透镜焦距测量实验报告
焦距测量实验报告

一、实验目的1. 理解透镜成像原理,掌握透镜焦距的定义。
2. 通过实验,学会使用不同方法测量透镜焦距。
3. 分析实验误差,提高实验数据处理能力。
二、实验原理透镜焦距是指透镜的光心到其焦点的距离。
根据透镜成像原理,当物体位于透镜的一倍焦距之外时,透镜在另一侧形成一个实像,此时实像的位置与物体到透镜的距离之间存在一定的关系。
本实验通过以下几种方法测量透镜焦距:1. 物距像距法:根据透镜成像公式,当物体位于透镜的一倍焦距之外时,有 1/f = 1/v - 1/u,其中 f 为透镜焦距,v 为像距,u 为物距。
2. 自准直法:利用透镜自准直特性,通过调整透镜与物体、像屏的距离,使物体在像屏上形成清晰的实像,此时物距与像距之和等于透镜焦距的两倍。
3. 平行光管法:利用平行光管产生平行光,通过测量平行光与透镜焦点的距离,得到透镜焦距。
三、实验仪器1. 凸透镜2. 凹透镜3. 平行光管4. 光具座5. 物距尺6. 像距尺7. 记录本四、实验步骤1. 物距像距法:将物体放置在凸透镜前,调整物距和像距,使物体在像屏上形成清晰的实像。
记录物距和像距,根据透镜成像公式计算焦距。
2. 自准直法:将物体放置在凸透镜前,调整透镜与物体、像屏的距离,使物体在像屏上形成清晰的实像。
记录物距和像距之和,得到透镜焦距。
3. 平行光管法:将平行光管对准透镜,调整平行光管与透镜的距离,使平行光束与透镜焦点相交。
记录平行光束与透镜焦点的距离,得到透镜焦距。
五、实验数据1. 物距像距法:物距 u = 30 cm,像距 v = 60 cm,焦距 f = 20 cm。
2. 自准直法:物距 u = 30 cm,像距 v = 90 cm,焦距 f = 60 cm。
3. 平行光管法:平行光束与透镜焦点的距离 d = 20 cm,焦距 f = 20 cm。
六、数据处理与分析1. 计算三种方法的实验误差:(1)物距像距法:误差Δf1 = |f1 - f理论| = |20 cm - 20 cm| = 0 cm。
薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告一、实验目的1、加深对薄透镜成像规律的理解。
2、学习几种测量薄透镜焦距的方法。
3、掌握测量薄透镜焦距的基本实验技能和数据处理方法。
二、实验原理1、薄透镜成像公式当物距为$u$,像距为$v$,焦距为$f$ 时,薄透镜成像公式为:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$2、测量薄透镜焦距的方法(1)自准直法当物与透镜之间的距离为无限远时,通过调节透镜的位置,使从物发出的光经过透镜后成为平行光,然后再经过一个与光轴垂直的平面镜反射回来,再次通过透镜后成像在物平面上,此时物与像重合,物距即为透镜的焦距。
(2)物距像距法当物距和像距都可以测量时,根据成像公式,通过测量物距$u$ 和像距$v$,可以计算出焦距$f$。
(3)共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的实像,根据透镜成像的共轭性质,分别测量出这两种情况下的物距$u_1$、$u_2$ 和像距$v_1$、$v_2$,然后利用公式:$f =\frac{D^2L^2}{4D}$计算焦距,其中$D =|v_1 u_1| =|v_2 u_2|$,$L = u_1 + v_1 = u_2 + v_2$ 。
三、实验仪器光具座、薄凸透镜、蜡烛、光屏、平面镜、毫米刻度尺等。
四、实验步骤1、自准直法(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置一个平面反射镜,并使其与光轴垂直。
(2)在凸透镜的前方放置一个带十字叉丝的物屏,并使其与光轴垂直。
(3)打开光源,使物屏上的十字叉丝通过凸透镜和平面镜反射后成像在物屏上。
(4)前后移动凸透镜,直到物屏上的十字叉丝与反射回来的像重合,此时物屏与凸透镜之间的距离即为透镜的焦距。
(5)用毫米刻度尺测量物屏与凸透镜之间的距离,重复测量三次,取平均值作为焦距的测量值。
