函数项级数,幂级数分解
函数项级数、幂级数的概念

称为 x 的幂级数。
2 收敛半径和收敛区域
阿贝尔定理
(1)若幂级数 an xn 在某点 x x 0 ( x 0 0 ) 处收敛, n0
则它必在满足不等式 x x0 的一切点 x 处收敛,且绝对收敛;
(2)若幂级数 an xn 在某点 x x 0 ( x 0 0 ) 处发散, n0
S ( x ),
lim
n
Rn (
x)
0
.
二 幂级数的概念 1 定义
形如
an (x x0 )n a0 a1(x x0 ) an (x x0 )n
n0
的函数项级数,称为 ( x x0 ) 的幂级数。
特别地,当 x0 0 时, an xn a0 a1 x an xn n0
1. 若 l 0 ,则
(1) 如果
l x 1,(l 0) 即
x
1 l
时, an xn
n0
绝对收敛。
(2) 如果
l x 1即
x
1
时, an xn
发散。
l
n0
根据定义,有 R 1 . l
2. 如果 l 0 ,则 l x 0 ,这时 an xn 对任何 x n0
当 | x | R 时,可能收敛也可能发散;
正数 R 称为幂级数 a n x n 的收敛半径。 n0
收敛区域为: (R, R),(R, R],[R, R),[R, R] 其中之一.
ቤተ መጻሕፍቲ ባይዱ理2.(幂级数收敛半径的求法)
对于幂级数 an xn , n0
幂级数

u n ( x ),
n 1
x I.
若 x0 I 时 ,
u n ( x0 )
n 1
收敛 , 则称 x 0 为
un ( x)
n 1
的收敛点 .
若 x0 I 时 ,
u n ( x0 )
n 1
发散 , 则称 x 0 为
un ( x)
n 1
收敛区间 [ 1, 1), 绝对收敛区间 ( 1, 1).
一般地,对于幂级数都可以采用达朗贝尔判别法
例4 解
求
( x 5) n
n
的收敛区间
.
n 1
令 y x 5, 则
lim
( x 5) n
| a n 1 | | an |
n
n 1
y
n
n 1
n
1
谁的收敛半径?
| x | 0 1,
n
故幂级数
an x
n0
在 ( , ) 上收敛 .
故
R .
n
lim
| u n 1 ( x ) | | un (x) |
|x|
( 3 ) 当 时 ,
x ( , 0 ) ( 0 , ) , 均有
an x
n0
n
,
都存在一个非负
当 | x | R 时 , 幂级数可能收敛
, 也可能发散
.
幂级数的收敛半径
我们称上述定理中的非负数 R 为幂级数
an x
n
的收敛半径.
x 0 处收敛时 , 规定 R 0.
高等数学 3幂级数收敛域和函数

第九章 无穷级数
第三节 幂 级 数
第三节 幂级数
一. 函数项级数 函数项级数
n 1
1.定义 u1 ( x) u2 ( x) un ( x) un ( x)
{un ( x)} 是定义在区间 I 上的函数列
2.收敛域 在 I 中任取一点 x0 ,就得到一个数项级数
所以收敛半径为3, 收敛区间为(3,3)
3n 1 1 1 当 x 3 时,因为 n ,且 发散, n 3 (2) n 2n n 1 n
所以原级数在点x 3处发散.
(3) n 1 1 2n 1 当 x 3 时,由于 n (1) n n , 3 (2) n n n 3 (2) n n
2.收敛半径的求法 定理2
an R lim n a n 1
(证明略)
例 求收敛半径和收敛域
(1). (1) n1
n 1
1 an R lim lim n 1 n a n 1 n 1 n 1 n 1 1 x =1 时 (1) n 收敛; x =-1时 n 1
S ( x) un ( x)
n 1
4.余项:
rn ( x) S ( x) Sn ( x)
前n项的部分和
在收敛域内才有意义,且 lim rn ( x ) 0 n
二. 幂级数及其收敛性
幂级数
一般形式:
各项都是幂函数的函数项级数
a0 a1 ( x x0 ) a2 ( x x0 )2 an ( x x0 )n (1)
( x 2) n (4). (1) n1 n n 1
《高等数学》第6章3 幂级数

请双面打印/复印(节约纸张)高等数学主讲: 张小向第六章 无穷级数第一节 数项级数 第二节 反常积分判敛法 第三节 幂级数 第四节 傅里叶级数第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数§6.3 幂级数 一. 函数项级数的基本概念 u1(x), u2(x), …, un(x), … ——定义在数集 A上的函数序列 Σ u (x) = u1(x) + u2(x) + …+ un(x) + … n=1 n ——定义在数集 A上的函数项级数 un(x) —— 通项 Sn(x) = k=1uk(x) —— 部分和 Σn ∞n=1 nΣ u (x) = u1(x) + u2(x) + …+ un(x) + …∞∞——定义在数集 A上的函数项级数 收敛(发散)点x0∈D: n=1un(x0) 收敛(发散) Σ Σ 收敛(发散)域: n=1un(x) 的收敛(发散)点的全体 和函数 S(x) = n=1un(x) Σ 其定义域为 n=1un(x) 的收敛域 Σ 余项 Rn(x) = S(x) − Sn(x) = k=n+1uk(x) Σ∞ ∞ ∞ ∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例1. 几何级数 n=1xn−1 = 1 + x + x2 +…+ xn +… Σ 是定义在实数集∞ ∞∞例1. 几何级数n=1 xn−1 的收敛域为(−1, 1). Σ 当 x ∈ (−1, 1)时, Sn(x) = 1− xn , 1− x∞上的函数项级数.当|x| < 1时, n=1|xn−1| 收敛, Σ 故 n=1xn−1 (绝对)收敛. Σ 当|x| ≥ 1时, lim n→∞ 综上所述,n=1 ∞ ∞xn−1≠ 0, 故 n=1 Σxn−1发散.∞lim xn = 0, n→∞ lim Sn(x) = n→∞ 所以 n=1xn−1 = Σ 1 . 1− xΣ xn−1 的收敛域为 (−1, 1).1 , x ∈ (−1, 1). 1− x272365083@1请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例2. x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + … 是定义在实数集 上的函数项级数. Sn(x) = xn,例3. 求下列级数的收敛域. ∞ xn (1) n=1 . Σ n! 