干熄焦
干熄焦

这几个有利因素可使焦炭冷却时间的差别降低,排焦温度趋于一致。惰性循环气体在干熄炉冷却段与焦炭逆流换热,升温至900~960℃后进入干熄焦锅炉。由于气体循环系统负压段会漏进少量空气,O2通过红焦层就会与焦炭反应,生成CO,CO2在焦炭层高温区又会还原成CO,随着循环次数的增多,循环气体里CO浓度愈来愈高。此外,焦炭残存挥发分始终在析出,焦炭热解生成的H2、CO、CH4等也都是易燃易爆成分,因此在干熄焦运行中,要控制循环气体中可燃成分浓度在爆炸极限以下。一般有两种措施可以进行控制,其一,连续地往气体循环系统内补充适量的工业N2,对循环气体中的可燃成分进行稀释,再放散掉相应量的循环气体;其二,连续往升温至900~960℃引出的循环气体中通入适量空气来燃烧掉增长的可燃成分,经锅炉冷却后再放散掉相应量的循环气体。这两种方法都可由安装在循环气体管道上的自动在线气体分析仪所测量的循环气体中CO的浓度来反馈调节。后一种方法更经济便利 。
" _. W/ |$ c- D. }0 e
另外,除尘地面站通过除尘风机产生的吸力将干熄炉炉顶装焦处、炉顶放散阀、预存段压力调节阀放散口等处产生的高温烟气导人管式冷却器冷却;将干熄炉底部排焦部位、炉前焦库及各皮带转运点等处产生的高浓度的低温粉尘导入百叶式预除尘器进行粗分离处理;两部分烟气在管式冷却器和百叶式预除尘器出口处混合,然后导人布袋式除尘器净化,最后以粉尘质量浓度低于100 mg/m3的烟气经烟囱排入大气。
干熄焦原理及工艺流程

干熄焦原理及工艺流程
干熄焦是一种将煤焦炭从高温状态中迅速冷却至室温的过程,这样可以防止煤焦炭发生自燃或继续燃烧。
干熄焦的工艺流程一般包括以下几个步骤:
1. 放料:将高温煤焦炭从焦炉中排出,通过焦焊机或其他设备将煤焦炭放入炉计量装置。
2. 输送:使用输送设备,将煤焦炭送入冷却装置。
3. 冷却:煤焦炭在冷却装置中进行快速冷却,一般采用循环水或气体冷却的方式,以吸收煤焦炭中的热量,将其冷却至室温。
4. 分选:将冷却后的煤焦炭进行分选,去除其中的杂质和细颗粒物,以获得高质量的焦炭产品。
5. 包装和出库:经过分选后的焦炭产品,进行包装和存储,以便后续运输和销售。
整个干熄焦的过程需要严格控制冷却温度和冷却时间,同时也需要对冷却设备进行维护和保养,以确保生产出高质量的焦炭产品,并保证生产安全。
干熄焦工艺技术

干熄焦介绍•一、干熄焦原理简述•二、干熄焦工艺流程•三、干熄焦主要设备干熄焦原理简述干熄焦是采用惰性气体将红焦冷却的一种方法。
在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓入干熄炉冷却室红焦层内,吸收红焦热量,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,循环使用。
干熄焦在节能、环保和改善焦炭质量方面优于湿熄焦。
干熄焦优点干熄焦装置具有工艺先进、环保、节能效益显著的特点,在钢铁联合企业中应用,可提高焦炭质量,降低入炉焦比,提高高炉生产能力,降低钢铁生产中的成本;又能从炽热的焦炭中回收热能产生蒸汽获得直接的经济效益。
从环保的角度看,建设干熄焦装置,可以减少因湿法熄焦排放大气中的水蒸汽夹带的酚氰等有害物质和粉尘污染,大大提高周边地区空气质量。
干熄焦工艺流程图干熄焦控制系统干熄焦控制系统分为:一、红焦装入系统二、冷焦排出系统三、干熄炉及供气装置四、气体循环系统五、锅炉系统六、水处理系统工艺简述一、红焦装入系统电机车牵引焦罐台车与拦焦车对位后,旋转焦罐开始旋转,旋转平稳后向推焦车发出推焦指令,接焦完毕后,旋转焦罐经减速位置停止在最初的停止位置上,完全停稳后,电机车牵引焦罐台车走行至干熄炉提升井架底部,经 APS 定位夹紧后,接空罐。