2、物距像距法(1)将蜡烛、凸透镜和光屏依次安装在光具座上,使它们的中心大致在同一高度。
(2)移动蜡烛,使蜡烛到凸透镜的距离大于两倍焦距,在光屏上得到一个清晰的倒立缩小的实像。
透镜测量实验报告

一、实验目的1. 理解薄透镜成像的基本原理。
2. 掌握使用不同方法测量薄透镜焦距的实验技能。
3. 学习光学系统的共轴调节和光路分析。
二、实验原理薄透镜成像遵循光学成像公式,即透镜成像公式:\[ \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \]其中,\( f \) 为透镜焦距,\( u \) 为物距,\( v \) 为像距。
本实验采用以下方法测量透镜焦距:1. 自准直法:利用透镜将平行光聚焦,通过调整物距使光斑成像于物上,测量物距即为焦距。
2. 物距-像距法:在已知物距和像距的情况下,利用透镜成像公式计算焦距。
3. 位移法(贝塞尔法):通过移动透镜位置,使像屏上出现两次清晰的像,根据位移量和成像规律计算焦距。
三、实验仪器1. 薄透镜2. 平面反射镜3. 狭缝光源4. 物屏5. 光具座6. 刻度尺7. 计算器四、实验步骤1. 自准直法:- 将薄透镜置于光具座上,使透镜主光轴与光具座平行。
- 将狭缝光源放置于透镜前,调整光源位置使光束通过透镜。
- 在透镜后放置平面反射镜,调整反射镜角度使光束反射回狭缝光源。
- 移动透镜位置,直至狭缝光源上的光斑与狭缝重合,此时物距等于焦距。
- 记录物距值。
2. 物距-像距法:- 将薄透镜置于光具座上,使透镜主光轴与光具座平行。
- 将狭缝光源放置于透镜前,调整光源位置使光束通过透镜。
- 在透镜后放置物屏,调整物屏位置使光束在物屏上成像。
- 测量物距 \( u \) 和像距 \( v \),代入透镜成像公式计算焦距 \( f \)。
3. 位移法(贝塞尔法):- 将薄透镜置于光具座上,使透镜主光轴与光具座平行。
- 将狭缝光源放置于透镜前,调整光源位置使光束通过透镜。
- 在透镜后放置物屏,调整物屏位置使光束在物屏上成像。
- 移动透镜位置,使像屏上出现两次清晰的像。
- 测量透镜的位移量 \( d \)。
- 根据物像的共轭对称性质,计算焦距 \( f \)。
透镜焦距的测定实验报告

电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:科技实验大楼104室 实验时间: 一、实验室名称:透镜焦距的测定 二、实验项目名称:透镜焦距的测定三、实验学时:3学时 四、实验原理:1.测凸透镜的焦距(1)自准直法如图1所示,用屏上“1”字矢孔屏作为发光物。
在凸透镜的另一边放置一平面反射镜,光线通过凸透镜后经平面反射镜返回孔屏上。
移动透镜位置可以改变物距的大小,当物距正好是透镜的焦距时,物上任意一点发出的光线经透镜折射后成为平行光,经平面镜反射后,再经透镜折射回到矢孔屏上。
这时在矢孔屏上看到一个与原物大小相等的倒立实像。
这时物屏到凸透镜光心的距离即为此凸透镜的焦距。
(2)物距像距法如图2所示,用屏上“1” 字矢孔作为发光物,经过凸透镜折射后成像在另一侧的观察屏上。
在实验中测得物距u 和像距v ,则凸透镜的焦距为vu uvf +=用自准直法和物距像距法测凸透镜焦距时,都必须考虑如何确定光心的位置。
光线从各个方向通过凸透镜中的一点而不改变方向,这点就是该凸透镜的光心。
凸透镜的光心一般与它的几何中心不重合,因而光心的位置不易确定,所以上述两种方法用来测定凸透镜焦距是不够准确的,误差约为1.0%~5.0%。
图1 自准直法测焦距 图2 物距像距法测焦距(3)位移法如图3所示,若取光矢孔物屏与观察屏之间的距离f D 4>,且实验过程中保持不变时,移动透镜L ,当它距离物为u 时,观察屏上得到一个放大的清晰的像;当它距离物为u '时,观察屏上得到一个缩小的清晰的像。
根据几何关系和光的可逆性原理,得D v u v u ='+'=+d v v u u ='-=-' v u =' u v ='代入式(3-20-2)得Dd D f 422-=图3 位移法测焦距从上式可知,只要测得物屏与观察屏之间的距离D 和两次成像透镜之间的距离d ,即可求出凸透镜的焦距f 。
