列车制动距离及计算
列车制动距离规定

列车制动距离规定列车制动距离是指列车从开始刹车到完全停止所需的距离。
它是一个非常重要的概念,与列车运行的安全性直接相关。
因此,各国铁路部门都对列车制动距离制定了相应的规定。
首先,我们需要明确列车制动距离的计算方法。
列车制动距离由两部分组成:制动缓冲距离和制动停车距离。
制动缓冲距离是列车在开始刹车时由于惯性而继续前行的距离。
它又可分为两部分:空转距离和非空转距离。
空转距离是指列车在刹车时,车轮和钢轨之间没有直接接触,而是通过制动装置传递制动力的距离。
它由制动装置和车轮之间的接触时间决定,一般为几百米。
非空转距离是指列车开始刹车后,车轮和钢轨之间开始有直接接触,并产生制动力的距离。
它由列车的速度、列车的制动能力和车轮与钢轨之间的摩擦系数等因素决定。
一般来说,非空转距离较空转距离短,但也会因列车制动系统的特性而有所差异。
制动停车距离是列车从开始刹车到完全停止的距离。
它由列车的运行速度、列车的制动能力、列车的质量和车轮与钢轨之间的摩擦系数等因素共同决定。
一般来说,制动停车距离会比制动缓冲距离更长。
各国铁路部门针对列车制动距离制定了相应的规定,主要是为了保证列车的安全运行。
制动距离规定的主要目的是确保列车在任何情况下都能够及时制动停车,以防止发生事故。
因此,根据列车的类型和速度等不同情况,制动距离规定也会有所不同。
在美国,联邦铁路管理局(Federal Railroad Administration)制定了列车制动距离的规定。
根据规定,列车制动距离必须满足以下条件:1. 列车运行速度不超过法定速度限制;2. 列车制动能力不低于列车运行速度下的制动要求;3. 制动距离必须足够,以便列车能在任何情况下安全停车;4. 列车制动距离必须包括适当的安全余量,以考虑制动系统和列车运行条件的变化。
类似的规定也存在于其他国家的铁路系统中。
例如,欧洲铁路局(European Railway Agency)针对欧洲各国的铁路制定了统一的列车制动距离规范。
制动距离

制动距离计算一、概述在铁路设计和运营管理中,列车制动问题相当重要,因为它不但关系到行车安全,而且关系到运输能力。
近年来,随着列车运行速度和牵引质量的不断提高,为保证列车的安全运行和准确、及时地停车,对列车制动问题也提出了更高的要求。
所以,分析研究列车制动问题,以求合理地提高铁路运输能力和通过能力,保障铁路行车安全,对铁路运输工作有着极其重要的意义。
列车制动问题通常包括以下几个要素:1.列车制动距离S z;•2.列车换算制动率;3.制动地段的加算坡度千分数i j;4.制动初速v0;5.制动末速v m;制动停车时v m =0。
列车制动距离是指自制动开始(移动闸把或监控装置“放风”)到停车(或缓解)列车所走的距离。
制动距离是综合反映制动装置性能和实际制动效果的重要指标。
为了保证行车安全,世界各国都根据自己的实际情况(如列车运行速度、牵引质量、制动技术水平和信号、闭塞制式等),规定本国紧急制动时所允许的最大制动距离。
我国《技规》原来规定,列车紧急制动距离为800m,又叫计算制动距离,是布置行车设备和制定有关安全行车规章的依据。
在确定利用动能闯坡的最高速度时,计算制动距离可延长到1100m。
二、列车制动距离计算1 列车制动力制动时由闸瓦压力而产生的列车制动力B 按下列方法之一计算1.1 实算闸瓦压力计算法以列车中各闸瓦的实算闸瓦压力K 与各该闸瓦的实算摩擦系数ϕk 乘积的总和计算B=∑( K ϕk ) ( 4-1)1.2 换算闸瓦压力计算法为了不涉及摩擦系数与闸瓦压力的变化关系以简化计算用列车中每种闸瓦的换算闸瓦压力之和SKh 与该种闸瓦的换算摩擦系数ϕh 乘积的总和进行计算B=∑ (ϕh •∑ Kh ) (4-2)2 摩擦系数2.1 实算摩擦系数各型闸瓦和闸片的实算摩擦系数ϕk 按下列各式计算中磷闸瓦 k 01003.6+100=0.640.0007(110510014100K K νϕνν++-++) (4-3) 