随即满灌对位与提升,将装满红焦的焦罐提升至提升井架上极限,到达上极限后,提升机开始走行,达干熄炉上方时,装入装置也打开到位,提升机即开始卷下,焦罐落座后,提升机继续卷下,焦罐底门在重力作用下与吊杆继续下降,自动完成开门放焦动作。
红焦落入装入装置料斗后,经分料板与料钟布料均匀地装入干熄炉。
干熄焦红焦装入设备由电机车、焦罐台车、旋转焦罐、APS 定位装置、提升机、装入装置以及各极限感应器等设备组成,起着接焦、送焦及装焦等作用。
电机车运行在焦侧的熄焦轨道上,用于牵引、制动焦罐台车,控制圆形旋转焦罐的旋转动作和完成接受红焦任务。
煤化工干熄焦

1.干熄焦简介所谓干熄焦,是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。
在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓人干熄炉冷却段红焦层内,吸收红焦显热,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体流经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,惰性气体在封闭的系统内循环使用。
干熄焦在节能、环保和改善焦炭质量等方面优于湿熄焦。
2.干熄焦历史干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。
进人60年代,前苏联在干熄焦技术方面取得了突破进展,实现了连续稳定生产,获得专利发明权,并陆续在其国内多数大型焦化厂建成干熄焦装置。
到目前为止,前苏联有40%的焦化厂采用了干熄焦技术,单套处理量在50~70t/h。
但前苏联干熄焦装置在自动控制和环保措施方面起点并不高。
20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展。
资源相对贫乏的日本,率先从苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行改进。
到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力在100 t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200 t/h以上;装焦方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低,极大地降低了干熄焦装置的建设投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。
日本的干熄焦技术不仅在其国内被普遍采用,同时它将干熄焦技术输出到德国、中国、韩国等国家,其干熄焦技术已达到国际领先水平。
20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。
干熄焦技术介绍

干熄焦技术介绍1 技术简介干熄焦(CDQ)是替代传统湿熄焦一项新技术。
干熄焦采用惰性气体冷却炽热焦炭,并回收余热产生蒸汽的节能技术。
该技术可节约用水、减少大气污染物排放、能够回收大量红焦显热并产生中高压蒸汽、有效提高能源利用效率、同时提高焦炭质量、扩大炼焦煤适应性、降低炼铁工序能耗,最终实现企业的节能减排。
2 主要功能回收利用红焦显热提高焦炭质量产生蒸汽用于发电及其它用途3 技术价值3.1 节能和经济效益明显●焦炭显热回收在焦炉的热平衡中被红焦带走的热量相当于焦炉加热所需热量的37%。
