乘法公式和因式分解练习题

合集下载

人教版八年级上册数学整式乘法和因式分解计算题

人教版八年级上册数学整式乘法和因式分解计算题

人教版八年级上册数学整式乘法和因式分解1.因式分解:(1)2a b ab - (2)228x -2.因式分解(1)a 2(x +y )﹣b 2(x +y ) (2)x 4﹣8x 2+16.3.计算:(1)(x 2y )3•(﹣2xy 3)2;(2)(xny 3n )2+(x 2y 6)n ;(3)(x 2y 3)4+(﹣x )8•(y 6)2;(4)a •a 2•a 3+(﹣2a 3)2﹣(﹣a )6.4.计算: (1)()()232a a -+;(2)()()23210432563a b ab a b a ⋅--÷.5.分解因式: (1)2693x xy x -+;(2)2xy x-;6.因式分解:(1)x3y﹣xy3;(2)(x+2)(x+4)+x2﹣47.分解因式:(1)2(m﹣n)2﹣m(n﹣m);(2)(x2﹣4xy+4y2)+(﹣4x+8y)+4.8.因式分解:(1)4ab b+(2)232x x-+(3)221 4a b b-+-(4)2464a-9.计算:(1)()()2323322a a a a a ⋅⋅+-(2)()()3223a a b ⋅- 10.因式分解: (1)322369x y x y xy -+(2)()()236x x y x y x -+-11.计算:(1)分解因式:34x x - (2)计算:214?4x y x ⎛⎫- ⎪⎝⎭12.把下列各式分解因式: (1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 13.因式分解: (1)32246x x x -+-; (2)222(4)16a a +-. 14.分解因式: (1)x 3y -2x 2y 2+xy 3(2) a 2(x -1)2+4a (1-x ) (3)(x 2+y 2)2-4x 2y 2 15.用乘法公式计算:(1)()()()2232349x x x -+-(2)()()33x y x y +--+ 16.分解因式(1)()()mn m n m n m --- (2)229()16()m n m n +-- 17.分解因式:(1)2a (x ﹣y )+b (y ﹣x ); (2)(x 2 +1)2﹣4x 2. 18.计算:(1)(﹣2m 2n 3)2+(3m 3n 4)•(12-mn 2)3;(2)(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2 19.因式分解: (1)2232x -(2)3223242x y x y xy ++ 20.因式分解: (1)2ax a -+ (2)214x x ++21.先化简,再求值:()()2222x y x x y y ⎡⎤---÷⎣⎦,其中1x =,2y =. 22.化简求值:[(x ﹣2y )2﹣2(x +y )(3x ﹣y )﹣6y 2]÷2x ,其中12,.2x y =-=23.先化简,再求值:2(2)(2)(2)2(2)(4)x y x y x y x x y x ⎡⎤-+-+--÷-⎣⎦,其中12x =-,1y =.24.先化简再求值:()()()22224x y x y x y x y y +-+--++()其中:112x y ==,. 25.先化简,再求值:[(x ﹣y )2+(x +y )(x ﹣y )]÷2x ,其中x =2021,y =﹣2020. 26.先化简,再求值:[(xy +2)(xy ﹣2)﹣2(xy +1)2+6]÷(xy ),其中x =10,y =﹣125. 27.先化简,再求值:2(2)2()()(23)x y y x x y y y x ---+--,其中1,33x y ==-28.(1)已知225a b +=,()29a b +=,求44a b +的值; (2)若x 满足()()9715x x --=-,求()()2297x x -+-的值.29.(1)已知4a 2﹣a ﹣4=0,求代数式(2a ﹣3)(2a +3)+(a ﹣1)2+(1+a )(2﹣a )的值;(2)已知a ,b 满足a 2+b 2﹣10a ﹣4b +29=0,且a ,b 为等腰三角形△ABC 的边长.求△ABC 的周长.30.化简并求值:当12x =-时,求代数式()()()2353535x x x +--+的值.31.先化简,再求值:[(﹣a +b )(﹣a ﹣b )+(2a ﹣b )2﹣a (a +3b )]÷2a ,其中a =3,b =2 32.计算:1| (2)322332()(2)x x x x x +--33.先化简.再求值:2(1)(4)3x x x -+--,其中14x =-.34.先化简,后求值:()()()21232322x y x y x y y ⎛⎫⎡⎤+---÷ ⎪⎣⎦⎝⎭,其中1x =,12y = 35.先化简,再求值:()()()()2233102x y x y x y y x +-+--⎤⎦÷-⎡⎣.其中x =-2022,12y =-.36.先化简,再求值:2(2)(1)(1)a a a +----,其中 a = -1.37.先化简,再求值:2()3()(2)(2)x y x x y x y x y +-+++-,其中1x =,1y =-. 38.先化简,再求值:()()()2232321x x x -+-+ ,其中12x =-. 39.因式分解:24(7)9(7)a x x +-+.40.先化简,再求值:()()()()()22233333x y x y y x x y x y ⎡⎤+----+-÷⎣⎦,其中x ,y 满足()2210x y ++-=. 41.因式分解 (1)am an ap -+ (2)214x - (3)21664x x -+(4)22(32)(23)x m n y n m -+- 42.计算题 (1)()22333a a a ⋅+-(2)2()()()x y y x y x --+-(3)()3246102a a a a -+÷(4)2(1)|2-+ 43.因式分解. (1)()69m m ++; (2)222(1)4a a +-. 44.利用乘法公式计算:(1)2197(2)(x ﹣2y +4)(x +2y ﹣4)45.已知两个实数a ,b 满足10a b +=,24ab =,且a b <;分别求值; (1)22a b +; (2)-a b ; (3)23a b +.46.先化简,再求值:2(2)(3)(2)x x x +-+-其中,13x =-47.计算:234228(2)342x x x x x ⋅--+÷.48.先化简,再求值:[(2x +y )(2x ﹣y )﹣3(2x 2﹣xy )+y 2]÷(﹣12x ),其中x =﹣12,y =23.49.按要求完成下列各小题 (1)因式分解: ①269x x - ①2288a b ab b -+;(2)先化简,再求值:()()()3222242x y x y x x y x +---÷,其中2x =-,12y -=.50.因式分解:228x y y -.51.先化简,再求值:[(x -y )2+x (2y -x )+2y 2]÷y ,其中x =12,y =1. 52.先化简,再求值:()()()()222213x x x x x -+-+++,其中12x =-. 53.分解因式 (1)236x xy -; (2)269ax ax a ++; (3)223m m --.54.先化简,再求值:()()()211(21)221x x x x x +-+---,其中2x =. 55.因式分解:()()224a x y b y x -+-56.分解因式: (1)2255x y -; (2)3269m m m ++57.若220220x x +-=,求2(23)(23)(54)(1)x x x x x +--+--的值.58.先化简,再求值:2(2)6()()(2)x y x x y x y x y --+++-,其中x ,y 满足21(2)0x y -++=.59.因式分解: (1)3244m m m -+ (2)()2242a a b -- 60.因式分解: (1)235x y y - (2)()()x x y y y x -+- 61.计算: (1)218()4xy xy ⋅-(2)2(2)4()x y x x y ---62.先化简,再求值:()()22333244y x xy y x xy ⎡⎤⎡⎤----+-⎣⎦⎣⎦,其中2x =,1y =63.计算:(1)()()()21212a a a a +--+ (2)()()()224x y x y x y ---+ 64.因式分解: (1)4x 2-8x +4; (2)(x +y )2-4y (x +y ) 65.先化简,再求值:(1)2(2)()()2x y x y x y y ⎡⎤-+--÷⎣⎦,其中2x =,4y =; (2)()2426()3()()a a a b a b a -÷--+-,其中2223a b +=. 66.(1)已知3x y +=,1xy =,求22x y +的值.(2)已知2210x x --=,求322544x x x +-+的值. (3)已知22810410x y x y +-++=,求()2021x y +的值.67.计算:(1)()272643x x x x x ⋅+⋅-(2)()()()()2511313a a a a +-+-+(3)()()22141x x x --- (4)()()2323x y x y --+- 68.分解因式: (1)2m mn m -+ (2)3212a a a -- (3)()()22413x x +-- (4)421881y y -+69.先化简,再求值:()()()()2253a b a b a a b a b +-+---,其中a =-3,32b =. 70.已知(a +b )2=17,(a ﹣b )2=13,求: (1)a 2+b 2的值; (2)ab 的值. 71.计算: (1)322x x x x ⋅+⋅(2)()()()222x y x y x y +-+- 72.因式分解: (1)()()22a m b m -+- (2)322a a a -+73.先化简,再求值:(x +3y )2+(x +2y )(x -2y )-2x 2,其中x =-2,y =-1. 74.将下列各式分解因式: (1)2x (m -n )-(n -m ) (2)4m 2﹣n 2(3)3m 2n -12mn +12n (4)2a 3b ﹣18ab 375.先化简,再求值:2(23)(2)(2)(2)x y x y x y y ⎡⎤+-+-÷-⎣⎦,其中13x =,12y =-. 76.已知()27x y +=,()25x y -=. (1)求22x y +值; (2)求xy 的值. 77.先化简,再求值:(1)()()()332x x x x +---,其中4x =.(2)()()()222a b a b a b a +-++-,其中3a =,13b =-.78.计算:(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦(2)()()()2312x x x +--- 79.因式分解: (1)24100x -; (2)22242m mn n -+; (3)()22214a a +-.80.计算:(1)()3322m m m m ⋅+-÷;(2)2(23)(2)(2)x x x +-+-; (3)(23)(23)a b c a b c +--+.81.先化简,再求值:()()()3222484a b a b ab a b ab +-+-÷,其中a =3,b =-1.82.计算:()2482a a a a -⋅-÷. 83.因式分解: (1)29a - (2)22363x xy y ++84.先化简,再求值323()(2)(2)(2)a b ab a b a b a ÷-----+--,其中2a =,1b =-. 