2.2 换算摩擦系数中磷闸瓦高磷闸瓦和低摩合成闸瓦的换算摩擦系数ϕh 按每块闸瓦的实算闸瓦压力K 等于25kN 计算中磷闸瓦 h 03.6+100=0.3560.0007(11014100νϕνν+-+) (4-4)3 K ——实算闸瓦压力机车车辆每块闸瓦的实算闸瓦压力K 按下列计算2z z z z z6k d n 4=n 10P K πηγ (4-5)式中π 圆周率取3.14dz 制动缸直径mmPz 制动缸空气压力kPahz 基础制动装置计算传动效率,机车及客车闸瓦制动均取0.85;gz 制动倍率nz 制动缸数nk 闸瓦数4 换算闸瓦压力每块闸瓦的换算闸瓦压力Kh 分别按下列各式计算中磷闸瓦 h 100=1.85100K K K K ++ (4-6) 5 换算制动率5.1 列车换算制动率ϑh 是列车换算闸瓦总压力与列车重力之比按下式计算 ()h h h +=gK K P G ϑ∑∑+’’’ (4-7) 式中Kh ′ 机车每块闸瓦的换算闸瓦压力kNKh ′′ 车辆每块闸瓦的换算闸瓦压力kNP 机车计算质量tG 牵引质量tg 重力加速度9.81m/s25.2 解算货物列车运行时间等一般计算时在20 及其以下的坡道上允许不计入机车闸瓦压力和质量5.3紧急制动时列车换算制动率取全值解算列车进站制动时一般取全值的50% 计算固定信号机间的距离时取全值的80%。
列车制动力计算公式

列车制动力计算1,紧急制动计算①列车总制动力 )(kN K B h h ∑=ϕ式中∑hK------全列车换算闸瓦压力的总和,kN ;h ϕ---换算摩擦系数;②列车单位制动力的计算公式 )/()(1000)(1000kN N gG P K g G P B b hh •+=•+•=∑ϕ其中)/()(kN N gG P Kh hϑ=•+∑,则h h bϕϑ•=1000式中 G P +------------列车的质量,t ; h ϕ---换算摩擦系数;h ϑ------------------列车制动率;∑hK------全列车换算闸瓦压力的总和,kN ;2,列车常用制动计算 1≤=bb cc β 由此可得 )/(1000kN N b b c h h c cβϑϕβ=•=式中 c β-----常用制动系数cb -------列车单位制动力表1 常用制动系数 1p 为列车管空气压力3,多种摩擦材料共存时列车制动力的计算同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。
即))((kN 332211∑∑∑∑∑=•••+++=h h h h h h h h K K K K B ϕϕϕϕ式中,1h K ,1h ϕ代表机车的闸瓦制动,2h K ,2h ϕ代表车辆的闸瓦制动,3h K ,3h ϕ代表车辆的盘形制动,等等。
列车单位制动力 )/()(1000)()(1000kN N gG P K b h h h h ∑∑∑•=•+=ϑϕϕ。
4,列车制动的二次换算法表2 不同摩擦材料换算闸瓦压力的二次换算系数表3 机车的计算质量及每台换算闸瓦压力表力值;<>内是折算成合成闸瓦的换算压力值;《》内是折算成新高摩合成闸瓦的换算压力值;[]内是折算成高摩合成闸瓦的换算压力值。
注:①换算闸瓦压力栏中,括号外是原闸瓦(片)的换算压力值;()内是折算成铸铁闸瓦的换算压力值;<>内是折算成高摩合成闸瓦的换算压力值;《》内是折算成新高摩合成闸瓦的换算压力值。
高速列车初启动和终停的计算方法

高速列车初启动和终停的计算方法概述本文档旨在介绍高速列车初启动和终停的计算方法。
高速列车的启动和停车过程是其运行的关键环节,准确的计算方法可以确保列车在运行过程中的安全和稳定性。
初启动计算方法高速列车的初启动过程主要包括起动时间和启动速度的计算。
起动时间的计算可通过以下步骤实现:1. 首先,确定列车的起动加速度(a),该数值可以通过列车的技术参数和设计要求来得到。
2. 其次,确定列车的起始速度(v0),即列车启动前的速度。