湿熄焦无法回收焦炭显热,干熄焦可回收红焦热量的80%,每熄1吨红焦可回收0.55t 蒸汽,发电130kwh。
●水的消耗湿熄焦吨焦耗水0.45吨,干熄焦熄焦过程中不耗水。
●高炉生产率才用干熄焦的焦炭,炼铁高炉的焦比降低2%~3%,高炉生产能力提高1%。
3.2 环境效益明显湿熄焦会对环境产生大量的污染:一是红焦在熄焦塔内用水喷洒时产生大量的水蒸汽,并夹带大量粉焦散发,另一方面会产生大量的酚、氰化合物和硫化合物等有害物质,严重腐蚀周围设备并污染大气。
干熄焦采用惰性循环气体在密闭的干熄炉内对红焦进行冷却,基本没有大量气体和液体外泻,可以免除酚、氰化合物和硫化合物等有害物质对周围设备的腐蚀和对大气的污染。
通过对焦粉的收集和处理,最后以高净化烟气排入大气(粉尘质量浓度低于50mg/m3)。
3.3 可提高焦炭质量干熄焦后焦炭机械强度、耐磨性、反应后强度均有明显提高,反应性降低。
采用干熄焦,焦炭块度的均匀性提高,这对于高炉也是有利的。
干熄焦比湿熄焦焦炭M40提高3~8%,M10降低0.3~0.8%,反应性有一定程度的降低。
干熄焦与湿熄焦焦炭质量对比3.4 扩大炼焦煤源在保持焦炭质量不变的情况下,采用干熄焦可在配煤中多用15%的弱粘结性煤,有利于保护资源和降低焦炭成本。
4 主要原理干熄焦是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。
干熄焦工艺

图3 料钟、给水预热器安装后对操作的影响
4.1.3 旋转焦罐
4.1.4 锅炉水冷壁
4.1.5
排出装置
4.1.6
多管除尘器
4.1.7 控制系统
4.2. 参数的合理性 4.3 工序衔接的合理性
4.4 功能考核指标
干熄焦系统运行管理技术
宝钢分公司炼焦分厂
一、干熄焦简介
1.干熄焦的原理
干熄焦英语缩写CDQ(coke dry quenching ),其原理就 是用惰性气体吸收红焦显热,惰性气体吸收热量后,在锅炉放热, 不断循环,使红焦得到冷却,锅炉产生蒸汽。
热载体(循环气体) 中压蒸汽 热源 (红焦) 热交换器 (锅炉)
如果不加以控制,可燃可爆成份会越来越高。 宝钢控制标准:
N2: 70~75%, CO2:10~15%, CO:8~10%, H2: 2~3%, O2: 0~0.2%
通过长期的运行证实,这个标准切合实际的。 控制手段:燃烧,充氮气
3.3 锅炉入口温度、排焦温度、蒸汽产率的控制 锅炉入口温度: 1.排焦量,2. 循环风量 3. 气体导入量 (锅炉的操作是干熄焦较复杂的操作,需要专门培训,并需要专 业部门颁发上岗证) 排焦温度: 排焦量 2. 循环风量 蒸汽产率: 1. 风料比 2. 空气导入量
3. 4. 5.
蒸汽产率 蒸汽参数 锅炉入口温度
3.2 循环气体成分控制
干熄焦采用氮气作为热载体只是理想状况,实际上在循环系统负 压段会漏进少量空气,焦炭有残余挥发份中有H2析出。 空气中的氧通过红焦层就会与焦炭反应,生成CO,CO2, C+O2=CO2 C+O2=2CO 空气中的水份通过红焦层与焦炭反应: C+H2O=CO+H2 并且而循环气体重点CO2在焦炭高温区又会还原成CO CO2+C=2CO
干熄焦知识
我国干熄焦技术装备应用与发展干熄焦(CDQ)是相对湿法熄焦而言。
湿法熄焦在我国焦化厂普遍使用,但在湿法熄焦过程中大量含有HCN、H2S、NH3、酚类及粉尘等有害物质的蘑菇云湿蒸汽排入大气。
严重污染环境,不仅浪费大量热能,同时又消耗了大量熄焦水,影响焦炭质量。
干熄焦是以惰性冷气体氮气为载体,通入干熄焦炉内冷却炽热红焦炭,使火红焦炭由1100℃冷却至250℃以下。