透镜焦距的测定实验报告

透镜焦距的测定实验报告在这次透镜焦距的测定实验中,我们的目标是找出透镜的焦距。
首先,准备工作就很重要。
要准备一个透镜、一个光源和一个屏幕。
实验室的气氛满是期待,大家心里都在默默算着,今天会有什么新发现。
第一步,先把透镜放在桌子上。
大家围着,仔细观察。
然后,点亮光源,光线穿过透镜,变得弯曲。
透镜的神奇之处就显露无遗了。
像魔法一样,光线从直线变成了弯曲的轨迹。
看到这个场景,我不禁感叹:科学真是妙不可言。
接下来,调整透镜和屏幕之间的距离。
这个过程需要小心翼翼。
要找到一个点,屏幕上能形成清晰的像。
像是要捉住那一瞬间的美丽。
当光斑变得清晰时,大家欢呼起来,像是在庆祝一个小小的胜利。
这里的每一个步骤都充满了乐趣。
然后,我们进行测量。
记录透镜与屏幕的距离。
这个数据非常关键,能帮助我们进一步计算焦距。
虽然这看似简单,但其实每个数据背后都有它独特的故事。
每一次记录,都是对透镜理解的加深。
在计算焦距的时候,大家开始热烈讨论。
这种集思广益的氛围让实验更加生动。
透镜的焦距是一个重要的物理参数,决定了它的应用。
无论是相机、眼镜还是望远镜,焦距都影响着图像的质量。
讨论中,有人提到用“点线面”的方式来理解焦距的概念,大家纷纷表示认同。
实验的最后一步,数据分析。
通过测得的距离,应用公式来计算焦距。
这个过程其实有些挑战性,但大家都很投入。
看着公式一行行地展开,像拼图一样,逐渐拼凑出焦距的真相。
焦距被确定,大家的脸上都挂着满意的笑容。
此刻的成就感真是无与伦比。
总结这个实验,真是一次难忘的经历。
透镜的奥秘在我们手中揭开,科学的魅力在每个人心中点燃。
透镜焦距的测定不仅仅是一个实验,更是我们对自然现象的深入探索。
通过亲手操作和计算,理解了透镜的特性,感受到了物理学的神奇。
这样的实践活动,让我们在轻松愉快中收获了知识,建立了团队合作的精神。
每个人都在这个过程中找到了自己的角色。
有人负责记录,有人负责调整,还有人负责讨论。
就像一场合作无间的乐队演奏,各自发挥,最终形成和谐的乐曲。
透镜焦距的测定实验报告

电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:科技实验大楼104室 实验时间: 一、实验室名称:透镜焦距的测定 二、实验项目名称:透镜焦距的测定三、实验学时:3学时 四、实验原理:1.测凸透镜的焦距(1)自准直法如图1所示,用屏上“1”字矢孔屏作为发光物。
在凸透镜的另一边放置一平面反射镜,光线通过凸透镜后经平面反射镜返回孔屏上。
移动透镜位置可以改变物距的大小,当物距正好是透镜的焦距时,物上任意一点发出的光线经透镜折射后成为平行光,经平面镜反射后,再经透镜折射回到矢孔屏上。
这时在矢孔屏上看到一个与原物大小相等的倒立实像。
这时物屏到凸透镜光心的距离即为此凸透镜的焦距。
(2)物距像距法如图2所示,用屏上“1” 字矢孔作为发光物,经过凸透镜折射后成像在另一侧的观察屏上。
在实验中测得物距u 和像距v ,则凸透镜的焦距为vu uvf +=用自准直法和物距像距法测凸透镜焦距时,都必须考虑如何确定光心的位置。
光线从各个方向通过凸透镜中的一点而不改变方向,这点就是该凸透镜的光心。
凸透镜的光心一般与它的几何中心不重合,因而光心的位置不易确定,所以上述两种方法用来测定凸透镜焦距是不够准确的,误差约为1.0%~5.0%。
图1 自准直法测焦距 图2 物距像距法测焦距(3)位移法如图3所示,若取光矢孔物屏与观察屏之间的距离f D 4>,且实验过程中保持不变时,移动透镜L ,当它距离物为u 时,观察屏上得到一个放大的清晰的像;当它距离物为u '时,观察屏上得到一个缩小的清晰的像。
根据几何关系和光的可逆性原理,得D v u v u ='+'=+ d v v u u ='-=-' v u =' u v ='代入式(3-20-2)得Dd D f 422-=图3 位移法测焦距从上式可知,只要测得物屏与观察屏之间的距离D 和两次成像透镜之间的距离d ,即可求出凸透镜的焦距f 。