解: 因为∀x ∈ lim n→∞ 所以 n=1 Σ∞, xn = lim |x| = 0. n! n→∞ n+1lim 当|x| < 1时, lim Sn(x) = n→∞ xn = 0, n→∞ lim 当 x = 1时, lim Sn(x) = n→∞ 1 = 1, n→∞ 当 x < −1 或 x > 1时, lim Sn(x)不存在. n→∞ 综上所述, 该级数的收敛域为(−1, 1], 0, x ∈ (−1, 1); 且和函数 S(x) = 1, x = 1.xn+1 (n+1)!∞ xn xn Σ 收敛, 因而 n=1 收敛. n! n! n ∞ x 可见 n=1 的收敛域为 . Σ n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数. n2 n |x| lim lim 解: n→∞ n x 2 = n→∞ n = |x|. n √n2 ∞ xn ∞ xn Σ 当|x| < 1时, n=1 2 收敛, 因而 n=1 2 收敛; Σ n n n ∞ xn lim 当|x| > 1时, n→∞ x 2 ≠ 0, 因而 n=1 2 发散. Σ n n ∞ xn ∞ 1 当|x| = 1 时, n=1 2 = n=1 2 收敛, 因而… Σ Σ n n ∞ xn 可见 n=1 2 的收敛域为[−1, 1]. Σ n(2) n=1 Σ∞xn(3)∞ (x−1)n Σ n n=1 2 n=x−1 + 2 +… 2 ⋅2 2|x−1| (x−1)n = lim n|x−1| nn n→∞ 2(n+1) 2 . 2(x−1)2n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞ (x−1)n |x−1| 当 2 < 1 时, n=1 2nn 绝对收敛; Σ ∞ (x−1)n |x−1| 当 2 > 1 时, n=1 2nn 发散. Σ ∞ (x−1)n ∞ (−1)n 当 x = −1 时, n=1 2nn = n=1 n 收敛. Σ Σ当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n∞(x−1)n∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞(x−1)n |x−1| 2 nn = 2 .(x−1)n (x−1)n(4) n=1 n Σ 解: lim n→∞∞ (−1)n1 n . 1+x当 2|x−1| |x−1|< 1 时, n=1 2nn Σ∞绝对收敛;un+1(x) 1 1 lim n un(x) = n→∞ n + 1 |1 + x| = |1 + x| .当 2> 1 时, n=1 2nn 发散. Σ∞当 |1+x| > 1 时, 该级数绝对收敛; 当 |1+x| < 1 时, 该级数发散. 收敛. 当 x = 0 时, n=1 n Σ∞ ∞当 x = −1 时, n=1 2nn = n=1 n Σ Σ∞(x−1)n∞(−1)n(−1)n∞ (−1)n 1 n = n=1 n 收敛. Σ 1+x ∞ 1 1 n = n=1 − 发散. Σ n 1+x当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n 可见 n=1 2nn 的收敛域为[−1, 3). Σ∞(x−1)n∞1当 x = −2 时, Σ n n=1(−1)n(x−1)n可见该级数的收敛域为(−∞, −2) ∪ [0, +∞).272365083@2请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数二. 函数项级数的一致收敛性y 1S1(x), S2(x), …, Sn(x), … ——定义在数集 A上的函数序列 S(x) ——定义在数集 A上的函数 若∀ε > 0, ∃N∈ , 当 n > N 时, |Sn(x) − S(x)| < ε (∀x ∈ A), 则称{Sn(x)}在A上一致收敛于S(x). 若 n=1un(x) 的部分和序列 {Sn(x)} 在数集 A上 Σ 一致收敛, 则称该级数在A上一致收敛.∞lim xn = 0 (0 < x <1) n→∞∀ε > 0, ∃N∈ , s.t. n > N ⇒ |xn−0| < ε y=x y = x2 y = x3 y = x4 y = x5 y = x6εO x1 x2 x3 x4 x5 1 x…第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例4. 设0 < a < 1, 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …例5. 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …在[0, a]上一致收敛. 证明: 该级数的部分和为 Sn(x) = 在[0, a]上的和为 S(x) ≡ 0. xn, ,在(0, 1)上不一致收敛. 证明: 该级数的部分和为 Sn(x) = xn, 在(0, 1)上的和为 S(x) ≡ 0.N+1 取ε = 1/2, ∀N ∈ , ∃x = ______ ∈ (0, 1), 3/4 虽然 n = N + 1 > N, 但是 |xn − 0| = xn = 3/4 > ε ,max{[logaε ]+1, 1} 对∀ε > 0, ∃N = ________________∈当 n > N 时, |xn − 0| = xn ≤ an < aN ≤ ε (∀x ∈ [0, a]), 可见Sn(x)在[0, a]上一致收敛于S(x).可见Sn(x)在(0, 1)上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理1 (Cauchy一致收敛准则). Σ u (x)在A上一致收敛 n=1 n ⇔ ∀ε > 0, ∃N∈n+p k=n+1 k ∞定理2 (Weierstrass判别法, M判别法). 设函数项级数 n=1un(x) (x ∈ A) 与正项级数 Σ ,有n=1 n ∞, 当 n > N时, ∀p∈Σ a 满足下列条件+;∞∞Σ u (x) = |Sn+p(x) − Sn(x)| < ε (∀x ∈ A). ⇓ Weierstrass判别法维尔斯特拉斯 [德]1815~1897(1) |un(x)| ≤ an , ∀x∈A, ∀n∈ (2) n=1an 收敛, Σ 则 n=1un(x)在A上一致收敛. Σn=1 n ∞乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911Σ u (x)的优级数∞272365083@3请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数证明: ∀ε > 0, ∃N∈n+p, 当 n > N时, ∀p∈,有例6. 