氮气循环是在密闭系统内完成熄焦过程,基本消除了湿法熄焦排放的有害物质和湿蒸汽。
循环的惰性热气体热量经回收产生蒸汽并发电。
1、干熄焦装备迅速发展我国干熄焦装备技术始于20世纪80年代宝钢从日本引进75t/h CDQ装置,在宝钢共有12套处理焦炭75t/h CDQ装置,1996年济钢投产了处理焦炭70t/h 2套CDQ装置。
2000年前我国焦化企业仅有上述两家有CDQ装置。
随着我国钢铁工业迅速发展,导致焦化企业快速扩张和建设。
为严格控制污染加强环境治理,国家发展改革委员会于2004年发布了《焦化行业准入条件》公告76号文,规范了焦化厂的建设条件,使我国焦化厂配套建设CDQ装置得到迅猛发展。
截止2009年6月,仅四年时间,我国投产和在建CDQ装置增至123套。
其中已投产71套(产能达6000多万t),相应干熄焦年产能达11448万t,占焦碳总产能为35%,在钢铁企业干熄焦率高达50%。
就干熄焦的规模而言,我国居世界首位。
首钢京唐钢铁公司260t/h CDQ是目前世界最先进、最大规格的第二套装置。
2004年前我国还不具备干熄焦技术设计能力,马钢和通钢CDQ装置技术和设备国产化示范顺利投运,为我国自行设计CDQ装置技术奠定了基础。
目前我国CDQ装置从50~260t/h有16种规格。
我国部分企业CDQ装置见表1。
表1 我国部分企业CDQ装置分布情况——————————————————————————————————单位 CDQ装置规格投产时间单位 CDQ装置投产时间数量,t/h 规格数量——————————————————————————————————宝钢 12×75 1985 攀钢 1×145 2006.011×145 2008.5始建鞍钢 4×140 2005.10 涟钢 1×150 20072×160 杭钢 1×75 2006.05.19武钢 2×140 2003.12 鄂钢 1×140 2005.072×140 在建通钢 2×90 2004首钢 1×65 2001 昆钢 1×140 2005.06韶钢迁焦 2×95 2009.6.20 南钢 2×140 2006.072×140 2007 三明 2009.02唐钢 1×150 2006.06 柳钢 1×150 2007.11.281×160 2009-7-201×180 2008.7建宁波 1×140 在建济钢 2×70 1996 太钢 2×150 2008.05.282×150 2006 本钢 2×150沙钢 3×140 2005 梅钢 1×140 2008.06莱钢 2×140 2005.12.28 包钢 3×125 2006-2007马钢 3×125 2004.04 新余 2×90 20082×130 2007.6 1×155首钢京 1×260 2009.5.19唐公司 1×260 在建开滦中润 1×140 2009.6.30安阳钢厂 1×75 2009-7-28山东石 1×95 沙钢 2×140 2008建横特钢——————————————————————————————————2、干熄焦技术特点以某厂干熄焦装置处理能力140t/h为例。
干熄焦发电的工作原理
干熄焦发电的工作原理
干熄焦发电是一种利用焦炭进行发电的技术。
其工作原理如下:
1.焦炭制备:先从煤矿中提取煤炭,然后对煤进行加热处理,使其变成焦炭。
2.焦炭输送:将焦炭运输到干熄焦发电厂。
3.焦炭熄焦:将焦炭放入熄焦炉中进行熄焦处理。
在熄焦炉中,焦炭被加热至高温,然后用氮气、水蒸汽等气体进行冷却,使其熄灭。
4.熄焦气的产生:熄焦过程中产生大量的熄焦气体,其中主要成分为一氧化碳和氢气。