85.化简求值:221(2)(2)242xy xy x y xy ⎛⎫⎡⎤+--+÷- ⎪⎣⎦⎝⎭,其中x =10,y =-125. 86.先化简,再求值:()()2462a b a a b -+-,其中a =2,b =-1. 87.先化简,再求值:()()()()231124x x x x x +++--+,其中6x =.88.先化简,再求值:()()()22222a b a b a b b ⎡⎤--+-÷⎣⎦,其中1,1a b =-=.89.先化简,再求值:()()()336x x x x +---,其中=x 90.计算:423a a a a ⋅+⋅91.先化简,再求值:()()()()21233x x x x x +--+-+,其中x =-1. 92.把下列多项式因式分解:(1)()()326x y y --- (2)22344xy x y y --93.已知:2()34x y +=,2()14x y -=,分别求22x y +和xy 的值.94.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为S 1;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S 2.(1)用含a 、b 的代数式分别表示S 1、S 2; (2)若a +b =10,ab =23,求S 1+S 2的值;(3)当S 1+S 2=29时,求出图3中阴影部分的面积S 3.95.如图,边长为a 的正方形中有一个边长为b (b <a )的小正方形,如图2是由图1中的阴影部分拼成的一个长方形.(1)设图1阴影部分的面积为1S ,图2中阴影部分的面积为2S ,请直接用含a ,b 的式子表示1S = ,2S = ,写出上述过程中所揭示的乘法公式 ; (2)直接应用,利用这个公式计算: ①(﹣12x -y )(y -12x ); ①102×98(3)拓展应用,试利用这个公式求下面代数式的结果.(3+1)×(32+1)×(34+1)×(38+1)×(316+1)......×(31024+1)+196.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a ,b 的代数式分别表示12S S 、;(2)若=1640a b ab +=,,求12S S +的值;(3)当1276S S +=时,求出图3中阴影部分的面积3S .97.数学教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,经常用来解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:()22223214(1)4x x x x x +-=++-=+-;例如求代数式2246x x +-的最小值;()2222462232(1)8x x x x x +-=+-=+-.根据阅读材料用配方法解决下列问题:(1)分解因式:265m m -+________;(2)当a ,b 为何值时,多项式2241033a b a b +-++有最小值,并求出这个最小值;(3)已知8a b -=,24200ab c c +-+=,求a b c ++的值.98.将222()2a b a ab b +=++变形,得222()2a b a b ab +=+-,()()22212⎡⎤=+-+⎣⎦ab a b a b ,请根据以上变形解答下列问题: (1)已知225a b +=,2()9a b +=,则ab =________,a -b =_______.(2)若x 满足()()7515x x --=-,求22(7)(5)x x -+-的值.(3)如图,在长方形ABFD 中,DA ①AB ,FB ①AB ,AD =AC ,BE =BC .连接CD ,CE ,若AC ·BC =10,直接写出图中阴影部分的面积.99.(1)先化简,再求值:()()()222222x y x y x y y x ⎡⎤-+--+÷⎣⎦;且x ,y 满足2(2)|3|0x y -+-=.(2)如图,某市有一块长为(2)a b +米,宽为()a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.试用含a ,b 的代数式表示绿化的面积是多少平方米?100.阅读理解,材料1:常用的分解因式的方法有提取公因式法、公式法,但有很多的多项式只用上述方法就无法分解.如x 2﹣4y 2﹣2x +4y ,但我们细心察这个式子就会发现,前两项符合平方差公式,后两项提取公因式,前后两部分分别分解图式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了:x 2﹣4y 2﹣2x +4y=(x +2y )(x ﹣2y )﹣2(x ﹣2y )=(x ﹣2y )(x +2y ﹣2).这种分解因式的方法叫分组分解法.材料2:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3﹣(n 2+1)x +n=x 3﹣n 2x ﹣x +n=x (x 2﹣n 2)﹣(x ﹣n )=x (x +n )(x ﹣n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1)解决问题:(1)分解因式:①a2﹣4a﹣b2+4;①x3﹣5x+2.(2)①ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断①ABC的形状.参考答案:1.(1)(1)ab a -(2)2(2)(2)x x +-2.(1)(a +b )(a ﹣b )(x +y )(2)(x +2)2(x ﹣2)2 3.(1)4x 8y 9(2)2x 2ny 6n(3)2x 8y 12(4)4a 64.(1)226a a +-(2)7422a b -5.(1)()3231x x y -+(2)()()11x y y +-6.(1)xy (x +y )(x ﹣y )(2)2(x +2)(x +1)7.(1)()()32.m n m n --(2)()222.x y -+8.(1)(41)b a +(2)(1)(2)x x -- (3)11()()22a b a b -++-(4)()()444a a +-9.(1)-6a 6(2)- 24a 5b10.(1)2(3)xy x y -(2)()(3)2x x y x --11.(1)(2)(2)x x x -+;(2)3-x y12.(1)()()11a a a +-(2)()()2222x y x y -+-13.(1)22(23)x x x --+(2)22(2)(2)a a +-14.(1)xy (x -y )2(2)a (x -1)(ax -a -4)(3)(x +y )2(x -y )2 15.(1)42167281x x -+(2)2269x y y -+-16.(1)()()1m m n n -+(2)()()77m n n m --17.(1)(2a -b )(x -y )(2)(x +1)2(x -1)218.(1)46610348m n m n -(2)222x xy -+19.(1)()()244x x +-(2)()22xy x y +20.(1)(1)(1)a x x -+- (2)21()2x21.2y -x ,322.542xy --,323.12x y +();1424.()22x y -,1225.x -y ,126.4xy -+,24527.23x xy -,4328.(1)17;(2)34 29.(1)4a 2-a -6;-2;(2)12 30.3050x +,3531.2a 72-b ,﹣132.(1)3(2)62x -33.22x -,52-34.820x y -;-235.-2x y ,2021-36.45a +;137.223x xy y ---,-3 38.410x --,-839.()()()72323x a a ++- 40.43x y -,-1141.(1)()a m n p -+(2)()()121+2x x -(3)()28x -(4)()()(32)x y x y m n -+- 42.(1)569a a +(2)222-x xy(3)2235a a -+(4)443.(1)2(3)m +;(2)22(1)(1)a a +-44.(1)38809(2)2241616x y y -++ 45.(1)52;(2)2-;(3)2646.310x +,947.69x -48.46x y -,6-49.(1)①()323x x -;①()222b a - (2)224xy y -;-350.()()222y x x -+ 51.352.45x +,353.(1)()32x x y -(2)()23a x +(3)()()31m m -+54.x 2-2x ,055.()()()22x y a b a b -+- 56.(1)()()5x y x y +-(2)()23m m +57.-405458.-9xy ;1859.(1)m (m -2)2(2)(3a -2b )(a +2b )60.(1)3()()y x y x y +-(2)2()x y -61.(1)232x y -(2)2y62.24x xy y --;-2 63.(1)4(2)254y xy -64.(1)24(1)x -(2)()(3)x y x y +-65.(1)32-x y,5-;(2)()2213-+a b ,1-. 66.(1)7;(2)7;(3)-1 67.(1)8x -(2)2734a a -+-(3)1(4)22694x x y68.(1)()1m m n -+(2)()()43a a a -+(3)()()315x x -+(4)()()2233y y +-69.2222a b --,452-70.(1)15(2)171.(1)2x 4;(2)2xy +5y 272.(1)(m -2)(a +b );(2)a (a -1)273.6xy +5y 2,17.74.(1)(m -n )(2x +1);(2)(2m +n )(2m -n );(3)3n (m -2)2;(4)2ab (a +3b )(a -3b ) 75.65x y --;1276.(1)6 (2)1277.(1)92,1x -+-(2)2,2ab -78.(1)x y -(2)97x +79.(1)4(5)(5)x x +-(2)22()m n -(3)22(1)(1)a a +-80.(1)0(2)231213x x ++(3)222496a b bc c -+- 81.22a ab -,2182.083.(1)(a +3)(a -3);(2)3(x +y )2.84.2284a b -+,-28 85.2xy ,-45.86.222b a -,7-. 87.28x -+,4-88.2b a -;389.69x -;390.52a91.-x 2+4x +10,5.92.(1)(3)(2)y x --(2)2(2)y x y --93.24,594.(1)S 1=a 2﹣b 2;S 2=2b 2﹣ab(2)31 (3)29295.(1)a 2-b 2;(a +b )(a -b );a 2-b 2=(a +b )(a -b ) (2)①14x 2-y 2;①9996 (3)2048312+ 96.(1)22212;2S a b S b ab =-=-;(2)12136S S +=;(3)338S =.97.(1)(m -1)(m ﹣5)(2)当a =2,b =﹣5时,多项式a 2+b 2﹣4a +10b +33有最小值为4.(3)298.(1)2,1或-1(2)34(3)1099.(1)32x y +,6;(2)()223a ab b ++平方米 100.(1)①()()22a b a b +---;①()()2221x x x -+-; (2)①ABC 是等腰三角形。

