2
要使行列式的值不为 0,必有 a 0 且 a 3.
二、三阶行列式
定义2 设有 9 个数排成 3 行 3 列的数表 a11 a12 a13 a21 a22 a23 , a31 a32 a33 记 a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31 a12a21a33 a11a23a32 , 称为该数表所确定的三阶行列式.
注意 对角线法则仅适用于二阶与三阶行列式的计算,但 对于三阶以上的行列式则不适用.
1
2 4
例3 计算行列式 D 2 2 1 . 3 4 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 3 4 1 . 3 4 1 2 4 1 2 3
解 把所有列都加到第一列上去,然后,从第一列提 取公因子,再把第二、三、四行都减去第一行.
1 2 3 4
2 3 4 1
3 4 1 2
4 10 1 10 2 10 3 10
2 3 4 1
3 4 1 2
4 1 2 3
1 1 10 1 1
2 3 4 1
3 4 1 2
3
4 1 2 3 4 1 0 1 1 3 10 2 0 2 2 2 3 0 1 1 1
4
1 2
2r2 r3 0 1 1 3 10 120. r1 r4 0 0 3 1 0 0 0 4
例5.5 设
a11 D am1 c11 cn1 a11
D1 am1
0 x2
x2 x1
x3 x1 x3 x3 x1 x3
n2
x3 x1
xn
xn x1
1 x2 x1 x3 x1 xn x1 x2 x2
n2
1 x3 x3
n2

1 xn
n2
( x2 x1 )( x3 x1 )
a11 ai1 D a j1 an1 a j2 an 2 a jn ann a12 ai 2 a1n ain a j1 kai1 a j 2 kai 2 an1 an 2 a jn kain ann a11 ai1 a12 ai 2 a1n ain .
例5.3 计算
a b c d a ab abc abcd D . a 2a b 3a 2b c 4a 3b 2c d a 3a b 6a 3b c 10a 6b 3c d
p11 D pm1 c11 cn1
0 pmm c1m cnm
0 0 q11 qn1
0 0 0 qnn
,
故D=p11p22· · · pmmq11q22 · · · qnn=D1D2.
例5.5可简记为
D
D1 *
O D2
D1 D2 .
其中D1是m2个元素aij排成m行m列; D2是n2个元素bij排 成n行n列;*是任意n×m个元素cij排成n行m列;O是 m×n个数0排成m行n列.利用性质3.1与例5.5的结果可 得 D1 *
§3.3 行列式的性质
1 行列式与其转置行列式的值相等. 即D=DT. 2 交换行列式的两行(或两列)元素,行列式的 值仅改变符号. 3 行列式中某一行(列)的所有元素的公因子 可以提到行列式的外面.
4
行列式具有分行(列)可加性.即
D=
a11 a21 an1
b1 j c1 j b2 j c2 j bnj cnj
证明 对D1作运算krj+ri,可把D1化为下三角行列式,即设
m), 将D中第m列前m-1
p11 p22
pmm .
对D2作运算kci+cj,也可把D2化为下三角行列式,设为
q11 D2 qn1
0 q11q22 qnn qnn .
于是,对D的前m行作运算krj+ri,对D的后n列作运算 kci+cj,把D化成下三角行列式
(x
j
xi ), (1)
n 1 1
xn
n 1
其中记号“Π”表示全体同类因子的乘积. 证 用数学归纳法.因为
D2
1
1
x1 x2
x2 x1 ( x j xi ),
1 i j 2
所以当n=2时(1)成立.
现在假设(1)对于n-1阶Vandermonde行列式,即

n i j 1
x x .
i j
( xn x1 )
ni j 2

xn
( xi x j )
例5.7
计算
1 2 D 2 2 3 2
1 3 32 3 3
1 4 42 3 4
c ab 2a b 3a b
c ab a a
c ab a 0
d abc 3a 2b c 6a 3b c
同理,可得 a b
0 0 0
a 0 0 0
a 0 0
b a 0 0
d abc 2a b 3a b
d abc a4. 2a b a
例5.4 计算 1 2 3 4
a1n a2 n ann
a11 a 21 = a n1

b1 j b2 j bnj

a1n a11 a 2 n a21 a nn an1
c1 j c2 j cnj
a1n a2 n ann
.
5 行列式的某行(列)的各元素乘以同一数k加到另一 行(列)对应的元素上去,不改变行列式的值.即
试证D=D1D2.
a1m amm c1m cnm a1m
amm
0 0 b11 bn1
b11 , D2 bn1
0 0 b1n bnn
b1n . bnn
,
个元素全化为0,如此继续下去就可以将其化为下三角行列 式
aim amm≠0,作运算 rm ri (i 1, amm
p11 D1 pm1 pmm 0
解 从倒数的二行开始,把前一行的(-1)倍加到后 一行上去.
a b c d a ab abc abcd D a 2a b 3a 2b c 4a 3b 2c d a 3a b 6a 3b c 10a 6b 3c d
a 0 0 0
b a a a
D
O
D2
D1 D2 .
注意:
D
O D2

D1 *

* D2
D1 O
(1) mn | D1 || D2 | .
以上的几个式子可作为公式用.
例5.6 证明范蒙得(Vandermonde)行列式
1 x1 Dn x x
2 1
1 x2 x2 x2
2
1 xn xn
2
1 i j n n 1
1 Dn 1 x2 x2 n 2
1 0 Dn 0 1 x2 x1 x2 x2 x1
n2
1 x3 x3n 2
1
1 xn xn n 2
1 xn x1 xn xn x1
n2

2 i j n

( xi x j ).
我们来证明对n阶Vandermonde行列式也成立.
相关文档
最新文档