5.燃烧熄焦气:将熄焦气通入发电机组中,与空气混合后进行燃烧,从而驱动发电机发电。
6.发电输出:通过发电机输出电能,供电给用户。
总的来说,干熄焦发电利用焦炭的高温熄焦过程中产生的熄焦气体进行发电。
这种技术具有效率高、燃料来源广泛、对环境污染较小等优点。
干熄焦工艺流程详解
干熄焦工艺流程详解干熄焦是指在焦炉出炉的焦炭在不经过水冷却的情况下进行降温处理的工艺,是一种节能环保的生产方式。
下面将详细介绍干熄焦的工艺流程。
1. 准备工作在正式进行干熄焦之前,需要进行一系列的准备工作。
首先是炉前的清理,将炉口、炉膛、炉底等部位的积灰、结焦等物质进行清理,确保炉内无障碍物。
其次是检查设备的运行状况,确保各设备正常运行。
最后是炉前的安全措施,确保操作人员的安全。
2. 干熄焦过程(1)降温在焦炉出炉后,需要将焦炭进行降温处理,这是干熄焦的第一步。
降温的方法有两种,一种是采用自然降温的方式,即将焦炭放置在通风良好的环境中,通过自然散热的方式进行降温;另一种则是采用机械降温的方式,即将焦炭放置在降温机中进行降温处理。
(2)破碎在降温处理完成后,需要对焦炭进行破碎处理。
破碎的目的是使焦炭的大小均匀,提高其燃烧效率。
破碎的方法有多种,常用的是机械破碎,包括锤式破碎机、齿轮破碎机等。
(3)除尘在干熄焦过程中,焦炭表面可能会附着一些灰尘等杂质,需要进行除尘处理。
除尘的方法有湿法除尘和干法除尘两种。
湿法除尘是将焦炭浸泡在水中进行除尘,干法除尘则是通过风力将焦炭表面的杂质吹走。
(4)包装在除尘处理完成后,需要对焦炭进行包装。
常用的包装方式有袋装和散装两种,根据不同的需要进行选择。
袋装焦炭的包装材料一般为编织袋或纸袋,散装焦炭则需要进行装车运输。
3. 后续处理干熄焦的后续处理包括贮存、运输等环节。
在贮存时需要注意保持环境干燥,防止受潮。
在运输时需要选择合适的车辆和运输路线,尽量避免灰尘飞扬和路面颠簸等情况。
干熄焦是一种环保、节能的生产方式,在焦炭生产中得到了广泛的应用。
通过本文的介绍,相信大家对干熄焦的工艺流程有了更深入的了解。
干熄焦技术问答
干熄焦技术问答一、何为干熄焦?干熄焦是采用惰性气体(如氮气)在干熄炉中与高温焦炭换热,将焦炭冷却到一定温度的工艺过程。
二、干熄焦技术的历史发展?干熄焦技术起源于20世纪50年代的德国,当时主要用于处理高挥发分的烟煤。
20世纪60年代,前苏联开发了100%氧气燃烧产生蒸汽的干熄焦技术。
70年代,日本对低挥发分的焦炭也成功地进行了干熄处理。
80年代,该技术在全球范围内得到了迅速推广和应用。
三、干熄焦与湿熄焦相比有何优势?提高焦炭质量:干熄焦可以降低焦炭中的水分,提高其机械强度和反应性,使其热态性能更优。
环保性能好:干熄焦工艺没有废水排放,减少了水处理设施的投资和运行成本。
节约能源:干熄焦工艺可以回收焦炭显热,产生蒸汽用于发电,提高了能源利用效率。
提高焦炉作业率:干熄焦工艺可以避免湿熄焦时发生的喷炉事故,提高焦炉作业率。
四、干熄焦装置的基本结构是怎样的?装入装置:负责将焦炭从焦炉中装入干熄炉。
排焦装置:负责将干熄炉中冷却后的焦炭排出。
惰性气体循环系统:负责将惰性气体循环使用,包括冷却、除尘、分离、回收等环节。
蒸汽发电系统:负责利用冷却焦炭产生的蒸汽发电。
五、干熄焦的工作原理是什么?高温焦炭进入干熄炉,通过与惰性气体(如氮气)换热,冷却到一定温度后排出。
惰性气体在循环过程中会吸收焦炭的显热,将其转化为蒸汽或用于余热发电。
六、干熄焦技术对环境的影响有哪些?排放物控制:干熄焦工艺会产生一定量的废气,如CO、CO2等,需采取有效措施进行控制和净化。