设0 < a < b, 证明级数n=1 (1+|x|)nΣ u (x) = |Sn+p(x) − Sn(x)| k=n+1 k = |un+1(x) + un+2(x) + … + un+p(x)| ≤ |un+1(x)| + |un+2(x)| + … + |un+p(x)| ≤ an+1 + an+2 + … + an+p < ε (∀x ∈ A). Σ 由Cauchy一致收敛准则可知 n=1 un(x)在 A上一致收敛.∞Σ∞x在A = {x ∈x| a ≤ |x| ≤ b}上一致收敛.|x| b证明: (1+|x|)n = (1+|x|)n ≤ (1+a)n 对于 ∀n∈+以及 ∀x∈A都成立.∞又因为正项级数 n=1 (1+a)n 收敛, Σ 由Weierstrass判别法可知 n=1 (1+|x|)n Σ 在A = {x ∈ | a ≤ |x| ≤ b}上一致收敛.∞bx第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数三. 一致收敛级数的性质回忆定理3. (1) un(x)在[a, b]上连续(∀n∈∞ ∞+)例2中的级数(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ S(x)在[a, b]上连续.⇒x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …的收敛域为(−1, 1], 其和函数 0, x ∈ (−1, 1); S(x) = 1, x = 1. S(x)在(−1, 1]上不连续, 尽管该级数中的每一 项在(−1, 1]上都连续. 由例5可知该级数在(−1, 1]上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理4 (逐项积分). (1) un(x)在[a, b]上连续(∀n∈ 条 件∞ ∞例7. 设S(x) = n=1 Σ+)∞π cosnx , 求 ∫ 0 S(x)dx. n2(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ ① S(x)在[a, b]上可积; ② ∀x0, x∈[a, b], Σ ∫ x0 S(t)dt = n=1 (∫ x0 un(t)dt).x ∞ x⇒解:结 论cosnx 1 ≤ 2 (∀x∈[0, π], ∀n∈ +) n2 n ⇒ ∞ 1 Σ 2 收敛 n=1 n ∞ cosnx 在 [0, π] 上一致收敛 Σ n=1 n2 ⇒ cosnx ∈ C[0, π] (∀n∈ +) n2 ∞ π π cosnx ∫ 0 S(x)dx = n=1 ∫ 0 n2 dx Σ ∞ π sinnx = n=1 ∫ 0 n3 dx = 0. Σ272365083@4请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理5 (逐项求导).1 (1) un(x) ∈ C[a, b] (∀n∈+)条 件(2) n=1un(x) 在[a, b]上收敛于S(x) ⇒ Σ (3) n=1un(x) 在[a, b]上一致收敛 Σ ′1 ① S(x) ∈ C[a, b] ;∞∞结 论② S′(x) = n=1un(x). Σ ′∞sinnx 1 例8. un(x) = n3 ∈ C(−∞, +∞) (∀n∈ +) sinnx 1 ≤ n3 ∞ sinnx n3 ⇒ n=1 3 (绝对)收敛 Σ n ⇒ ∞ 1 收敛 Σ n=1 n3 sinnx ′ 1 ≤ n2 ∞ sinnx ′ n3 ⇒ n=1 n3 一致收敛 Σ ∞ 1 收敛 Σ n=1 n2 ∞ sinnx 1 Σ n3 的和函数 S(x) ∈ C(−∞, +∞) , n=1 ∞ cosnx ∞ sinnx ′ = n=1 2 . Σ 而且S′(x) = n=1 n3 Σ n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数四. 幂级数的概念与性质 1. 幂级数的概念 Σ a (x − x0∞2. 幂级数的收敛性 lim 设 n=0anx0n 收敛, 则 n→∞ anx0n = 0, Σ 故 ∃M > 0, s.t. ∀n∈ |anx0n| < M. , x0•∞x − x0的幂级数 )nn=0 nO x • •= a0 + a1(x − x0) + a2(x − x0)2 + … 其中 x0, an ∈ (n = 0, 1, 2, …) x0 = 0时, 对应的形式为 Σ a xn = a0 + a1x + a2x2 + … n=0 n∞若 |x| < |x0|, 令q = |x/x0|, 则 q < 1, |cnxn| = |cnx0n|⋅qn < M⋅qn. Σ 而 n=0M⋅qn 收敛, 所以 n=0|cnxn| 收敛. Σ∞ ∞ ∞xΣ 故对所有满足|x| < |x0|的x, n=0 cnxn 绝对收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理6 (Abel定理). (1) 若n=0 anxn 在x = x0 ≠ 0 处收敛, Σ 则对所有满足|x| < |x0|的x, Σ c xn n=0 n (2)∞ ∞ ∞定理7. 若存在非零实数x1, x2使幂级数n=0 anxn Σ 在x1处收敛, 在x2处发散, 则存在R > 0, 使得 (1) 当|x| < R 时, n=0anxn 绝对收敛; Σ (2) 当|x| > R 时, n=0anxn 发散. Σ −R 收敛半径 x1 R x2 O • • • x (−R, R) ——收敛区间∞ ∞∞绝对收敛. 在x = x0 ≠ 0 处发散,阿贝尔[挪威] 1802~1829 顺治1644-1662 康熙1662-1723 雍正1723-1736 乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911若n=0 anxn Σ∞则对所有满足|x| > |x0|的x,n=0 nΣ c xn 发散.272365083@5请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注: 若 n=0 anxn 仅在 x = 0处收敛, Σ 则规定 n=0anxn 的收敛半径 R = 0; Σ 若 n=0anxn 在整个实数轴上收敛, Σ 则规定 n=1anxn 的收敛半径 R = +∞. Σ∞ ∞ ∞∞定理8. 