3. 最后,通过使用以下公式计算起动时间(t):t = (v - v0) / a,其中,v是列车的目标速度。
启动速度的计算可通过以下步骤实现:1. 首先,根据列车设计要求和所经过的区间、线路等因素,确定列车的最大起动加速度(amax)和起始速度(v0)。
2. 其次,根据列车的加速度和距离,使用以下公式计算列车的启动速度(v):v = sqrt(2 * a * d + v0^2),其中,a是列车的起动加速度,d是列车行驶的距离。
终停计算方法高速列车的终停过程主要包括制动时间和制动距离的计算。
制动时间的计算可通过以下步骤实现:1. 首先,确定列车的制动加速度(a)和目标速度(v)。
2. 其次,使用以下公式计算制动时间(t):t = (v - v0) / a,其中,v0是列车进入制动段前的速度。
制动距离的计算可通过以下步骤实现:1. 首先,确定列车的制动加速度(a)、目标速度(v)和起始速度(v0)。
2. 其次,使用以下公式计算制动距离(d):d = (v0^2 - v^2) / (2 * a)。
总结通过使用以上计算方法,可以准确地计算高速列车的初启动和终停过程。
这些计算可以为列车的操作和安全提供参考依据,确保列车在运行中的平稳和可靠性。
列车制动距离规定

列车制动距离规定
列车制动距离是指列车从制动开始到完全停止所需的距离。
制动距离的规定一般由列车制动性能、制动系统状态和行车速度等因素确定。
根据铁路运输安全法和铁路客车制动性能要求,列车制动距离规定如下:
1. 列车制动能力要满足制动道路电气计算表所规定的要求。
2. 列车制动距离应控制在安全范围内,通常要求列车在制动距离内完全停止。
3. 列车制动距离的计算公式为:制动距离 = (初速度² - 末速度²) / (2 * 列车减速度)。
4. 列车制动距离的计算应考虑列车质量、制动系统状态、轮胎与轨道的磨损程度等因素。
5. 列车制动距离应符合国家标准或相关规定,以保证运行安全。
6. 列车制动距离的具体规定可能会根据不同的铁路运营组织和区域有所差异,需要根据当地情况进行确定。
需要注意的是,列车制动距离的规定是为了确保列车在紧急情况下能够及时停止,保证运行安全。
铁路运营组织和相关监管部门会对制动距离进行测试和监督,以确保制动系统的正常工作和安全运行。
第 1 页共 1 页。
和谐电三列车速度制动距离参照表

和谐电三列车速度制动距离参照表
(实用版)
目录
1.和谐电三列车速度与制动距离的关系
2.列车制动距离的参照表
3.制动距离的影响因素及注意事项
正文
【提纲】
1.和谐电三列车速度与制动距离的关系
和谐电三列车作为我国自主研发的高速列车,其速度与制动距离之间的关系对于确保列车运行的安全性至关重要。
制动距离是指列车从最高速度开始制动到完全停车所需的距离,该距离受到列车速度、制动系统性能、轮轨摩擦系数等多种因素的影响。
2.列车制动距离的参照表
为了保证列车运行的安全性,我国铁路部门针对和谐电三列车制定了速度与制动距离的参照表。
该表详细列出了不同速度下的制动距离,以供列车驾驶员参考。
根据参照表,列车在高速行驶时,制动距离会显著增加,因此在高速行驶过程中,驾驶员需要提前预判制动距离,确保列车能够安全停车。
3.制动距离的影响因素及注意事项
制动距离的影响因素包括列车速度、制动系统性能、轮轨摩擦系数等。
在高速行驶过程中,制动距离的增加可能导致列车无法在预定距离内停车,因此驾驶员需要根据实际情况提前采取制动措施。
同时,列车驾驶员还需要定期对制动系统进行检查和维护,确保制动系统性能良好。
总之,和谐电三列车速度与制动距离之间的关系对于列车运行的安全
性具有重要意义。
通过参照速度与制动距离的表格,列车驾驶员可以更好地掌握制动距离,确保列车能够安全停车。
CRH2型动车组制动距离计算