噪声控制:干熄焦装置在运行过程中会产生一定噪声,需采取有效措施进行控制和降低。
粉尘控制:干熄焦装置在装入和排焦过程中会产生一定量的粉尘,需采取有效措施进行控制和净化。
七、干熄焦技术的经济效益体现在哪些方面?提高焦炭质量:干熄焦技术可以提高焦炭的质量,提高其市场售价和利用率。
能源回收:干熄焦技术可以回收焦炭显热,产生蒸汽用于发电,降低了能源成本。
降低运行成本:干熄焦技术可以降低水处理设施的投资和运行成本,同时减少废气、噪声、粉尘等对环境的影响,降低了环保治理费用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 定义及特征
干熄焦余热发电技术,是指采用循环气体将红焦吹扫降温冷却,利用红焦的显热加热循环气体后,再由循环气体与余热锅炉进行换热,产生蒸汽用来发电的技术。
在这一过程中,循环气体在系统内循环吸热、放热,以间接换热介质的作用来完成整个系统的热量传递,最终实现回收红焦的显热进行发电的目的。
干熄焦余热发电技术具如下优势特征:
(1)节能和经济效益
在焦炉的热平衡中被红焦带走的热量相当于焦炉加热所需热量的37%,干熄焦可回收红焦热量的80%。
干熄焦过程中,被加热的循环气体经余热锅炉换热产生蒸汽,循环气体温度下降后,再循环使用,从而有效地利用红焦的显热,并可将回收的焦粉进行再利用;利用余热锅炉产生的高温高压蒸汽进入汽轮发电机组做功发电,最终将红焦的显热转换为电能,节能及经济效益十分明显。
(2)环境效益
干熄焦采用循环气体在密闭的干熄炉内对红焦进行冷却,可以免除湿熄焦过程中酚、氰化合物和硫化合物等有害物质对周围设备的腐蚀和对大气的污染。
通过对焦粉的收集和处理,最后以高净化烟气排入大气。
(3)提高焦炭质量
干法熄焦过程是在循环气体逆流换热的过程中缓慢而均匀进行的,它没有湿法熄焦过程中存在的剧冷作用,干熄焦后焦炭机械强度、耐磨性、反应后强度均有明显提高,反应性降低。
干熄焦过程中,因料层相对运动,增加了焦块之间的相互摩擦与碰撞,起到了焦炭的整粒作用,提高了焦块的均匀性。
焦炭在预存室保温相当于在焦炉中的闷炉,进一步提高焦块的成熟度,使其结构致密化。
(4)扩大炼焦煤源
在保持原焦炭质量不变的条件下,采用干熄焦可以降低强粘结性的焦、肥煤配入量的10%~20%,有利于保护资源和降低焦炭成本。
2 系统构成
干熄焦余热发电系统主要包括:干熄炉系统、气体循环系统、干熄焦余热锅炉系统、焦粉回收系统、红焦运输系统、冷焦运输系统、检修迁车台系统、地面环境除尘系统、空气压缩系统、汽轮机及发电机组系统、电站循环冷却水系统;电站化学水处理系统;站用电系统;电气接入系统;电站动控制系统;电站室外汽水管道系统;电站室外给水、排水、消防管网系统;以及为上述各系统配套土建、通讯、照明、环保、劳动安全与卫生、消防、供暖等辅助系统。
3 技术要点及主要系统
3.1干熄焦系统主要工艺特点:
(1)干熄炉采用矮胖型炉型,在确保熄焦效果和炉内气料稳定运行工况的前提下,不但可减少干熄炉内循环气体阻力,减少循环气体量供应动力;又可使相应配套的提升机整体框架结构和一、二次除尘器钢结构高度降低,节省工程一次投资。
根据顶装焦及捣固焦不同的特点对干熄炉进行区别设计。
(2)在炉顶设置料钟式布料器,克服由于装入焦炭粒径偏析以及装入焦炭的料位高差,使干熄炉内的循环气体流速不均匀等弊端,起到减少循环气体量的目的。
(3)在干熄炉下部鼓风装置与主循环风机之间设置锅炉副省煤器,使干熄炉入口处的循环气体温度降至120~130℃左右,确保平均排焦温度<200℃。
(4)采用连续排焦,进一步稳定炉内下料工况与压力,使焦炭下落均匀,并在其上部排焦口设置导流棒,更好地控制焦炭均匀下降不偏流。