若幂级数 n=0anxn 中an ≠ 0 (∀n∈ Σan n→∞∞), 且n+1 lim a = ρ 或 lim √|an| = ρ. n→∞ n则该幂级数的收敛半径 +∞, R = 1/ρ, 0, 当ρ = 0时; 当0 < ρ < +∞时; 当ρ = +∞时.an+1 注: 教材上证明了 lim a = ρ 的情形, n→∞ nlim 这里证明 n→∞ √|an| = ρ 的情形.n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数lim 证明: (1) 若 n→∞ √|an| = ρ = 0, 则∀x ∈n n→∞ ∞,有(2) 若0 < ρ < +∞, 则∀x ∈n n→∞,有lim √|anxn| = ρ |x| = 0,∞nlim √|anxn| = ρ |x|.故n=0 |anxn| 收敛, 因而 n=0anxn 收敛. Σ Σ 可见, 此时R = +∞. (2) 若0 < ρ < +∞, 则∀x ∈n n→∞由正项级数的根值判别法知: ∞ ∞ Σ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛, 因而 n=0anxn 收敛; Σ |x| > 1/ρ 时, lim anxn ≠ 0, 因而 n=0anxn 发散. n→∞ 可见, 此时R = 1/ρ . (3) 若ρ = +∞, 则∀x ≠ 0, lim √|anxn| = +∞. n→∞n ∞ ∞,有lim √|anxn| = ρ |x|.由正项级数的根值判别法知: ∞ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛,Σ 因而 lim anxn ≠ 0, 故 n=0anxn 发散. 可见, … n→∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例9. (1) n=1 n! 的收敛半径为_________. Σ +∞an+1 1 ρ = lim a = lim 1 n→∞ n→∞ (n+1)! n! n∞xn例9. (3) n=1 2nn 的收敛半径为_________. Σ 21 n+1 ρ = lim a = lim n+1 1 (n+1) 2nn n→∞ n→∞ 2 n a∞(x−1)n= limn→∞ ∞1 = 0. n+1= limn→∞n 1 =−. 2(n+1) 2(2) n=1 n2 的收敛半径为_________. Σ 1an+1 n lim ρ = lim a = n→∞ (n+1)2 = 1. n→∞ n2xn注① 幂级数在收敛区间端点的收敛性要看具 体情况. 如例9(3), 收敛区间为(−1, 3). 在收敛区间的端点处,∞Σ n=1 2nn∞(x−1)n=条件收敛 (−1)n , x = −1; Σ n=1 n 可见, … ∞ 1 Σ −, x = 3, 发散 n=1 n272365083@6请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② 缺项幂级数 不满足定理8中的“∀an ≠ 0 (∀n∈ 例10. n=1 Σ∞)”.例10. n=1 Σ(n!)2x2n−1 的偶次项系数全为零. (2n)! [(n+1)!]2 ⋅(2n)! 2 u (x) lim n+1 = lim |x| n→∞ un(x) n→∞ [2(n+1)]!⋅(n!)2n→∞. (2n)! u (x) |x|2 lim n+1 = . n→∞ un(x) 4 当|x| < 2时, 该级数绝对收敛;∞ (n!)2x2n−1当|x| > 2时, 该级数发散. 所以该级数的收敛半径为R = 2, 收敛区间为(−2, 2). [(n+1)!]2 (n!)2 1 = 得R = 4, 注: 若直接由 lim n→∞ [2(n+1)]! (2n)! 4 则出错!= lim(n+1)2 |x|2 |x|2 = . (2n+2)⋅(2n+1) 4当|x| < 2时, 该级数绝对收敛; 当|x| > 2时, 该级数发散.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例10. n=1 Σ∞(n!)2x2n−1 . (2n)!3. 幂级数的代数运算设 n=0anxn 与 n=0bnxn 的收敛半径分别为R1, R2, Σ Σ(2n)!!∞ ∞该级数的收敛半径为R = 2, 收敛区间为(−2, 2).1 Σ 当x = ±2时, 该级数 = ± − n=1 (2n−1)!! . 2∞和函数分别为S1(x), S2(x), R = min{R1, R2}, 则当|x| < R时, 有 S1(x) ± S2(x) =n=0 anxn ±n=0 bnxn = n=0(an±bn)xn, Σ Σ Σ S1(x)⋅S2(x) = ( n=0anxn)⋅( n=0bnxn) Σ Σ = n=0 (a0bn + a1bn−1 + … + anb0)xn. Σ∞ ∞ ∞ ∞ ∞ ∞lim 因为 (2n−1)!! > 1, 故 n→∞ (2n−1)!! ≠ 0. Σ 因而级数 ± − n=1 (2n−1)!! 发散. 2 所以该幂级数的收敛域为(−2, 2).1∞(2n)!!(2n)!!(2n)!!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数4. 幂级数的分析性质 定理9. 设幂级数 n=0anxn 的收敛半径为R, Σ 0 < r < R, 则n=0 anxn Σ∞ ∞定理10. 设幂级数 n=0anxn 的收敛半径R > 0, Σ 和函数为S(x), 则 (1) S(x)在收敛域上连续. (2) 对于任意的 x ∈ (−R, R), 有 Σ S′(x) = n=0(anxn)′ = n=1nanxn−1, Σ∞ ∞∞在[−r, r]上一致收敛.∞证明: 由条件可知 n=0|anrn| 收敛. Σ 对于任意的 x ∈ [−r, r], n ∈ |anxn| ≤ |anrn|. Σ 由M判别法可知 n=0anxn 在 [−r, r] 上一 致收敛.∞,有Σ n ∫ 0 S(t)dt = n=0 ∫ 0 an tndt = n=0 n+1xn+1. Σx x∞∞a(3) n=1nanxn−1 和 n=0 n+1xn+1 的收敛半 Σ Σ n 径的仍为R.∞∞a272365083@7请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例11. 求 n=0(−1)n Σ∞xn+1 n+1的和函数S(x).例12. 