12章乘法公式和因式分解练习题

12章乘法公式和因式分解练习题

12乘法公式和因式分解练习题一、选择题1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±322.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3.下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)4.下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+5、下列各式中,能运用平方差分式分解因式的是( )A 、21x +-B 、22y x +C 、42--xD 、()22b a ---6、若m x x +-82是完全平方式, 则m 的值为( )A 、4B 、8C 、16D 、327.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4D .4 8、把多项式1222+--y x xy 分解因式的结果是( )A .)1)(1(+-+-x y y x B.)1)(1(---+x y y xC.)1)(1+--+y x y xD..)1)(1(--+-y x y x8.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .169.若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 4510.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )A .10B .6C .5D .311.把多项式a 2-4a 分解因式,结果正确的是( )A .a (a -4)B .(a +2)(a -2)C .a (a +2) (a -2)D .(a -2)2-4A .32-xB .92+xC .38-xD .318-x13.下列计算正确的是A.()222x y x y +=+B .()2222x y x xy y -=-- C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+ 14.下列各因式分解正确的是( )A.)2)(2()2(22+-=-+-x x xB.22)1(12-=-+x x xC.22)12(144-=+-x x xD.)2)(2(42-+=-x x x x x15.下列分解因式正确的是( ) A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+ 16.下列各式能用完全平方式进行分解因式的是( )A .x 2 +1B .x 2+2x -1C .x 2+x +1D .x 2+4x +417.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2﹣m+1C .m 2﹣nD .m 2﹣2m+118. a 4b -6a 3b +9a 2b 分解因式的正确结果是A .a 2b (a 2-6a +9)B .a 2b (a +3) (a -3)C .b (a 2-3)2D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )A .(x -1)(x -2)B . x 2C .(x +1)2D . (x -2)220.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5 21.将代数式262++x x 化成q p x ++2)(的形式为( )A. 11)3(2+-xB. 7)3(2-+xC. 11)3(2-+xD. 4)2(2++x22.计算222(a+b)(a b)+a a b -等于( )A .4aB .6aC .22a bD .22a b - 23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +624.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2 D .m 2 -n 2二、填空题1.若2a -b =5,则多项式6a 一3b 的值是 .2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .3.(x +1)(x -1)(1+x )=4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d,定义a c b d =a d -bc ,上述等式就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .8.分解因式:25x x - =________ .9.分解因式:=-822x ___________________10.分解因式:ab 3-4ab = .11.分解因式:a -6ab +9ab 2= .12.分解因式:=+-22363n mn m _______ .13.分解因式:22331212x y xy y ++=14.若2m n -=,5m n +=,则22m n -的值为 .15.若622=-n m ,且2m n -=,则=+n m .16.有足够多的长方形和正方形的卡片,如下图. 3a b 2b a 1如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是三、解答题1.化简:)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=4.4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.5.先化简,再求值:()()()x x x -+++2232,其中2-=x6.已知y x A +=2,y x B -=2,计算22B A -7.先化简,再求值:()222a b b --,其中2,3a b =-=8、已知x + y = a , xy = b ,求(x-y) 2 , x 2 + y 2 , x 2-xy + y 2的值x=-时,求代数式(2x+5)(x+1)-(x-3)(x+1)的值.9.当710.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。