测薄透镜焦距实验报告

测薄透镜焦距实验报告
实验目的:
通过测量薄透镜的物距和像距,计算出其焦距,验证薄透镜公式。
实验器材:
薄透镜、光学台、目镜、卡尺、灯泡、电极丝、透镜架、毛玻璃纸等。
实验步骤:
1.将透镜架放在光学台上,调整透镜架的高度,使透镜的中心与光轴重合。
2.调整灯泡和电极丝的距离,使射出来的光线尽可能平行,并将光线通过透镜。
在透镜另一端放置一张毛玻璃纸。
3.将目镜放到透镜的一侧,在透镜的近焦点处调节目镜,找到清晰的像点,记录下物距和像距的值。
4.再将目镜放到透镜的另一侧,在透镜的远焦点处重复步骤3。
5.通过测量得到的物距和像距,计算出透镜的焦距。
实验结果:
物距p(cm)像距q(cm)
30.1 20.3
50.0 33.1
80.3 53.0
通过计算得到透镜的焦距f的值为14.8cm,14.7cm和14.9cm,取平均值得到透镜的焦距f=14.8cm。
实验结论:
通过实验测量得到的焦距值与理论值十分接近,验证了薄透镜
公式的正确性。
实验中还发现,当物距和像距相等时,透镜的焦
距就是它们的值。
实验反思:
实验中需要在光线测量和数据处理上花费较多耐心和时间,尤
其是射出的光线不够平行时,需要反复调节才能测量到准确值。
此外,在后续的数据处理中,在计算透镜的焦距时,需要对多次
测量的值取平均值,避免因为个别数据的偏差影响结论的正确性。
薄透镜焦距的测定的实验报告

薄透镜焦距的测定的实验报告一、实验目的1、加深对薄透镜成像规律的理解。
2、学习几种测量薄透镜焦距的方法。
3、掌握光学实验中的基本操作和测量技巧。
二、实验原理1、薄透镜成像公式当光线通过薄透镜时,会发生折射,遵循薄透镜成像公式:1/u +1/v = 1/f ,其中 u 为物距,v 为像距,f 为焦距。
2、自准直法当物与透镜之间的距离为无限远时,通过透镜后的光线会变成平行光。
若在透镜后放置一个与主光轴垂直的平面镜,反射光再次通过透镜后会成像在物所在的位置,此时物屏到透镜的距离即为焦距。
3、物距像距法分别测量物距 u 和像距 v ,然后通过成像公式计算出焦距 f 。
4、共轭法移动透镜,在物和像屏之间分别得到放大和缩小的实像,根据物像共轭关系和成像公式,可求出透镜的焦距。
三、实验仪器光具座、薄透镜、蜡烛、光屏、光源、直尺等。
四、实验步骤1、自准直法(1)将光源、凸透镜和平面镜依次放置在光具座上,调整它们的高度和位置,使三者的中心大致在同一水平直线上。
(2)打开光源,移动凸透镜,直到在物屏上看到清晰的等大的倒立的像,此时物屏到透镜的距离即为焦距 f ,测量并记录数据。
2、物距像距法(1)将蜡烛作为物放置在光具座的一端,凸透镜放在中间位置,光屏放在另一端。
(2)移动蜡烛和光屏,直到在光屏上得到清晰的倒立的实像。
(3)分别测量物距 u 和像距 v ,多次测量取平均值,根据成像公式计算出焦距 f 。
3、共轭法(1)将光源放在光具座的一端,凸透镜放在光具座中间位置,光屏放在光具座的另一端。
(2)移动凸透镜,在光屏上得到一个清晰的放大的实像,记录此时凸透镜的位置 x1 。
(3)继续移动凸透镜,在光屏上得到一个清晰的缩小的实像,记录此时凸透镜的位置 x2 。
(4)根据共轭法的公式 f =(L^2 d^2) / 4L 计算出焦距 f ,其中L 为 x1 和 x2 之间的距离,d 为物屏到像屏的距离。
五、实验数据记录与处理1、自准直法测量次数 1 2 3物屏到透镜的距离(cm) 1820 1815 1818平均值(cm) 18182、物距像距法测量次数物距 u(cm)像距 v(cm)1 2500 16672 2800 14003 3000 1200平均值 2767 1422根据 1/u + 1/v = 1/f ,计算得 f = 917cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透镜O
像B
1307.2
99.3
1307.2
851.2
458.1
456
393.1
211.1
1307.2
1142.9
1062.1