对于任意的x ∈ (−1,1), 有 f(x) = 1−x = 1 + x + x2 + … + xn + … (1) f ′(x) = f ″(x) =x解: 首先, 容易求得该幂级数的收敛域为(−1, 1]. 根据定理10(1), S(x)在(−1, 1]上连续.1 , x ∈ (−1, 1), Σ = 又因为 n=0 1+x ∞ x x dt Σ 所以 ln(1+x) = ∫ 0 1+t = n=0∫ 0 (−1)ntndt ∞ xn+1 = n=0(−1)n Σ , x ∈ (−1, 1). n+1∞1(−1)nxn1 = 1 + 2x + … + nxn−1 + … (2) (1−x)2 2 = 2+6x +…+ n(n−1)xn−2 + … (3) (1−x)3 1 x2 xn+1∫ 0 1−t = ln 1−x = x + + … + + … (4) n+1 2 注① 在(4)中令x = 1/2得, ln2 = n=0 (n+1)2n+1 . Σ∞dt而S(1) = lim S(x) = lim ln(1+x) = ln(1+1), 可见 S(x) = ln(1+x), x ∈ (−1, 1].x→1− x→1−1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② x = −1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ x = 1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ 故 n=0 n+1 的收敛域为 [−1,1), Σ 其和函数S(x)在−1处右连续, 而 ln1 也在−1处右连续, 因而 1−x ∞ (−1)n+1 lim = S(−1) = x→−1+S(x) Σ n=0 n+1 1 = x→−1+ ln 1−x = −ln2. lim∞ ∞∞xn+1∞(−1)n+1例13. 求 n=1(−1)n+1n(n+1)xn 的和函数. Σ 解: ρ = lim n+1 = lim (n+1)(n+2) = 1. n(n+1) n→∞ an n→∞ x = ±1时, lim (−1)n+1n(n+1)xn ≠ 0.n→∞∞xn+1∞1axn+1可见, 该级数的收敛域为(−1, 1). 设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞ ∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ 其中g(x) = n=1 (−1)n+1nxn−1, x ∈ (−1, 1). Σ Σ ∫ 0 g(t)dt = n=1 ∫ 0 (−1)n+1ntn−1dt = n=1 (−1)n+1xn Σx x ∞ ∞ ∞x2 故 ∫ S(t)dt = x2g(x) = (1+x)2 . x2 ′ 2x , 即 由此可得 S(x) = (1+x)2 = (1+x)3x 0 n=1Σ (−1)n+1n(n+1)xn =∞2x , x ∈ (−1, 1). (1+x)3 2 27n+1 ∞ 1 Σ (−1) n(n+1) = S(−) = 8 . 注: 取x = 1/2 得 n=1 2n= 1+x . 上式两边对x求导得 g(x) = (1+x)2 .1x272365083@8请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例14. 求 n=1 2n−1 x2n−1 的和函数S(x). Σ(−1)n lim 解: n→∞ 2n+1 x2n+1 (−1)n−1 2n−1 = lim 2n−1 x2 2n−1 x n→∞ 2n+1∞(−1)n−1又因为S(0), 所以 S(x) = ∫ 0 S′(t)dt + S(0) = ∫0x x= x2. 可见该级数当|x| < 1时收敛, |x| > 1时发散,x = ±1时, 用Leibniz判别法可知该级数收敛,1 dt = arctanx, x ∈ (−1, 1). 1+t2结合 S(x) 和 arctanx 在[−1, 1]内的连续性得 S(x) = arctanx, x ∈ [−1, 1].(−1) Σ 注: 取x = 1得 − = arctan1 = S(1) = n=1 2n−1 . 4 π∞n−1所以该级数的收敛域为[−1, 1]. 根据定理10, S′(x) = n=1(−1)n−1x2n−2 = 1+x2 , Σ x ∈ (−1, 1).∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例15. 求 n=1 2n x2n−2 的和函数S(x), 并求 Σn=1∞2n−1Σ 2n 的值.2 2n−1 2n−2 = lim 2n+1 2 x x n→∞ 4n−2 2n∞S(x) = n=1 2n x2n−2 =n=1 n x2n−1 Σ Σ 2 = =∞2n−1∞1′2n−1x ∞ x2 n−1 ′ x 1 ′ x ′ Σ( ) = 2⋅ = 2 n=1 2 1 − x2/2 2 − x2 2 + x2 , (2 − x2)2∞lim n+1 解: n→∞ 2n+1 x2n可见该级数当|x| < √2时收敛, |x| > √2时发散,−= x2/2.∞−− − 其中 x ∈ (−√2, √2). 由此可得 n=1 2n = S(1) = 3. Σ2n−1− |x| = √2时, Σ 2n−1 x2n−2 = Σ 2n−1 发散. n=1 2n n=1 2 − − 所以该级数的收敛域为(−√2, √2).∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数回忆yy = 1−x2+x4−x6+x8 y = 1−x2+x4五. 函数展开为幂级数 1. 引例 (1) 1+x2 = 1 − x2 + … + (−1)nx2n + o(x2n). (2) n=0 (−1)nx2n = 1 − x2 + x4 − x6 + … Σ 的收敛半径为1, 收敛区间为(−1, 1), Σ (−1)nx2n = 1+x2 n=0∞ ∞11y=1 y= 1 1+x2 1−x2−1O1y=xy= 1−x2+x4−x61(|x| < 1).1 = 1−x2+x4−x6+x8−x10+…+(−1)nx2n + o(x2n). 1+x2272365083@9请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数在一点处的泰勒级数 设 f(x)在 x0 的某邻域N(x0)内有任意阶导数, 则称幂级数f (n)(x ) Σ n! 0 (x−x0)n n=0∞f(x) 在 x0 = 0 处的泰勒级数 n=0 Σ f(x) ~ n=0 Σ∞∞f (n)(0) n x n!