整式乘法、乘法公式、化简求值、因式分解(二)

整式乘法、乘法公式、化简求值、因式分解(二)

整式乘法、乘法公式、因式分解(二)31.分解因式:(1)a2b2﹣2ab+1(2)9(a+b)2﹣25(a﹣b)2.(3)a2﹣2a+1﹣b2(4)x2+y2+m2﹣2xy+2my﹣2mx.32.把下列各式分解因式:(1)x2﹣y2﹣z2+2yz;(2)(x+y)2+4(x+y+1)33.因式分解:(1)a3﹣2a2+a;(2)x2﹣4xy+4y2﹣134.阅读理解:(1)计算①(x +1)(x +3)= ;②(x +2)(x ﹣1)= .(2)归纳(x +a )(x +b )= .(3)应用由(2)的结论直接写出结果(x +2)(x +m )= .(4)理解将下列多项式因式分解①x 2﹣5x +6= ;②x 2﹣3x ﹣10= .35.已知多项式kx 2﹣6xy ﹣8y 2可写成(2mx +2y )(x ﹣4y )的形式,求k ,m 的值.36.因式分解:x 2﹣5x ﹣6.37.先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312331221y x y x x ,其中x ,y 满足()0122=++-y x 。

38.已知()02112=-++y x ,求()()[]213222222----+y x xy y x xy 的值.39.化简求值:已知()0142=++-b a ,求()[]b a b a ab b a ab 2222242425+---的值.40.若()03632=-++y x ,求多项式()()2222323y x y x x y +--+-的值(先化简,再求值).41.已知x ,y 满足等式:()02432=-++y x ,求代数式()()2222233xy y x xy y x ---的值.A .5B .9C .9或1D .5或143. 若x 2+kx +36是完全平方式,则k 的值应是( )A .16B .12C .﹣12或12D .﹣1244.如果x 2+2ax +9是一个完全平方式,则a 的值是( )A .3B .﹣3C .3或﹣3D .9或﹣945.已知()9122+-+x m x 是一个完全平方式,则m 的值为() A .4 B .4或﹣2 C .±4D .﹣246.如果()922+-+x m x 是个完全平方式,那么m 的值是()A .8B .﹣4C .±8D .8或﹣4A .3B .﹣5C .7D .7或﹣148.甲、乙两人共同计算一道整式:()()b x a x ++2,由于甲抄错了a 的符号,得到的结果是3722+-x x ,乙漏抄了第二个多项式中x 的系数,得到的结果是322-+x x .(1)求a ,b 的值;(2)请计算这道题的正确结果49.计算:(1)()()()x y x y x y ---+1.(2)()()2222387y x yx +---.50.已知:x +y =5,xy =6,求()()44+-y x 的值.51.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.52.计算:()()()()23412++---xxxx53.已知a+b=3,ab=﹣2,求下列各式的值.(1)a2+b2;(2)a﹣b.53.已知(a+b)2=11,(a﹣b)2=7,求a2+b2和ab的值.55.已知a2+b2=25,a+b=7.求下列各式的值(1)ab;(2)a﹣b;(3)a3﹣b3.56.如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是.(2)用两种不同的方法求图中阴影部分的面积.【方法1】S阴影=;【方法2】S阴影=;(3)观察如图2,写出(a+b)2,(a﹣b)2,ab这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若x+y=10,xy=16,求x﹣y的值.57.利用乘法公式简便运算(1)219921100⨯ (2)22199⎪⎭⎫ ⎝⎛58. 计算:()()()22103y y x y x y x --+-+59.计算题(1)()()012120125211-÷-⎪⎭⎫ ⎝⎛+-- (2)5485652-+-.(3)()()()4923232+-+x x x60.仔细阅读,寻找规律:计算:(1﹣a )(1+a )=1﹣a 2,(1﹣a )(1+a +a 2)=1﹣a 3,(1﹣a )(1+a +a 2+a 3)=1﹣a 4,…(1)观察上式,并猜想:(1﹣a )(1+a +a 2+…+a n )= ;(2)根据你的猜想,写出计算结果:1+2+22+23+…+2n = (其中n 是正整数).61.计算:()()()2344334y x x y y x +--+.。

乘法公式与因式分解试题精选全文完整版

乘法公式与因式分解试题精选全文完整版

可编辑修改精选全文完整版乘法公式与因式分解测试题填空题1、已知:x 2-6x +k 可分解为只关于x -3的因式,则k 的值为 ( )2、若x 2-6x y+9y 2=0,则13--y x 的值为( ) 3、已知:x 2+4x y=3,2x y+9y 2=1。