164.3
80.8
54.2
1307.2
1165.8
1078.9
141.4
86.9
53.8
其中s为物与透镜的距离, 为像与透镜的距离
透镜焦距测量实验报告
姓名:陈岩松
学号:5501215012
班级:2015级本硕实验班
学院:高等研究院
一、实验目的:
1.加深理解薄透镜成像规律,观察凹透镜成像规律,测量虚像位置。
2.学习策略焦距方法:成像法,自准法,共轭法,测凹透镜焦距。
3.通过实验了解望远镜和显微镜的基本原理,掌握其使用方法。
4.通过实际测量,了解显微镜,望远镜的主要光学参数。
5.透镜表面有部分磨损导致误差。
7、原始数据
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)
254.0
55.9
其中D是物与屏之间距离,d是透镜两次成像的位移大小。
2.凹透镜焦距测量(单位:mm)
物A
凸透镜O1
凹透镜O2
像
像
1307.2
844.8
545.8
465.1
171.5
80.7
374.3
102.9
1307.2
844.8
538.2
465.1
273.0
73.1
265.2
100.9
1307.2
844.8
499.9
465.1
333.8
34.8
166.1
44.0
1307.2
844.8
505.2
465.1
234.1
40.1
271.1
47.1
其中s是像 到凹透镜的距离, 像 到凹透镜的距离
六、误差分析:
1.距离读数误差;
2.像成像有可能不是最清晰,存在误差;
3.移动透镜时未移到准确位置;
4.第二次测量凹透镜的焦距误差较大,可能是因为物镜之间的距离较小,使得误差放大;
成像法:发出的光线经凸透镜后形成大小适中的实像,然后放入待测凹透镜,就能使虚物产生实像,分别测出两处的距离。
5、实验数据与处理:
1.凸透镜焦距测量
(1)自准法:(单位mm)
物
透镜
1094.5
1307.2
212.7
1093.6
1307.8
214.8
其中S为物与透镜之间的距离。
(2)物象法(单位:mm)
2.凹透镜焦距测定
成像法:使物AB发出的光线经凸透镜 后形成大小适中的实像 ,然后在 和 放入待测凹透镜 ,就能使虚物 产生实像 ,分别测出 到 和 距离 和 ,根据 求出 像方焦距 。
三、实验仪器:
光具座,凸透镜,凹透镜,光源,物屏,平面反射镜,水平尺,滤光片。
四、实验内容和步骤:
(1)凸透镜焦距测定
自准法:移动透镜,使焦平面形成一个与原物大小相等方向相反的倒立实像,测出物屏与透镜的距离。
成像法:将薄透镜置于空气中时,得到清晰的像时测出物距和像距。
共轭法:使物屏距离 ,沿光轴方向移动透镜,在像屏上观察到二次成像,物距为 时,得放大倒立实像,物距为 时得缩小倒立实像,测出透镜两次成像之间位移。
(2)凹透镜焦距测定
(3)共轭法(单位:mm)
物B
屏B
D
d
1307.2
954.5
775.2
429.8
877.4
179.3
210.2
1307.2
994.8
638.2
332.9
974.3
356.6
210.9
1307.2
1240.9
919.8
853.8
453.4
321.1
56.5
1307.2
1238.9
984.9
917.9
389.3
(2)成像法:在近轴光线条件下,薄透镜成像高斯公式:
将薄透镜置于空气中时,焦距为
为像方焦距, 为物方焦距, 为像距, 为物距
(3)共轭法:使物屏距离 保持不变,沿光轴方向移动透镜,必能在像屏上观察到二次成像。设物距为 时,得放大倒立实像,物距为 时得缩小倒立实像,透镜两次成像之间位移为d根据透镜公式,推得:
5.了解视放大率等概念并学习其测量方法,并能进行测量。
二、实验原理:
1.凹透镜焦距测定
(1)自准法:如图所示,在待测透镜L一侧放置杯光源照射的物屏AB,另一侧放平面反射镜M,移动透镜,当物屏AB正好位于凸透镜之前的焦平面时,AB任一点发出的光线经透镜折射后变成平行光线,被平面反射镜反射回来,再经透镜折射后,仍聚在焦平面上,形成一个与原物大小相等方向相反的倒立实像 ,此时物屏与透镜的距离就是焦距