称为 f(x)的麦克劳林(Maclaurin)级数, 记为f (n)(0) n x. n!为 f(x) 在 x0 处的 泰勒(Taylor)级数, 记为 f(x) ~ n=0 Σ∞泰勒[英] 1685~1731 康熙1662-1723 雍正1723-1736 乾隆1736-1796 泰勒[英] 1685~1731 麦克劳林[英] 1698~1746f (n)(x0) (x−x0)n. n!康熙1662-1723 雍正1723-1736 乾隆1736-1796第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数可展为幂级数的条件 定理11. 设 f(x)在x0的某邻域N(x0)内有任意阶 导数, 则 f(x) 在 x0 处的泰勒级数在 N(x0)内收敛并以 f(x)为和函数 ⇔ f(x)在 x0 处的泰勒公式的余项满足n→∞3. 函数展开成幂级数的方法 (1) 直接法(将f(x)展成(x − x0)的幂级数) ① 求f (n)(x0), n = 0, 1, 2, … ② 求 n=0 Σ ③ 检验∞f (n)(x0) (x−x0)n的收敛半径R n! f (n+1)(ξ)lim Rn(x) = 0 (∀x∈ N(x0)).nlim Rn(x) = n→∞ (n+1)! (x−x0)n+1 = 0 lim n→∞ ④ 写出f(x)在x0处的幂级数展开式 f(x) = n=0 Σ∞证明的关键: Rn(x) = f(x) − k=0 Σf (n)(x0) (x−x0)k. n!f (n)(x0) (x−x0)n (指出x的范围) n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例16. 将f(x) = ex展开为x的幂级数. 解: f (n)(0) = 1 (n = 0, 1, 2, …), Rn(x) = (n+1)! xn+1 (0 ≤ θ ≤ 1).e|x| 因为 |Rn(x)| ≤ (n+1)! |x|n+1, ∀x∈ eθ x例17. 将f(x) = cosx展开为x的幂级数. 解: f(0) = 1, f ′(0) = 0, f ′′(0) = −1, …, f (2k)(0) = (−1)k, f (2k+1)(0) = 0, (k ∈ ,x) n+1 x (0 ≤ θ ≤ 1). (n+1)! |x|n+1 因为|Rn(x)| ≤ , ∀x∈ , (n+1)!),Rn(x) =f(n+1)(θ所以 lim Rn(x) = 0 (∀x∈ ),n→∞由此可得 ex = n=0 Σ∞xn (∀x∈ n!所以 lim Rn(x) = 0 (∀x∈ ),n→∞).cosx = 1− (∀x∈ ).x2 x4 x6 x2n + − +…+ (−1)n +… 2! 4! 6! (2n)!272365083@10第六章无穷级数(2)间接法:①代换法, ②逐项求导, ③逐项积分, ④代数运算.例18. 因为§6.3 幂级数(∀x ∈).cos x = 1−+ …+ (−1)n +…x 22! x 2n(2n )! 所以cos2x = …−sin x = −x + +…+ (−1)n +1+…x 2n +1(2n +1)!x 33!sin x = x −+…+ (−1)n+…x 2n +1(2n +1)!x 33! 例19. 将f (x ) = ln(1+x )展开为x 的幂级数. 第六章无穷级数∞n =1(−1)n −1nΣ= ln2. 解: 其和函数S (x ) ∈C(−1, 1],11+x = Σ(−1)n −1x n −1(|x | < 1). ∞n =1逐项积分得ln(1+x ) = Σx n(|x | < 1). (−1)n −1n∞n =1 又因为Σ的收敛域为(−1, 1],∞n =1 x n (−1)n −1n再由ln(1+x ) ∈C(−1, 1]可得ln(1+x ) = Σx n (−1 <x ≤1).(−1)n −1n∞n=1 注:令x = 1得§6.3 幂级数第六章无穷级数例20. 将f (x ) = (1+x )α展开为x 的幂级数(α为解: 先求得f (x )的Maclaurin 级数:其收敛半径R = 1. 则(1+x )S ′(x ) = αS (x ), S (0) = 1. 由此可得S (x ) = (1+x )α, 即常数).(∗)1+αx+α(α−1) 2!x 2+…+ α…(α−n +1) n !xn+ …设其和函数为S (x ), x ∈(−1, 1), (1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…§6.3 幂级数二项式级数但在区间(−1, 1)的端点处是否成立要对α讨论.第六章无穷级数(1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…可以证明, 当α≤−1时, 的收敛域为(−1, 1);当−1< α< 0时, (∗)的收敛域为(−1, 1]; 当α> 0时, (∗)的收敛域为[−1, 1]. 因此, …(∗)1+αx +α(α−1) 2!x 2+…+α…(α−n +1) n !xn+ …§6.3 幂级数例21. 求下例函数在指定点处的泰勒展式.(|x +4| < 7),(|x +4| < 3). (1) f (x ) = xx 2−2x −3, x 0= −4. 第六章无穷级数解: f (x ) = x x 2−2x −3 = −( + ), 1 4 1 x + 1 3 x −31 x −3= −−1 7 1 1−(x +4)/7 (|x +4| < 3),1 x +1= −−1 3 1 1−(x +4)/3 = −−Σ( )n1 3 x +43 ∞n =0 = −−Σ( )n1 7 x +47 ∞n =0 f (x ) = −[ ]1 4 −−Σ( )n 1 3 x +43 ∞n =0 −−Σ( )n 37 x +47∞n =0 = −−Σ( + )(x +4)n 1 4 ∞n =0 1 3n +1 3 7n +1§6.3 幂级数(2) f (x ) = sin x , x 0= π/6.解: sin x = sin[(x −−)+−]π6π6 = −cos(x −−)+ sin(x −−), π6 1 2√3 2 π6 cos(x −−) = 1 −(x −−)2+…+ (x −−)2n+…π6 π6 π6 1 2! (−1)n(2n )! sin(x −−) = (x −−) −(x −−)3+…π6π6 π6 1 3!(−1)n(2n +1)! π6 + (x −−)2n +1+…sin x = −+ (x −−) −(x −−)2+…1 2 √32π6 π6 π6π612⋅2! + (x −−)2n+ (x −−)2n +1+ …(−1)n 2⋅(2n )! (−1)n √3 2⋅(2n +1)! 