塑性力学基本理论

合集下载

塑性力学的基本概念和应用

塑性力学的基本概念和应用

塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。

它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。

本文将介绍塑性力学的基本概念和应用。

一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。

以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。

当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。

而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。

2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。

屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。

3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。

真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。

二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。

1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。

通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。

2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。

通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。

3. 地震工程:塑性力学在地震工程中的应用也很重要。

通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。

这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。

4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。

本文将简要介绍弹塑性力学的基础理论和一些应用领域。

一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。

根据胡克定律,应力与应变成正比。

弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。

弹性模量是弹性力学的重要参数,表征了材料的刚度。

2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。

当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。

塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。

3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。

它考虑了材料在弹性和塑性行为之间的转换。

在某些情况下,材料可以同时表现出弹性和塑性特性。

弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。

二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。

通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。

在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。

2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。

结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。

通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。

3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。

弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。

在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。

4. 金属加工金属的塑性变形是金属加工过程中的核心问题。

弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。

总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。

塑性力学

塑性力学

塑性力学研究报告一、 研究内容1.1经典塑性力学基本理论经典塑性理论研究在二十世纪50年代已经成熟,主妥结果已总结在H 川的名著“塑性数学理论”L ’J 和PragCr&HodgC 的名著“理想塑性的固体理论”中。

经典塑性理论的三条基本假设:(1)传统塑性势假设;(2)关联流动法则假设,假设屈服面与塑性势面相同;(3)不考虑应力主轴旋转假设。

1.2塑性力学的研究热点最近几十年,岩土塑性力学的兴起促进了塑性力学的发展,近30年国际上出现了非关联流动法则与多重屈服面模型,在一定程度上修正了经典塑性力学理论上的不足,提高了计算的准确性。

广义塑性力学正是由于经典塑性力学不适应岩土类摩擦材料的变形机制而产生。

广义塑性力学成为了近几十年来塑性力学的研究热点。

1.2.1广义塑性力学基本理论广义塑性理论包括:1、不记主轴旋转的广义塑性位势理论;2、主轴旋转的广义塑性位势理论3、广义塑性力学的屈服面理论;4、广义塑性力学中的硬化定律5、广义塑性力学中的应力应变关系。

1.2.1.1不记主轴旋转的广义塑性位势理论保留传统塑性位势理论的第(2)假设,即消除(1)、(3)条假设,那么式可以写成:31p k ij k k ijQ d d ελσ=∂=∑∂ (1.2.1.1.1) 当不考虑应力主轴旋转时,杨光华在不借助任何假设条件下引用张量定律导出了式(1.2.1.1)。

应力和应变都是二阶张量,按张量定律必有: 31pp k ij k k ijQ d d εεσ=∂=∑∂ (1.2.1.1.2) 式中k σ与k ε分别为三个主应力和主应变。

根据梯度的定义有:31p k i k k iQ d d ελσ=∂=∑∂ (1.2.1.1.3) 式中k Q 是三个任意的线性无关的势函数,将(1.2.1.3)代入式(1.2.1.2)即可得式(1.2.1.1)。

