变电站中英文资料对照外文翻译文献综述

合集下载

变电站外文翻译外文文献英文文献变电站的综合概述(工程科技)

变电站外文翻译外文文献英文文献变电站的综合概述(工程科技)

附录Ⅲ英文翻译A comprehensive overview of substationsAlong with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life.Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。

变电站建设外文文献翻译

变电站建设外文文献翻译

变电站建设外文文献翻译变电站建设外文文献翻译(文档含中英文对照即英文原文和中文翻译)General Requirements to Construction of SubstationSubstations are a vital element in a power supply system of industrial enterprises.They serve to receive ,convert and distribute electric energy .Depending on power and purpose ,the substations are divided into central distribution substations for a voltage of 110-500kV;main step-down substations for110-220/6-10-35kV;deep entrance substations for 110-330/6-10Kv;distribution substations for 6-10Kv;shop transformer substations for 6-10/0.38-0.66kV.At the main step-down substations, the energy received from the power source is transformed from 110-220kV usually to 6-10kV(sometimes 35kV) which is distributed among substations of the enterprise and is fed to high-voltage services.Central distribution substations receive energy from power systems and distribute it (without or with partial transformation) via aerial and cable lines of deep entrances at a voltage of 110-220kV over the enterprise territory .Central distribution substation differs from the main distribution substation in a higher power and in that bulk of its power is at a voltage of 110-220kV;it features simplified switching circuits at primary voltage; it is fed from the power to an individual object or region .Low-and medium-power shop substations transform energy from 6-10kV to a secondary voltage of 380/220 or 660/380.Step-up transformer substations are used at power plants for transformation of energy produced by the generators to a higher voltage which decreases losses at a long-distancetransmission .Converter substations are intended to convert AC to DC (sometimes vice versa) and to convert energy of one frequency to another .Converter substations with semiconductor rectifiers are convert energy of one frequency to another .Converter substations with semiconductor rectifiers are most economic. Distribution substations for 6-10kV are fed primarily from main distribution substations (sometimes from central distribution substations).With a system of dividing substations for 110-220kV, the functions of a switch-gear are accomplished by switch-gears for 6-10kV at deep entrance substations.Depending on location of substations their switch-gear may be outdoor or indoor. The feed and output lines at 6-10kV substations are mainly of the cable type .at 35-220kV substations of the aerial type .When erecting and wiring thesubstations ,major attention is given to reliable and economic power supply of a given production.Substations are erected by industrial methods with the use of large blocks and assemblies prepared at the site shops of electric engineering organizations and factories of electrical engineering industry .Substations are usually designed for operation without continuous attendance of the duty personnel but with the use of elementary automatic and signaling devices.When constructing the structural part of a substation .it is advisable to use light-weight industrial structures and elements (panels ,floors ,etc.) made of bent sections .These elements are pre-made outside the erection zone and are only assembled at site .This considerably cuts the terms and cost of construction.Basic circuitry concepts of substations are chosen when designing a powersupply system of the enterprise .Substationsfeature primary voltage entrances .transformers and output cable lines or current conductors of secondary voltage .Substations are mounted from equipment and elements described below .The number of possible combinations of equipment and elements is very great .Whenelaborating a substation circuitry ,it is necessary to strive for maximum simplification and minimizing the number of switching devices .Such substations are more reliable and economic .Circuitry is simplified by using automatic reclosure or automatic change over to reserve facility which allows rapid and faultless redundancy of individual elements and using equipment.When designing transformer substations of industrial enterprises for all voltages ,the following basic considerations are taken into account:1. Preferable employment of a single-bus system with using two-bus systems only to ensure a reliable and economic power supply;2. Wide use of unitized constructions and busless substations;3.Substantiated employment of automatics and telemetry ;if the substation design does not envisage the use of automatics or telemetry ,the circuitry is so arranged as to allow for adding such equipment in future without excessive investments and re-work./doc/554c0a220622192e453610661ed9ad5 1f01d5431.html e of simple and cheap devices-isolating switches ,short-circuiting switches ,load-breaking isolators ,fuses ,with due regard for their switching capacity may drastically cut the need for expensive and critical oil ,vacuum ,solenoid and air switches .Substation and switch-gear circuitries are so made that using the equipment of eachproduction line is fed from individual transformers ,assemblies ,the lines to allow their disconnection simultaneously with mechanisms without disrupting operation of adjacent production flows.When elaborating circuitry of a substation, the most vital task is to properly choose and arrange switching devices(switches ,isolators ,current limiters ,arresters ,high-voltage fuses).The decision depends on the purpose ,power and significance of the substation.Many years ago, scientists had very vague ideas about electricity. Many of them thought of it as a sort of fluid that flowed through wires as water flows through