第六章无穷级数§6.3 幂级数(∀x ∈).解:(3) f (x ) =故∀x ∈(−1, 1),第六章无穷级数e x1−x , x 0= 0. e x= Σ∞n =0 x nn !, 1 1−x= Σx n , ∞n =0 e x1−x= ( Σ)⋅( Σx n )∞n =0 x n n ! ∞n =0 1 1!= 1 + (1+ )x + (1+ + )x2+ (1+ + + )x3+ …1 1! 1 2!1 1! 1 2! 1 3!§6.3 幂级数∀x ∈.∀x ∈(−1, 1).第六章无穷级数求收敛半径直接R = 1/ρ已知等式化为正项级数, 讨论敛散性代换法, 逐项求导/积分, 代数运算间接函数展开为幂级数幂级数求和(ρ= lim|a n +1/a n |, 公式lim|a n |1/n ) Σ|…| 求表达式S (z ) = lim S n (z ) f (n )(x 0)/n !, 检验R n (x )代换法, 逐项求导/积分, 代数运算间接1+αx + Σ⎯⎯⎯⎯⎯x n = (1+x )α, x ∈(−1, 1). α…(α−n +1)n !∞n =2 小结§6.3 幂级数Σx n = , Σ(−x )n = , x ∈(−1, 1). ∞n =11 1−x ∞n =1 1 1+x Σ⎯=e x , Σ= sin x , x ∈. ∞n =0 x n n ! ∞n =0 (−1)n x 2n +1(2n +1)!。
级数(函数项级数、幂级数)复习总结

函数项级数、幂级数一、 函数项级数概念121()()()(),n n n u x u x u x u x ∞==++++∑0I x ∈定义区间前n 项部分和函数1()()n n k k S x u x ==∑和函数1()()n n S x u x ∞==∑,x ∈收敛域二、 幂级数及其收敛域0n nn a x ∞=∑收敛域/发散域图:注:条件收敛的点只可能出现在分界点上!概念:R :幂级数收敛半径收敛区间:),(R R -收敛域:⋃-),(R R 收敛端点如何求收敛半径?定理(Cauchy-Hadamard)若0n nn a x ∞=∑所有系数满足),1,0(,0 =≠n a n,1lim +∞→=n n n a a R ∑∞=0n n nx a 的收敛半径为R ,则∑∞=-00)(n n n x x a 的收敛域为⋃<-R x x ||0收敛端点。
1. 求n n x n n 202)!(!)2(∑∞=收敛半径。
2. 求∑∞=-+112)]13[ln(n n n x 的收敛域。
三、 和函数性质定理幂级数n n nx a ∑∞=0的和函数)(x S 在收敛域上连续;在收敛区间内可“逐项求导”和“逐项积分”,运算前后收敛半径相同,但收敛域可能改变。
逐项求导——1100)()()(-∞=∞=∞=∑∑∑='='='n n n n n n nn n x a n x a x a x S ,),(R R x -∈ 逐项积分——10000001d d d )(+∞=∞=∞=∑∑⎰⎰∑⎰+===n n n n x n n x n n n x x n a x x a x x a x x S ,),(R R x -∈● 注意点:n n n x a ∑∞=0,11-∞=∑n n n x a n 和101+∞=∑+n n n x n a 收敛半径相同,但端点处的敛散性可能改变。
逐项求导是特别注意0次项的求导!● 利用几何级数结论做题——xx n n -=∑∞=110,)1,1(-∈x 步骤:先求收敛半径,收敛域;在收敛区间内,利用和函数性质:逐项求导/逐项积分等求和函数。
第四节 幂函数分解

an x
n
(8.8)
或
a (x x )
n 0 n 0
n
a0 a1 ( x x0 )
an ( x x0 )n
(8.9)
的函数项级数,称为幂函数,其中an(n=0,1,2,…)和
x0均为常数, 并称an(n=0,1,2,…)为幂函数的系数.
i 0 n
为函数项级数(8.7)的部分和. 于是,当x属于函数项
级数(8.7)的收敛域时,有 S ( x) lim Sn ( x).
n
河南工业大学理学院
当|q|<1时,几何级数 q 收敛,且有
n
1 q 1 q n 0
n
n 0
(| q | 1)
n
于是,若令q=x,则函数项级数 x 的收敛域 为(-1,1), 和函数为
un1 ( x) lim | | 1 n u ( x ) n
故幂级数(8.8)发散.因此,R=0.定理证毕.
河南工业大学理学院
注意,求出幂级数(8.8)的收敛区间(-R,R)之
后,还需判别x=-R和x=R时的级数 an ( R) 和
n
a R 的敛散性. 称区间[-R,R) 或 (-R,R]或
河南工业大学理学院
对于收敛域中的每一个x,函数项级数(8.7)都
有唯一确定的和(记为S(x))与之对应. 因此
u ( x) S ( x)
n 0 n
(x属于收敛域)
是定义在收敛域上的一个函数. 称S(x)为函数项级 数(8.7)的和函数, 并称
Sn ( x) u0 ( x) u1 ( x) un ( x) ui ( x)
幂级数

∞
∞
以 给 级 的 敛 径 所 所 幂 数 收 半 R =1.
1 当x =1时 级 为 和 数∑ 发 . , 数 调 级 散 n=0 n ∞ (−1 n ) x = −1时 级 为 错 数∑ 当 , 数 交 级 , 敛 收 . n n=0 所 该 数 收 域 [−11 ; 以 级 的 敛 为 ,)
分 算 积 运 ∞ ∞ x ∞ x x an n+1 n n ∫0 ∑anx dx = ∑∫0 anx d x = ∑n +1x = ∫0 S(x)dx n=0 n=0 n=0 收 半 仍 且 敛 径 为 R.
xn+1 ) 例 5 求 数∑(−1 n xn ,∑x2n ,∑ 级 , n=0 n=0 n +1 n=0 ∞ ∞ ∞ (−1 n xn+1 ) x2n+1 ,∑ ,∑nxn−1 的 函 . 和 数 ∑ n+1 n=0 2n+1 n=0 n=0
anxn = a0 + a1x + a2x2 +L+ an xn +L , ∑
n=0 ∞
当 0,且 设 n 充 大 , an≠ 且 分 时 0,
an+1 lim =ρ , n→ a ∞ n
则
un+1 an+1xn+1 a lim = lim = lim n+1 ⋅ x = x ⋅ ρ. n→ u ∞ n→ ∞ a xn n→ a ∞ n n n
幂级数

15
x 例2 n 0 n !
解
n
1 lim n ( n 1) !
1 1 l im 0, n ! n n 1
R , 即收敛域为(,) .