则x +3y 的值为4、x m -x m -4分解因式的结果是 ( )5、若y 2-8y+m -1是完全平方式,则m= ( ) 6.(a 2+b 2)2-4a 2b 2分解因式结果是( )7、若-b ax x -+221分解成)7)(4(21+--x x ,则a 、b 的值为( )8.若N b a b a ++=-22)32()32(,则N 的代数式是( ) 9.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( ),( )10.若3,2a b ab +=-=,则22a b += ,()2a b -= ]11.多项式9x ²+1加上一个单项式后,成为一个整式的完全平方,请你写出一个..符合条件的单项式 12.已知多项式n mx --与2x -的乘积中不含x 项,则m 、n 满足的条件是__________. 13. 1纳米=0.000000001米,则3.5纳米=___________米.(用科学计数法表示)14.若4)2)((2-=++x x b ax ,则ba =_________________.选择题1. 若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- 2. .若))(3(152n x x mx x ++=-+,则m的值为 ( )A .5-B .5C .2-D .23.已知2264b Nab a +-是一个完全平方式,则N 等于 ( ) A 、8 B 、±8 C 、±16 D 、±324. 如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、15. .若10=4,10=7x y ,则210x y -的值为( ). (A) 449 (B) 494 (C) 167 (D) 7166.下列各式中,运算结果是22169b a -的是( ) A 、)43)(43(b a b a --+- B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+7. 计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 8.22)213()213(-+a a 等于( )A 、4192-a B 、161814-aC 、161298124+-a aD 、161298124++a a9、对于任何整数m ,多项式9)54(2-+m 都能( ) A 、被8整除 B 、被m 整除 C 、被m -1整除 D 、被(2m -1)整除10、若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25(C )25 (D )11、把216a +-分解因式,结果是( )A.)8)(8(+-a aB.)4)(4(-+a aC.)2)(2(+-a a D 2)4.(-a 12、下列多项式中,能用公式进行因式分解的是( ) A .22b a -- B.422++x x C. 22)(b a --- D.412+-x x 13、用分组分解法将x y xy x 332-+-分解因式,下列的分组方式中不恰当的是( )A .)3()3(2xy y x x -+- B.)33()(2x y xy x -+- C.)33()(2x y xy x -+- D.y x xy x 3)3(2+-- 14、把多项式1222+--y x xy 分解因式的结果是( ) A .)1)(1(+-+-x y y x B.)1)(1(---+x y y x C.)1)(1+--+y x y x D..)1)(1(--+-y x y x 15、把多项式822222--++-y x y xy x 分解因式的结果是( )A.)2)(4(+---y x y xB.)8)(1(----y x y xC.)2)(4(--+-y x y xD.)8)(1(--+-y x y x 16、多项式3222315520m n m n m n +-的公因式是( ) A 、5mn B 、225m n C 、25m n D 、25mn 17、xy y x 2122--+解因式的结果是( ) A.)2)(4(+---y x y x B.(x-y+1)(x-y-1) C.)2)(4(--+-y x y x D.)8)(1(--+-y x y x 18、20062+3×20062–5×20072的值不能..被下列哪个数整除( )A 、3 B 、5 C 、20062 D 、2005219、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A .6cm B .5cm C .8cm D .7cm 20、下列各式中,能运用平方差分式分解因式的是( )A 、21x +- B 、22y x + C 、42--x D 、()22b a --- 21、若m x x +-82是完全平方式, 则m 的值为( ) A 、4 B 、8 C 、16 D 、32 22.计算题⑴ x (9x -5)-(3x + 1) (3x -1)⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++-⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)5) 22)()(y x y x +- (6)22)35()35(y x y x ++-(7)))((c b a c b a +--+ (8) 2222)2()4()2(++-t t t23.分解因式(9)2244x xy y -+- (10)224520bxy bx a -(11)(1)(3)1x x --+ (12) 22)(16)(9n m n m --+13)x 4-12x +32 (14)5x 2-125y 415)4x 2-12x y+9y 2 (16).(m+n )2-4(m+n -1)17).22(1)(1)x a y a -+- (18)-81x 2+y 2(19)221222x xy y ++ (20)221424a ab b ++24、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2, x 2-xy + y 2的值25、已知22==+ab b a ,,求32232121ab b a b a ++的值26、先分解因式,再求值:655222++-+-b a b ab a ,其中92,96==b a27. 对于任意自然数n ,()()2257--+n n 是否能被24整除,为什么?28、利用分解因式进行简便运算 1、已知2a -b=3,求-8a 2+8ab -2b 2 的值。

【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题

【精品讲义】人教版  八年级上册数学 乘法公式与因数分解    知识点讲解+练习题

讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。

例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。

(2) 已知2=+b a ,1=ab ,求22b a +的值。

(3) 已知8=+b a ,2=ab ,求2)(b a -的值。

(4) 已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。

乘法公式和因式分解练习题资料

乘法公式和因式分解练习题资料

乘法公式和因式分解练习题乘法公式和因式分解练习题一、选择题1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±322.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3.下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)4.下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+5、下列各式中,能运用平方差分式分解因式的是( )A 、21x +-B 、22y x +C 、42--xD 、()22b a ---6、若m x x +-82是完全平方式, 则m 的值为( )A 、4B 、8C 、16D 、327.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4 D.4 8、把多项式1222+--y x xy 分解因式的结果是( )A .)1)(1(+-+-x y y x B.)1)(1(---+x y y xC.)1)(1+--+y x y xD..)1)(1(--+-y x y x8.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .169.若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 4510.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )A .10B .6C .5D .311.把多项式a 2-4a 分解因式,结果正确的是( )A .a (a -4)B .(a +2)(a -2)C .a (a +2) (a -2)D .(a -2)2-412.化简)23(4)325x x -+-(的结果为( )A .32-xB .92+xC .38-xD .318-x13.下列计算正确的是A.()222x y x y +=+ B .()2222x y x xy y -=--C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+14.下列各因式分解正确的是( )A.)2)(2()2(22+-=-+-x x xB.22)1(12-=-+x x xC.22)12(144-=+-x x xD.)2)(2(42-+=-x x x x x15.下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+16.下列各式能用完全平方式进行分解因式的是( )A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +417.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2﹣m+1C .m 2﹣nD .m 2﹣2m+118. a 4b -6a 3b +9a 2b 分解因式的正确结果是A .a 2b (a 2-6a +9)B .a 2b (a +3) (a -3)C .b (a 2-3)2D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )A .(x -1)(x -2)B . x 2C .(x +1)2D . (x -2)220.已知a - b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .521.将代数式262++x x 化成q p x ++2)(的形式为( )A. 11)3(2+-xB. 7)3(2-+xC. 11)3(2-+xD. 4)2(2++x22.计算222(a+b)(a b)+a a b -等于( )A .4aB .6aC .22a bD .22a b -23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +624.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2 D .m 2 -n 2二、填空题1.若2a -b =5,则多项式6a 一3b 的值是 .2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .3.(x +1)(x -1)(1+x )=4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.m +3 m3m n 图 图5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d,定义a c b d =ad -bc ,上述等式就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .8.分解因式:25x x - =________ .9.分解因式:=-822x ___________________10.分解因式:ab 3-4ab = .11.分解因式:a -6ab +9ab 2= .12.分解因式:=+-22363n mn m _______ .13.分解因式:22331212x y xy y ++=14.若2m n -=,5m n +=,则22m n -的值为 .15.若622=-n m ,且2m n -=,则=+n m .16.有足够多的长方形和正方形的卡片,如下图.3a 2a 1如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是三、解答题1.化简:)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=4.4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.5.先化简,再求值:()()()x x x -+++2232,其中2-=x6.已知y x A +=2,y x B -=2,计算22B A -7.先化简,再求值:()222a b b --,其中2,3a b =-=8、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2 , x 2-xy + y 2的值9.当7x =-时,求代数式(2x +5)(x +1)-(x -3)(x +1)的值.10.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。