(5)根据干熄炉各部位的工艺特点,采用不同性能的功能型耐火材料。
在耐火材料选取上除保证耐材一般理化指标外,还必须兼顾耐材的高强耐磨性与耐急冷急热性,特别是在斜风道等关键部位。
(6)加强各主循环具体环节上的密封性能,减少冷空气的吸入(负压段)、有毒气体的排出(正压段)。
在干熄炉上部设置空气导入装置、在副省煤器上部设置循环气体放散装置及对高温循环气体在一次除尘器入口处的降温装置。
(7)在循环气体各放散口均设环保除尘收集装置,确保干熄焦主体设备各气体排放符合国家环保要求。
(8)一次除尘器出灰口上部设置中间挡墙,增加一次除尘器除尘效果,减少后部除尘压力,同时,对其下部粉尘的排出情况进行检测。
(9)炉顶水封增设压缩空气吹扫管,防止水封槽中焦粉堆积。
(10)采用旋转焦罐,既可保证焦罐内焦炭分布均匀,又减少了焦罐本身的重量及维护工作量。
(11)对于捣固焦干熄焦以及市场性质的焦化厂项目,针对其不同的特点,为保证循环风机的使用寿命,二次除尘采用二级除尘的方式,使进入循环风机的循环气体含尘量在各种工况下均能满足设计要求。
(12)热力系统采用高温高压参数,尽可能的提高电站发电效率;余热锅炉采用全自然循环系统。
(13)回收利用焦炉烟道气余热产生低压过热蒸汽,用于热力除氧系统和焦化生产用汽。
3.2主要系统工艺流程
(1)干熄炉系统:经推焦车将焦化炉内的红焦推入放置在焦罐车上的旋转焦罐内,每个焦罐可容纳一孔焦炉炭化室的全部焦炭。
焦罐车由电机车牵引至干熄焦装置提升井架底部,经APS定位系统定位后,由提升机将焦罐提升并送至干熄炉炉顶,自动打开焦罐底板通过带布料器的装入装置将焦炭装入干熄炉内。
在干熄炉中焦炭与惰性气体直接进行热交换,焦炭被冷却至180~200℃左右,经排焦装置卸到带式输送机上,然后送往焦处理系统。
焦罐装焦完毕后,焦罐底板自动关闭,经提升机送回提升井下部的焦罐台车空位上,再将另一个装有红焦的焦罐送至干熄炉炉顶,此时电机车牵引焦罐台车将空焦罐送至焦炉炭化室出焦处,再装入红焦,完成整个焦炭冷却及输送。
一、二次除尘器以及余热锅炉分离出的焦粉,由专门的输送设备将其收集在贮槽内,加湿后外运。
(2)循环气体系统:循环风机将冷却焦炭的惰性气体从干熄炉底部的供气装置鼓入干熄炉内,与红热焦炭逆流换热。
自干熄炉排出的热循环气体的温度约为850~960℃,经一次除尘器除尘后进入干熄焦余热锅炉进行换热,温度降至160~180℃;由余热锅炉出来的循环气体经二次除尘器除尘后,再由循环风机加压,再经水预热器将循环气体冷却至120~130℃后进入干熄炉循环使用,完成整个循环气体循环。
(3)余热锅炉、汽轮机发电系统:余热锅炉与循环气体换热产生高温高压蒸汽进入汽轮机作功发电,乏汽经冷凝器冷凝后送入疏水箱;疏水箱的水经疏水泵分两路:一路送入水加热器(副省煤器);一路做为烟道气余锅炉的给水;经水加热器加热后的水进入除氧器除氧,除氧水经给水泵送入余热锅炉省煤器,省煤器将给水加热为饱和水送入锅炉汽包;汽包内的水经下降管进入蒸发段变为汽水混合物后回到汽包,饱和蒸汽经汽水分离后进入过热器进行过热后进进入汽轮机,完成整个汽水循环。
(4)化学水处理系统:选择工艺成熟、操作方便、运行操作费用低的锅炉补给化学水处理系统,采用预处理+反渗透+脱炭塔+混床工艺。
(5)环境除尘系统:干熄焦装置的装料、排料、预存室放散及风机后放散等处的烟尘均进入干熄焦地面除尘站,除尘后放散。
干熄焦余热发电系统流程见附图4-1
循环气体系统流程见附图4-2
干熄炉系统流程见附图4-3
图4-1:干熄焦余热发电系统流程图
图4-2:循环气体系统流程图
图4-3:干熄炉系统流程4 典型技术指标。