可以认为式(1.2.1.1)就是未考虑主应力旋转情况下的广义塑性位势理论或称为广义塑性流动法则。

《弹塑性力学》第十一章塑性力学基础

《弹塑性力学》第十一章塑性力学基础
几何方程
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。

塑性力学-塑性本构关系

塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。

Il’yushin(伊柳辛)理论。

•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。

Levy-Mises理论和Prandtl-Reuss理论。

3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。

第六章 塑性力学基本概念

第六章 塑性力学基本概念
塑性力学
第六章 塑形力学的基本概念
6.1绪论 绪论 什么是塑性力学? 什么是塑性力学? •塑性力学是相对于弹性力学而言。 塑性力学是相对于弹性力学而言。 塑性力学是相对于弹性力学而言 •在弹性力学中,物质微元的应力和应变之间具有单一 在弹性力学中, 在弹性力学中 的对应关系。然而, 的对应关系。然而,材料在一定的外界环境和加载条 件下,其变形往往会具有非弹性性质, 件下,其变形往往会具有非弹性性质,即应力和应变 之间不具有单一的对应关系。 之间不具有单一的对应关系。 非弹性变形包括塑性变形和粘性变形: 非弹性变形包括塑性变形和粘性变形:
塑性变形- 塑性变形-指物体在除去外力后所残留下来的永 久变形,习惯上按破坏时的变形大小分为塑性和脆性, 久变形,习惯上按破坏时的变形大小分为塑性和脆性, 如果材料的延性好,进入延性仍能承受荷载。 如果材料的延性好,进入延性仍能承受荷载。 塑性力学来研究这类问题。 塑性力学来研究这类问题。
粘性变形随时间而改变,例如蠕变、应力松弛等, 粘性变形随时间而改变,例如蠕变、应力松弛等, 这里不研究。 这里不研究。
σ ≤σs,
ε=
σ
E
σ > σs,
ε=
σs
E
+
σ −σ s
Et
O
A
E
刚性线性强化模型 问题:卸载 线怎样描述 线怎样描述? 问题:卸载BE线怎样描述?
εp
ε
εe
3、幂指数硬化模型: 、幂指数硬化模型:
将硬化阶段的曲线简化为一条幂指数曲线,
σ ≤ σs,
σ > σs,
ε=
σ
E
σ σb B σs σp A’ A C
6.2 材料实验结果
一、单轴拉伸实验 • 材料塑形变形性质通过试验研究获得。 材料塑形变形性质通过试验研究获得。 • 最简单实验是室温单轴拉压实验: 最简单实验是室温单轴拉压实验: •材料:金属多晶体材料 材料: 材料 •试件如图 试件如图 •名义应力和名义应变定义为 名义应力和名义应变定义为

塑性力学基础知识ppt课件

塑性力学基础知识ppt课件
• 由于材料的屈服极限是唯一 的,所以 应该用应力或应力的组合作为判断材 料是否进入了塑性状态的准则。
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学
对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1)
E
G μ=
+。

广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力:
x y z σσσΘ=++,则:12E
ν
θ-=
Θ。

各向同性体的体积改变定律:3(12)
m E
K σθθν=
=-.其中体积模量:
3(12)
E
K ν=
-
弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而
处于平衡时,体内各点的应力分量、应变分量的解是唯一的。

塑性力学
从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。

研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。

屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有:
(1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关;
(3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。

在弹性区,
加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。

这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑
性边值问题,再次是根据不同的具体情况寻求数学计算方法求解塑性边值问题。

塑性变形的特点:
(1)应力-应变关系的非线性;
(2)应力与应变间不存在单值对应关系,同一个应力可以对应不同的应变,反过来也是如此,这种非单值性具体来说是一种路径相关性;
(3)由于塑性应变不可恢复,所以外力所做的塑性功具有不可逆性,或耗散性,在一个加载卸载的循环中外力做功恒大于零,这一部分能量被材料的塑性变形所消耗。

应力张量的分解:
描述一点应力状态的应力张量ij σ可进行下列张量分解表示:
00
00
x xy xz m
x m
xy xz ij yx y yz m
yx y m yz zx zy z m zx
zy z m σττσσσττστστστσστττσσττσσ⎡⎤⎡⎤
-⎡⎤⎢⎥⎢⎥
⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦
引入克罗内克尔符号ij δ,则有:
应力球张量:0
00
00
m
m i j m
m σσδσσ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
应力偏量:x m
xy xz i j yx
y m yz zx zy z m S σστττσστττσσ⎡⎤
-⎢

=-⎢⎥⎢⎥-⎣⎦
则:i j m ij ij S σσδ=+,物体内任一点处的应力张量可以分解为应力球量和应力偏量。

应力球张量只能引起微元体的体积改变,而不能引起其形状的改变。

应力偏张量表示实际应力状态对其平均应力的偏离,它引起微元形畸变。

试验证明,材料屈服后产生的塑性变形基本上是畸变变形,即应力偏量引起材料塑性变形。

应力偏张量ij S 也是一种应力状态,其主方向与应力主方向相同,它同样也存在不变量。

罗德参数:21313
2σσσσμσσ--=
-
对于单向拉伸:23100=-1σσσσμ==>,,; 纯剪:2131=00-=0σσσσσμ>=,,<0,; 单向压缩:213=0=1σσσσμ=,<0,;
在塑性流动理论中,认为应力状态不是简单地决定与应变状态,而是决定于应变增量、应变速率。

全量应变:微元体在某一变形过程终了时的应变大小,称为全量应变。

是相对位移u δ、v δ、w δ产生的。

应变增量:以物体在变形过程中某一瞬时的形状尺寸为原始状态,在此基础上产生的无限小位移增量du 导致的应变称为应变增量d ε。

在无限小时间间隔dt 内,变形体内各点的位移增量的分量为:i i du u dt =,对应位移增量i du ,有应变增量ij d ε。

ij d ε与i du 之间的关系,也即几何方程,形式上和应变与位移的关系一样,是一个二阶对称张量。

与应变张量一样,有主方向。

应变速率:
ij d dt
ε表示单位时间内的应变,叫做应变速率张量,以ij ε∙
表示,
12j
i ij j i
u u x x ε∙
⎛⎫
∂∂=+
⎪ ⎪∂∂⎝⎭
屈服条件和屈服面:在复杂应力状态下,初始弹性状态的界限称为屈服条件。