CRH理动车组制动距离计算10.9.1概述从司机实施制动(将制动阀手柄移至制动位)的瞬间起,到列车速度降为零的瞬间止,列车所驶过的距离,称为列车“制动距离“ O对动车组来说,理论上列车中各车的制动缸应该立即、同时开始充气增压,但实际上在司机施行制动时,首先存在一个经列车信息控制系统传输制动控制指令的网络通信带来的延迟,然后在制动控制装置接受制动指令到BCU送出控制信号到电空转换阀还有一定的延迟,这说明列车中各车的制动缸并非完全立即\同时开始充气增压,但这些延迟在毫秒级,所以各制动缸的压力开始上升的时间差别很小;另一方面,制动缸压力还是有一个上升的过程,同时由于空气制动阀的共同特点,各制动缸的空气压力也并非瞬间就达到最大值。
如图10.37所示,t。
和tm分别为从司机施行需恸至第一个开始动作的某辆车和最后开始动作的某一辆车的制动缸压力开始上升的时间。
在t。
的时间内,列车实际上在惰行,无制动力无牵引力,故称为纯空走时间。
tc为制动缸充气时间(每一辆车制动缸压力由零上升到预定值所经历的时间)t a为全列车制动缸充气时间(制动缸压力从第一个开始由零开始上升,到最后一个制动缸上升到预定值为止所经历的时间)。
因此,列车制动的全过程可分为三个阶段:无制动力的纯空走阶段\全列车制动力递增阶段和全列车制动力保持恒定的稳定阶段。
通常,为了计算的方便,我们假定全列车的制动缸压力在递增阶段的某一瞬间同时压上车轮并同时达到最大,如图10.38中所示,虚线部分即为假定。
这时,列车制动过程就被简化成了两个阶段:从施行制动到假定制动力突增那一瞬间的阶段都成了空走过程,它所经历的时间被称为空走时间,以tk表示,在这一段时间内所走过的距离被称为空走距离,以S表示;从突增那一瞬间到列车停住的阶段都成了全列车闸片压力保持预定值的有效制动过程,它所经历的时间称为有效制动时间,以te表示,在这一段时间内走过的距离被称为有效制动距离,以S表示。
7列车制动计算

7列车制动计算列车制动计算是指根据列车的运行速度、车辆质量以及制动装置的性能参数等,计算出列车需要多长时间才能完全停下来的过程。
由于需要考虑到列车运行的各种不确定因素,制动计算具有一定的复杂性。
本文将从列车制动原理、制动计算方法、计算示例等方面进行详细介绍。
一、列车制动原理列车制动是通过制动装置对车轮施加一定的制动力,使列车逐渐减速并最终停下来的过程。
常见的列车制动装置包括空气制动、电力制动和电力制动等。
本文主要以空气制动为例进行制动计算。
(一)空气制动原理空气制动是应用制动缸对车轮进行制动的一种方式。
在行车过程中,制动缸的压力由制动管路上的控制阀控制,通过开闭控制阀来调节制动缸的制动力。
当制动缸施加一定的制动力时,车轮受到一对抗制动力,并逐渐减速。
(二)制动计算中的常用参数1.全车质量:列车的总质量,包括车辆本身的质量以及货物或乘客的质量。
2. 列车速度:列车运行的速度,通常以 km/h 或 m/s 为单位。
3.制动系数:列车在制动过程中的阻力与列车重量之比,通常为0.8-1.24.制动缸面积:列车每个车轴上的制动缸的总有效面积。
5.制动力系数:列车制动缸发挥的实际制动力与制动缸的额定制动力之比,通常为0.7-0.96.制动时间:列车从开始制动到完全停下来所需的时间。
二、制动计算方法列车制动计算的基本思路是根据列车的质量、速度和制动装置的性能参数,计算出列车在制动过程中的制动力和减速度,从而得到制动时间。
以下是常用的制动计算方法:(一)制动力计算1.制动力=制动系数*列车重量2.制动缸制动力=制动力*制动缸面积*制动力系数(二)减速度计算减速度=制动缸制动力/列车总质量(三)制动时间计算1.列车行驶距离=列车速度*制动时间2.减速距离=(列车速度^2)/(2*减速度)3.列车制动时间=减速距离/列车速度三、制动计算示例以下是一个列车制动计算的示例:假设一列货物列车的总质量为 500 吨,列车运行速度为 60 km/h,制动系数为 1,制动缸面积为 0.1 平方米,制动力系数为 0.8、我们需要计算出该列车从开始制动到完全停下来所需的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列车制动
一、什么是制动
二、制动力是如何产生的?