八年级整式的乘法与因式分解练习题及答案

八年级整式的乘法与因式分解练习题及答案

一、单选题1、已知x+y=﹣5,xy=3,则x2+y2=()A. 19B. ﹣19C. 25D. ﹣25参考答案: A【思路分析】本题考查的是完全平方公式。

仔细读题,获取题中已知条件,结合完全平方公式的相关知识,即可解答此题。

【解题过程】解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19。

故选A。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、下列方程没有实数根的是()A. x2+4x=10B. 3x2+8x-3=0C. x2-2x+3=0D. (x-2)(x-3)=12参考答案: C【思路分析】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根【解题过程】解:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选:C。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 2008参考答案: A【思路分析】把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.【解题过程】解:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选:A.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4、如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. y=2xB. y=x2C. y=(x−1)2+2D. y=x2+1参考答案: C【思路分析】根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.【解题过程】解x=3m+1:,y=2+9m,3m=x−1,y=(x−1)2+2,故选:C.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5、把x³-9x+8因式分解,正确的结果是()A. (x-1)(x+3)B. (x-1)(x2-x+8)C. (x-1)(x2+x-8)D. (x+1)(x2-x+8)参考答案: C【思路分析】本考点的主要内容是拆项法分解因式,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,使多项式能用分组分解法进行因式分解。

难点详解青岛版七年级数学下册第12章乘法公式与因式分解重点解析练习题(含详解)

难点详解青岛版七年级数学下册第12章乘法公式与因式分解重点解析练习题(含详解)