例3 解
n! x
n 0
n
n! R lim 0 , 仅在 x 0 处收敛 . n ( n 1) !
n 0
n 0
项积分公式:
0
x
n a x ( a x ) d x S ( x ) dx n n dx
x
n
x
0
a n n1 x , n 0 n 1
n 0
n 0
0
且收敛半径仍为R.
20
性质 3 S( x) 在( R, R) 内可导,且有逐项求导公式:
n 因此级数 a x n (绝 对)收 敛 ; n 0
8
(2) 设当x x2时级数发散 ,
假如有一点 x0 适合| x0 | | x2 | 使级数收敛,
由(1)结论, 则级数当 x x2 时应收敛 , 这与所设矛盾. 几何说明 收敛区域 发散区域
R
16
例4
(1)
n1
n
2
1 n (x ) . 2 n
2 n1 n1 1 lim , n 1 n 2 n 2
n
an 2n | lim 解 R lim| n a n n n1
1 1 即 | x | 收 敛, x (0,1) 收敛, 2 2 1 当 x 0 时, 级 数 为 , 发散 n 1 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 | an | 1 | an |
n n
存在或为 , 则收敛半径为 R lim
n n
性质
定理4
设幂级数 a n x 与 bn x 的收敛半径分别为
n n n0 n0
R1与R2 , 令R min R1 , R2 , 则在它们的公共收 敛区间( R, R )上, 有 : (1) 级数 a n x n bn x n 收敛, 并且
k 1 n
若 un ( x0 ) 收 敛, 则 称 x0 为 函 数 项 级 数 un ( x ) 的
n 1 n 1
收敛点,收敛点的全体称为收敛域。类似地 有发散点和发散域的定义。
对于任一 x 收敛域 B, un ( x ) 收 敛,因 而 有 一 个
n 1
确定的和 S( x) , 称 为 和 函 数 , 和函数的定义域就 是级数的收敛域 B.
定义1
定理 2 中的正数 R 称为幂级数 a n x 的收敛半径,
n n0
对应的开区间( R, R ) 称为它的收敛区间.
幂级数的收敛域可能包含端点(而收敛区间只能 是开区间):
x 0 处收敛时, 规定: (1) 当幂级数只在
{0}; R 0, 收敛域为
(2) 当幂级数对一切实数都 收敛时,
( 3) S ( x )在收敛区间( R, R )内可积, 并且可以逐项 积分, 即x ( R, R ), 有
S t dt
x 0
x 0
n ant dt n0
x n
an a n t dt x n 1 0 n0 n0 n 1 积分后所得幂级数与原 幂级数有相同的 收敛半径.
若级数 un 在D上处处收敛, 则称Rn S S n
n 1 k n 1
u
k
为该级数的余项, 并且
lim Rn ( x ) 0( x D ).
n
幂 级 数
定义:
形如 an x a0 a1 x a2 x an x
n 2 n n0
例 2
( 1) x 求 ( )n 收 敛 域 n 2x 1 n 1 1 x 1或x 3
n
例 3
求下列幂级数的收敛半径、收敛区间与
收敛域:
( x 1) (1) n n 1
n
xn ( 2) 1 1 1 n 1 1 2 3 n
函数项级数
函数项级数的处处收敛性
设un ( x )是定义在集合 D R上的一列函数 ( 称为函 数列), 将它的各项依次用加号 联结起来所得到的 表达式 : u1 u2 un 或
u
n 1
n
称为集合D上的函数项级数, un 称为它的通项. 前 n 项之和S n uk 称为它的部分和.
几何说明
绝对收敛区域
发散区域 R
O
R
发散区域
x
幂级数收敛区间关于原点对称!
定理2 幂级数 a n x n的收敛性仅有三种可能 :
n0
(1) 对于任何x R它都收敛, 并且绝对收敛 ; ( 2) 仅在x 0点收敛; ( 3) 存在一个正数 R,当 | x | R时绝对收敛,当 | x | R 时发散.
逐项求导或积分后所得到幂级数收敛半径不变。 但在收敛区间端点处的敛散性可能改变。
例 1 设 an ( x 2)n 在x 3处条件收 敛,
n 1
试求其收 敛区间。 若 an ( x 1)n 在x 3处 收 敛 , 在 x 1
n 1
处 发 散 , 则 其 收 敛 区为 间多 少 ?
R , 收敛区间为 (, );
定理3
an 设有幂级数 a n x , 若a n 0, 并且 lim n a n0 n 1
n
an 存在或为 , 则收敛半径为 R lim n a n 1
定理3
设有幂级数 a n x , 若a n 0, 并且 lim
或者 an ( x x0 )n a0 a1 ( x x0 )
n0
a 2 ( x x0 ) 2 a n ( x x0 ) n 的函数项级数称为 幂级数.
定理1(Abel定理)
对于幂级数 a n x n , 下列命题成立:
n0
(1) 若它在点x 0 0处收敛, 则当 | x || x 0 | 时, 该级 数绝对收敛; ( 2) 若它在点x 0 处发散, 则当 | x || x 0 | 时, 该级数 发散.
定理5(内闭一致收敛性)
设幂级数 a n x 的收敛半径为 R,0 R ,
n n0
则它在其收敛区间 ( R, R )内的任何闭子区间 [a , b]上都是一致收敛的 .
定理6
设幂级数 a n x 的和函数S ( x ), 收敛半径为R,
n n0
则下列命题成立: (1) S ( x )在收敛区间 ( R, R )内是连续的, 即 S ( x ) C ( R, R ); ( 2) S ( x )在收敛区间 ( R, R )内有连续的导 数 , 并且可以逐项求导 , 即x ( R, R ), 有 n n 1 S ( x) an x na n x n 1 n0 求导后所得幂级数与原 幂级数有相同的收敛半 径;
n0 n0
a n x bn x ( a n bn ) x
n n n0 n0 n0
n
(其中 , R )
( 2) 它们的乘积级数收敛 , 并且
n n n an x bn x cn x n0 n 0 n0 其中c n a 0 bn a1 bn 1 a n b0