如果以ij σ作为坐标轴,屈服条件用()0ij F σ=表示;则应力空间中()0ij F σ=将表示一个曲面,称为屈服曲面。

应力空间:以123,,σσσ作为坐标轴的空间,称为应力空间。

由初始各向同性假定,屈服曲线不随坐标轴的改变而变化。

若(123,,s s s )是屈服曲线上的一点,则(132,,s s s )也必是屈服曲线上的一点。

进一步假设材料拉伸和压缩时的屈服极限相等,若此,若(123,,s s s )是屈服曲线上一点,则(123,,s s s ---)也是屈服曲线上一点,则屈服曲线有6条对称线,只需实验确定π平面上30 范围内的屈服曲线,然后利用对称性,就可以确定整个屈服曲线。

Tresca 屈服条件:最大剪应力达到某一极限值k 时,材料发生屈服,这就是
材料力学中的第三强度理论。

该理论假设材料一旦达到屈服,就算达到强度极限了。

其在π平面上是正六角形,在主应力空间中是一个正六边形柱面,柱面的母线平行于等倾线。

k 的确定方法:简单拉伸试验来定:2
s
k σ=
;用纯剪试验来定:
s k τ=。

在π平面上,如果在简单拉伸时,两种屈服条件重合,则Tresca 六边形将内接于Mises 圆。

并有:
Mises:2
'
2
3
s J σ=
;Tresca :max 2
s
στ=
纯剪实验时,两种屈服条件重合,则Tresca 六边形将外切于Mises 圆,并有:
Mises:'22s J τ=;Tresca :max s ττ=。

加载方式:
1.简单加载:简单加载是指加载过程中应力张量各分量与某一参数t 成比例增大,这样在加载过程中,不但各应力分量成比例地增大,且应力主轴方向保持不变,这时应变分量也成比例增大,应变主轴也保持不变,故也是“简单变形”的情况。

2.复杂加载:复杂加载是指加载过程中应力分量之间无一定关系,这时应力分量的比值和应力主轴的方向就随着荷载变化而改变。

加载准则:
1.理想塑性材料的加卸载准则:理想塑性材料的加载面和屈服面是一样的,由于屈服面不能扩大,d σ不能指向屈服面外。

总之,只要应力增量保持在屈服面上就称为加载,返到屈服面以内就称为卸载。

2.理想塑性材料的加卸载准则:对于强化材料,加载面在应力空间中将不断变化,与理想塑性不同之处是加载面允许向外扩张。

增量理论:塑性本构关系与弹性本构关系的最大区别在于应力与应变之间一般不再存在一一对应关系,只能建立应力与应变增量之间的关系,这种用增量形式表示的塑性本构关系称为增量理论或流动理论。

列维-米塞斯增量理论:3,2p
p i
ij i j i
s εελλσ⋅



==
理想弹塑性材料的普朗特-罗伊斯增量理论:这一理论是针对理想弹塑性材料建立的,并且认为小弹塑性变形时,即弹性应变与塑性应变相比属于同量级时,弹性应变不能忽略,本构方程中应当计入弹性应变部分。

1322p
i i j i j i j i
e s s G εσ⋅

⋅=+
强化材料的增量本构关系:引用沿着应变路径L 积分的等效塑性应变总量
p i L
d ε⎰
来描述强化程度,即有函数E 的关系式:()p i i L
d σε=E ⎰这一函数E 也可以
由单一曲线假设的单向拉伸或纯剪切实验加以确定。

形变理论(全量本构关系)
全量理论(形变理论)该理论认为应力和应变之间存在一一对应的关系,因为由应力ij σ和应变的终值(全量)ij ε建立起来的塑性本构方程称为全量理论,或成为形变理论。

全量理论的应力与应变关系可写成:2(),312i i i j i j kk kk i E
s e σεσεεν

==-,这组关系称为伊留申理论。

简单加载定理:简单加载是指单元体的应力张量各分量之间的比值保持不变,按同一参数单调增长。

不满足这一条件的称为复杂加载。

相关文档
最新文档