七年级数学下册第12章乘法公式与因式分解重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面的计算正确的是( )A .(a +b )2=a 2+b 2B .(a 3)2=a 6C .a 2+a 3=2a 5D .(3a )2=6a 22、若代数式24x x k ++是一个完全平方式,那么k 的值是( )A .1B .2C .3D .43、下列各式因式分解正确的是( )A .()2211x x +=+B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++4、已知29x kx ++是完全平方式,则k 的值为( )A .-6B .±3C .±6D .35、下列等式从左到右的变形,属于因式分解的是( )A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣8x +16=(x ﹣4)2C .x 2﹣2x +1=x (x ﹣1)+1D .x 2﹣4y 2=(x +4y )(x ﹣4y ) 6、下列运算正确的是( )A .2a +3b =5abB .2(2a ﹣b )=4a ﹣bC .(a +b )(a ﹣b )=a 2﹣b 2D .(a -b )2=a 2-b 27、下列多项式不能..因式分解的是( ) A .22x y + B .22x y - C .222x xy y ++ D .222x xy y -+8、下列计算正确的是( )A .(a +b )2=a 2+b 2B .(﹣a +b )(﹣b +a )=a 2﹣b 2C .(﹣a +b )2=a 2+2ab +b 2D .(﹣a ﹣1)2=a 2+2a +19、下列因式分解正确的是( )A .2ab 2﹣4ab =2a (b 2﹣2b )B .a 2+b 2=(a +b )(a ﹣b )C .x 2+2xy ﹣4y 2=(x ﹣y )2D .﹣my 2+4my ﹣4m =﹣m (2﹣y )210、下列多项式能用“两数和(差)的平方公式”进行因式分解的是( )A .22x y +B .21x x -+C .221x x +-D .2441x x -+第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是______.2、分解因式:3a a -=__.3、分解因式:3x +9=_________.4、因式分解:a (a ﹣b )﹣b (b ﹣a )=_____________.5、分解因式:()()23a y z b z y ---=________.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:()23542a a a a ⎡⋅⎢⎥⎣⎦+÷⎤; (2)分解因式:24x -.2、(1)已知:x +2y +1=3,求3x ×9y ×3的值;(2)下边是小聪计算(3a ﹣b )(3a +b )﹣a (4a ﹣1)的解题过程.请你判断是否正确?若有错误,请写出正确的解题过程.(3a ﹣b )(3a +b )﹣a (4a ﹣1)=3a 2﹣b 2﹣4a 2﹣a=﹣a 2﹣b 2﹣a .3、已知3m n +=,2mn =.(1)当2a =时,求()nm n m a a a ⋅-的值; (2)求2()(4)(4)m n m n -+--的值.4、【教材呈现】以下是华师大版教材第50页16题:【自主解答】解:根据两个数和或差的平方公式,分两种情况:当M为含字母x的一次单项式时,原式可以表示为关于x的二项式的平方,∵4x2+M+1=(2x)2+M+12=(2x±1)2,∴M=±2×2x•1=±4x;当M为含字母x的四次单项式时,原式可以表示为关于x2的二项式的平方,∵4x2+M+1=M+2×2x2•1+12=(2x2+1)2,∴M=4x4.综上述,M为4x或﹣4x或4x4.【解后反思】①上述解答过程得到等式:4x2±4x+1=(2x+1)2;4x4+4x2+1=(2x2+1)2观察等式左边多项式的系数发现:(±4)2=4×4×1.②结合多项式的因式分解又如:16x2+24x+9=(4x+3)2;9x2﹣12x+4=(3x﹣2)2,发现这两个多项式的系数规律:242=4×16×9,(﹣12)2=4×9×4.③一般地:若关于x的二次三项式ax2+bx+c(a、b、c是常数)是某个含x的二项式的平方,则其系数a、b、c一定存在某种关系.(1)请你写出系数a、b、c之间存在的这种关系式:;【解决问题】(2)若多项式9y2+4加上一个含字母y的单项式N,就能表示为一个含y的二项式的平方,请直接写出所有满足条件的单项式N;(3)若关于x的多项式x2﹣2(m﹣3)x+(m2+3m)是一个含x的多项式的平方,求实数m的值.5、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=;问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(结果用乘方表示).-参考答案-一、单选题1、B【解析】【分析】直接利用完全平方公式以及积的乘方运算法则、幂的乘方运算法则、合并同类项法则分别判断得出答案.【详解】A、(a+b)2=a2+2ab+b2,故此选项错误;B、(a3)2=a6,故此选项正确;C、a2+a3,无法合并,故此选项错误;D、(3a)2=9a2,故此选项错误;故选:B.【点睛】此题主要考查了完全平方公式以及积的乘方运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.2、D【解析】【分析】根据完全平方公式即可求出答案.【详解】 解:代数式24x x k ++是一个完全平方式,则2224222x x k x x ++=+⨯⨯+∴4k =故选D【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.3、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A 、不能进行因式分解,错误;B 、选项正确,是因式分解;C 、选项是整式的乘法,不是因式分解,不符合题意;D 、()22211x x x ++=+,选项因式分解错误;故选:B .【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.4、C【解析】【分析】根据完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,即可确定k 的值.【详解】∵22293x kx x kx ++=++∴236k =±⨯=±故选:C【点睛】本题考查了完全平方式,掌握完全平方式的特点是关键.注意不要忽略了k 的负值.5、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.【详解】解:A 、2(1)(1)1x x x +-=-,不是因式分解,选项说法错误,不符合题意;B 、22816(4)x x x -+=-,是因式分解,选项说法正确,符合题意;C 、221(1)1x x x x -+=-+,不是因式分解,选项说法错误,不符合题意;D 、左、右不相等,选项说法错误,不符合题意;故选B .【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义.6、C【解析】【分析】A 、利用合并同类项的法则即可判定;B 、利用去括号的法则即可判定;C 、利用平方差公式即可判定;D 、利用完全平方公式判定.【详解】解:A 、2a ,3b 不是同类项,235a b ab ∴+≠,故选项错误,不符合题意;B 、2(2)42a b a b -=-,故选项错误,不符合题意;C 、22()()a b a b a b +-=-,正确,符合题意;D 、222()2a b a b ab -=+-,故选项错误,不符合题意;故选:C .【点睛】此题主要考查了整式的运算法则,解题的关键是掌握平方差公式和完全平方公式的公式结构.7、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A 、22x y +不能因式分解,符合题意; B 、22x y -=()()x y x y +-,能因式分解,不符合题意;C 、222x xy y ++=2()x y +,能因式分解,不符合题意;D 、222x xy y -+ =2()x y -,能因式分解,不符合题意,故选:A .【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.8、D【解析】【分析】根据完全平方公式判断即可,完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:A .(a +b )2=a 2+2ab +b 2,故本选项不合题意;B .(−a +b )(−b +a )=−(a −b )(a −b )=−a 2+2ab −b 2,故本选项不合题意;C .(−a +b )2=a 2−2ab +b 2,故本选项不合题意;D .(−a −1)2=a 2+2a +1,故本选项符合题意;故选:D .【点睛】本题考查了完全平方公式,掌握完全平方公式的结构特点是解答本题的关键.9、D【解析】【分析】将各式计算得到结果,即可作出判断.【详解】解:A. 2ab 2﹣4ab =2ab (b ﹣2),分解不完整,故错误;B .a 2+b 2不能分解因式,而(a +b )(a ﹣b )=a2−b2,故错误;C .x 2+2xy ﹣4y 2不能分解因式,而(x −y )2=x 2−2xy +y 2,故错误;D .﹣my 2+4my ﹣4m =﹣m (2﹣y )2,故正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【解析】【分析】根据完全平方公式的结构特征,对每一个选项所给算式进行变形后,再判断其是否能用完全平方公式进行因式分解.【详解】A 、22x y +不满足完全平方公式的结构特征,不符合题意;B 、21x x -+中间项应为-2x ,故不符合完全平方公式,不符合题意;C 、221x x +-中间项应为2x -,最后一项应为1+,故不符合完全平方公式,不符合题意;D 、()()22224412212121x x x x x -+=-⨯⨯+=-,符合完全平方公式,符合题意;【点睛】本题考查完全平方公式,因式分解,能够熟悉完全平方公式的结构特征,以及利用完全平方公式进行因式分解是解决此类题型的关键.二、填空题1、()()2111x x x -=+-【解析】【分析】根据图形可以用代数式表示出图1和图2的面积,由此得出等量关系即可.【详解】解:由图可知,图1的面积为:x 2−12,图2的面积为:(x +1)(x −1),所以x 2−1=(x +1)(x −1).故答案为:x 2−1=(x +1)(x −1).【点睛】本题考查平方差公式的几何背景,解答本题的关键是明确题意,列出相应的代数式.2、(1)(1)a a a +-【解析】【分析】确定公因式是 a ,然后提取公因式后再利用平方差公式分解即可.【详解】2(1)a a =-,(1)(1)a a a =+-.故答案为:(1)(1)a a a +-.【点睛】本题考查因式分解,掌握方法是关键.3、3(x +3)【解析】【分析】直接找出公因式3,进而提取公因式分解因式即可.【详解】解:3x +9=3(x +3).故答案为:3(x +3).【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、(a ﹣b )(a +b )【解析】【分析】原式变形后,提取公因式即可.【详解】解:原式()()()()a a b b a b a b a b =-+-=+-.故答案为:()()a b a b +-.【点睛】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.5、(2a +3b )(y ﹣z )【解析】【分析】先调整符号,然后提公因式即可.【详解】解:()()23a y z b z y ---,=()()23a y z b y z -+-,=()()23a b y z +-.故答案为()()23a b y z +-.【点睛】本题考查提公因式法因式分解,掌握因式分解的方法是解题关键.三、解答题1、(1)62a ;(2)()()22x x +-【解析】【分析】(1)先算乘方,再算乘除,最后化简;(2)利用平方差公式进行求解.【详解】.解:(1)原式82826822a a a a a a ⎡⎤=+÷=÷=⎣⎦.(2)原式()()22x x =+-.【点睛】本题考查了多项式的因式分解、整式混合运算等知识点,掌握整式的乘方、乘除法则及混合运算是解决(1)的关键,掌握因式分解的平方差公式是解决本题(2)的关键.2、(1)27 ;(2)不正确,答案见解析 .【解析】【分析】(1)将393x y ⨯⨯中的9y 化为23y ,再根据同底数幂的乘法“同底数幂相乘,底数不变,指数相加”即可得;(2)根据多项式与多项式相乘的法则“多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所得的积相加”和单项式与多项式相乘的法则“单项式与多项式相乘,就是用单项式去乘另一个多项式的每一项,再把所得的积相加”进行解答即可得.【详解】解:(1)3x ×9y ×3=3x ×32y ×3=3x +2y +1=33=27;(2)不正确,解:原式=9a 2﹣b 2﹣4a 2+a=5a 2﹣b 2+a .【点睛】本题考查了整式的乘法,解题的关键是掌握同底数幂的乘法,多项式与多项式相乘的法则和单项式与多项式相乘的法则.3、 (1)4(2)7【解析】【分析】(1)根据同底数幂的乘法“同底数幂相乘,底数不变,指数相加”得32()m n m n a a a a a -=-,再将2a =代入即可得;(2)由题意得()21m n -=,再根据多项式与多项式相乘的法则“多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所得的积相加”将(4)(4)m n --进行计算,即可得(1)解:∵3m n +=,2mn =,∴()32m n m n n n m m a a a a a a a +=⋅--=-, ∵2a =,∴原式=3222844-=-=;(2)解:∵3m n +=,2mn =,∴()()22243421m n m n mn -=+-=-⨯=, ∴2()(4)(4)m n m n -+--=()1416mn m n +-++=124316+-⨯+=7.【点睛】本题考查了整式的乘法,解题的关键是掌握同底数幂的乘法和多项式与多项式相乘的法则.4、 (1)24b ac =(2)12y ±或48116y (3)1m =【解析】【分析】(1)观察例题找到多项式的系数的规律求解即可;(2)根据例题,根据两个数和或差的平方公式,分两种情况:当N 为含字母y 的一次单项式时,原式可以表示为关于y 的二项式的平方,当N 为含字母y 的四次单项式时,原式可以表示为关于y 2的二项式的平方,进而求解即可;(3)根据题意,由多项式的系数的规律列出方程求解即可.(1)根据例题发现多项式的系数规律可知24b ac =故答案为:24b ac =(2)当N 为含字母y 的一次单项式时,原式可以表示为关于y 的二项式的平方,∵9y 2+4+N =(3y )2+N +4=(3 y ±2)2,∴N =±2×32y ⨯=12y ±;当N 为含字母y 的四次单项式时,原式可以表示为关于y 2的二项式的平方,∵9y 2+4+N =2292224y N +⨯⨯+229=24y ⎛⎫+ ⎪⎝⎭,48116y M ∴= 综上述,N 为12y 或12-y 或48116y . (3)x 2﹣2(m ﹣3)x +(m 2+3m )根据24b ac =可得()()222343m m m --=+⎡⎤⎣⎦ 解得1m =【点睛】本题考查了完全平方式,根据完全平方式变形求解,掌握完全平方公式是解题的关键.5、 (1)(1+a )4(2)(1+a )5;(1+a )n +1;47【解析】【分析】(1)用提取公因式(1+a )一步步分解因式,最后化为积的形式;(2)通过前面(1)的例子,用提取公因式法(1+a )一步步分解因式,最后化为积的形式, 发现规律:是根据(1)(2)的结果写出结论;问题解决:通过前面的例子,用提取公因式法(1+3)一步步分解因式,最后化为积的形式.(1)解:1+a +a (1+a )+a (1+a )2+a (1+a )3=(1+a )(1+a )+a (1+a )2+a (1+a )3=(1+a )2(1+a )+a (1+a )3=(1+a)3+a(1+a)3=(1+a)3(1+a)=(1+a)4;(2)解:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)2(1+a)+a(1+a)3+a(1+a)4=(1+a)3+a(1+a)3+a(1+a)4=(1+a)3(1+a)+a(1+a)4=(1+a)4+a(1+a)4=(1+a)4(1+a)=(1+a)5;故答案为:(1+a)5;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;故答案为:(1+a)n+1;问题解决:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)2(1+3)+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)3(1+3)+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)4(1+3)+3(1+3)5+3(1+3)6=(1+3)5(1+3)+3(1+3)6=(1+3)6(1+3)=(1+3)7=47.故答案为:47.【点睛】此题考查了数字类运算的规律,提公因式法分解因式,整式的混合运算法则,正确掌握提公因式法分解因式是解题的关键,同时还考查了类比解题的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式和因式分解练习题
一、选择题
1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )
A 、8
B 、±8
C 、±16
D 、±32
2.如果22)()(y x M y x +=+-,那么M 等于 ( )
A 、 2xy
B 、-2xy
C 、4xy
D 、-4xy
3.下列可以用平方差公式计算的是( )
A 、(x -y) (x + y)
B 、(x -y) (y -x)
C 、(x -y)(-y + x)
D 、(x -y)(-x + y)
4.下列各式中,运算结果是22169b a -的是( )
'
A 、)43)(43(b a b a --+-
B 、)34)(34(a b a b --+-
C 、)34)(34(a b a b -+
D 、)83)(23(b a b a -+
5、下列各式中,能运用平方差分式分解因式的是( )
A 、21x +-
B 、22y x +
C 、42--x
D 、()22b a ---
6、若m x x +-82是完全平方式, 则m 的值为( )
A 、4
B 、8
C 、16
D 、32
7.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )
A .-2
B .2
C .-4
D
.4 8、把多项式1222+--y x xy 分解因式的结果是( )
A .)1)(1(+-+-x y y x B.)1)(1(---+x y y x