三、影响制动力的因素有那些?
四、列车制动问题解算
列车制动问题解算”主要是:在各种不同的线路条件下,列车制动能力(列车换算制动率)、列车运行速度和列车制动距离这三个因素之间的相互关系,而且都是按施行紧急制动的情况考虑的(列车制动力或列车换算制动率均按百分之百计算)。
列车制动问题解算通常有三种类型:
(1)已知制动能力(列车换算制动率)和列车运行速度,
计算制动距离。
(2)已知列车制动能力(换算制动率)和必须保证的制动距离,解算平道或下坡道允许的紧急制动限速。
(3)已知列车的紧急制动限速和必须保证的制动距离,解算平道或下坡道至少必须的列车制动能力(换算制动率)。
其中,制动距离计算是关键。
第一节制动距离及其计算
在司机施行制动时,列车中各车辆的闸瓦并非立即、同时压上车轮的,闸瓦压上车轮之后,闸瓦压力也不是瞬间达到最大值的,制动缸压强有一个上升过程,
参看图5-1。
图中t。
和tN分别为从司机施行制动至第一辆车和最末一辆车的制动缸压强开始上升的时间(在t。
的时间内,列车实际上还是惰行,所以称t。
为纯空走时间,即真正的制动空走时间t。
为制动缸充气时间(压力从零上升到预定值的时间)。
所以,全列车的闸瓦压力和制动力也有一个增长的过程,如图5-2中实线所示。
为便于计算,通常假定全列车的闸瓦都是在某一瞬间同时压上车轮,而且闸瓦压力就是在这一瞬间从零突增至预定值,
如图5-2中虚线所示。
图5-2空走距离的原始概念
Sb=Sk+S, (5-1)
这样,列车制动过程就明显地被分成两段:
前一段是从施行制动到这一瞬间的空走过程,它经历的时间称为空走时间(显然,这是个假定的空走时间),以t0表示,列车在空走时间t0内靠惯性惰行的距离称为空走距离,以S。
表示;
后一段是从突增的瞬间至列车停止的有效制动过程,也叫实制动过程,其经历的时间称为有效制动时间或实制动时间,以‘表示,列车在t。
时间内、在全部制动力和运行阻力的作用下急剧减速所运行的距离,称为有效制动距离或实制动距离,以S表示
一、空走时间与空走距离的计算
通常假定在空走时间内列车速度不变,坡度对列车速度和空走距离的影响采取修正空走时间值的办法来解决,于是空走距离就可以简单地按下式计算:
t K =(1.5+0.18n) ×(1-0.05i)或t
k
=3-0.07i
S
K = t
K
V /3.6
例1:某列车以30km/h速度在2‰的下坡道上运行,求施行紧急制动后的空走距离?
空走时间公式:t
k
=3-0.07i
空走距离公式:s
k =v
t
k
/3.6
则t
k
=3-0.07×(—2)=3.14秒
S
k
=30×3.14/3.6=26.16m
答:空走距离为26.16m。
例2:GKD2型机车牵引50辆重货车在4‰的下坡道以20公里/小时的速度运行,求当实施紧急制动时,列车的空走时间和空走距离各为多少?(该列列车接挂40辆风管)
解:
t K=(1.5+0.18n) ×(1-0.05i)
=(1.5+0.18×41)×(1+0.05×4)
=10.656秒
S K=V0 t K/3.6
=20×10.656/3.6
=59.2米
答:空走时间为10.656秒,空走距离为59.2米。