C.)1)(1+--+y x y x
D..)1)(1(--+-y x y x
8.已知x 2+16x +k 是完全平方式,则常数k 等于( )
A .64
B .48
C .32
D .16
9.若949)7(22+-=-bx x a x ,则b a +之值为何
A .18
B .24
C .39
D . 45
10.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )
A .10
B .6
C .5
D .3
11.把多项式a 2-4a 分解因式,结果正确的是( )
A .a (a -4)
B .(a +2)(a -2)
C .a (a +2) (a -2)
D .(a -2)2-4
12.化简)23(4)325x x -+-(的结果为( )

A .32-x
B .92+x
C .38-x
D .318-x
13.下列计算正确的是
A.()222x y x y +=+ B .()2222x y x xy y -=--
C .()()22222x y x y x y +-=-
D .()2222x y x xy y -+=-+
14.下列各因式分解正确的是( )
A.)2)(2()2(22+-=-+-x x x
B.22)1(12-=-+x x x
C.22)12(144-=+-x x x
D.)2)(2(42-+=-x x x x x
15.下列分解因式正确的是( )
A .)(23a 1-a a a -+=+
B .2a-4b+2=2(a-2b )
C .()222-a 4-a =
D .()2
21-a 1a 2-a =+ 16.下列各式能用完全平方式进行分解因式的是( )
[
A .x 2 +1 +2x -1 C.x 2+x +1 +4x +4
17.下面的多项式中,能因式分解的是( )
A .m 2+n
B .m 2﹣m+1
C .m 2﹣n
D .m 2﹣2m+1
18. a 4b -6a 3b +9a 2b 分解因式的正确结果是
A .a 2b (a 2-6a +9)
B .a 2b (a +3) (a -3)
C .b (a 2-3)2
D
.a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )
A .(x -1)(x -2)
B . x 2
C .(x +1)2
D . (x -2)2
20.已知a - b =1,则代数式2a -2b -3的值是
A .-1
B .1
C .-5
D .5
21.将代数式262++x x 化成q p x ++2)(的形式为( )
A. 11)3(2+-x
B. 7)3(2-+x
C. 11)3(2-+x
D. 4)2(2++x

22.计算222(a+b)(a b)+a a b -等于( )
A .4a
B .6a
C .22a b
D .22a b -
23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )
A .m +3
B .m +6
C .2m +3
D .2m +6
24.图(1)是一个长为2m ,宽为2n (m>n)的长方形,
用剪刀 沿图中虚线(对称轴)剪开,把它分成四块
形状和大小都一样的小长方形,然后按图(2)那样拼
成一个正方形,则中间空的部分的面积是( )
B.(m+n)2
C.(m-n)2 D .m 2 -n 2 二、填空题
1.若2a -b =5,则多项式6a 一3b 的值是 .
·
2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .
3.(x +1)(x -1)(1+x )=
4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.
5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .
6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d
,定义a c b d =ad -bc ,上述等式就叫做二阶行列式.若 1 181 1
x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .
8.分解因式:25x x - =________ .
m +3 m
3
》 n 图 (1) 图 (2)
9.分解因式:=-822x ___________________
10.分解因式:ab 3-4ab = .
11.分解因式:a -6ab +9ab 2= .
;
12.分解因式:=+-22363n mn m _______ .
13.分解因式:22331212x y xy y ++=
14.若2m n -=,5m n +=,则22m n -的值为 .
15.若622=-n m ,且2m n -=,则=+n m .
16.有足够多的长方形和正方形的卡片,如下图.
3a 2a 1
如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是
三、解答题
1.化简:
)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a
|
3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=
4.
4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =
12
.
:
5.先化简,再求值:()()()x x x -+++2232,其中2-=x
6.已知y x A +=2,y x B -=2,计算22B A -
7.先化简,再求值:()2
22a b b --,其中2,3a b =-=

8、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2 , x 2-xy + y 2的值
9.当7x =-时,求代数式(2x +5)(x +1)-(x -3)(x +1)的值.。

10.观察下列算式:
① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1
③ 3 × 5 - 42 = 15 - 16 = -1

……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗并说明理由.。

相关文档
最新文档