pipes, but they could not understand what made it flow. Many of them felt that electricity was made up of tiny particles of some kind ,but trying to separate electricity intoindividual particles baffled them.Then, the great American scientist Millikan, in 1909,astounded the scientific world by actually weighing a single particle of electricity and calculating its electric charge. This was probably one of the most delicate weighing jobs ever done by man,for a single electric particle weighs only about half of a millionth of a pound. To make up a pound it would take more of those particles than there are drops of water in the Atlantic Ocean.They are no strangers to us, these electric particles, for we know them as electrons. When large numbers of electrons break away from their atoms and move through a wire,we describe this action by saying that electricity is flowing through the wire.Yes,the electrical fluid that early scientists talked about is nothing more than electrical flowing along a wire.But how can individual electrons be made to break awayfrom atoms? And how can these free electrons be made to along a wire? The answer to the first question lies in the structure of the atoms themselves. Some atoms are so constructed that they lose electrons easily. An atom of copper, for example ,is continually losing an electron, regaining it(or another electron),and losing it again. A copper atom normally has 29 electrons, arranged in four different orbits about its nucleus. The inside orbit has 2 electrons. The next larger orbit has 8.The third orbit is packed with 18 electrons . And the outside orbit has only one electron.It is this outside electron that the copper atom is continually losing, for it is not very closely tied to the atom. It wanders off, is replaced by another free-roving electron, and then this second electron also wandersaway.Consequently,in a copper wire free electrons are floating around in all directions among the copper atoms.Thus, even through the copper wire looks quite motionless to your ordinary eye, there is a great deal of activity going on inside it. If the wire were carrying electricity to an electric light or to some other electrical device, the electrons would not be moving around at random. Instead, many of them would be rushing in the same direction-from one end of the wire to the other.This brings us to the second question .How can free electrons be made to move along a wire? Well ,men have found several ways to do that .One way is chemical. V olta,s voltaic pile,or battery, is a chemical device that makes electricity(or electrons)flow in wires. Another way is magnetic. Faraday and Henry discovered how magnets could be used to make electricity flow in a wire.MagnetsAlmost everyone has seen horseshoe magnets-so called because they are shaped like horseshoes. Probably you have experimented with a magnet, and noticed how it will pick up tacks and nails, or other small iron objects. Men have known about magnets for thousands of years.Several thousand years ago, according to legend, a shepherd named Magnes lived on the island of Crete, in the Mediterranean Sea .He had a shepherds crook tipped with iron. One day he found an oddly shaped black stone that stuck to this iron /doc/554c0a220622192e453610661ed9ad51f0 1d5431.html ter, when many other such stones were found, they were called magnets(after Magnets).These were natural magnets.In recent times men have learned how to make magnets out of iron. More important still, they have discovered how to use magnets to push electrons through wires-that is, how to make electricity flow. Before we discuss this, there arecertain characteristics of magnets that we should know about.If a piece of glass is laid on top of a horse- shoes magnet, and if iron filings are then sprink ledon the glass, the filings will arrange themselves into lines. If this same thing is trid with a bar magnet(a horseshoe magnet straightened out),the lines can be seen more easily. These experiments demonstrate what scientists call magnetic lines of force. Magnets, they explain, work through lines of force that ext- end between the two ends of the magnet. But electrons seem to have magnetic lines of force around them, too.This can be proved by sticking a wire through a piece ofcard board, sprinkling iron filings on the cardboard, and connecting a battery to the wire. The filings will tend to form rings around the wire,as a result of the magnetism of the moving electrons(or electricity).So we can see that there is arelationship betweenmoving electrons and magnetism, Magnetism results from the movement of electrons.Of course, electrons are not really flowing in the bar magnet, but they are in motion, circling the nuclei of the iron atoms. However, in the magnet, circling thelined up in such a way that their electrons are circling in the same direction. Perhaps a good comparison might be a great number of boys whirling balls onstrings in a clockwise direction around their heads.翻译:变电站建设的一般要求变电站(所)在电源系统的工业企业是一个至关重要的因素。

变电站中英文资料对照外文翻译文献综述

变电站中英文资料对照外文翻译文献综述

变电站概述中英文资料对照外文翻译文献综述英文翻译A comprehensive overview of substationsAlong with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life.Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。

外文翻译--变电站与电力系统继电保护

外文翻译--变电站与电力系统继电保护

中文3826字附录1:外文资料翻译A1.1 Substation and Power System ProtectionWith the development of undertaking of the electric wire netting , the pattern of national network has already taken shape basically. Scientific and technological level raise, electric environmental protection can strengthen, make scientific and technological competence and advanced international standards, Chinese of power industry close day by day. Electric management level and service level are being improved constantly, strategic planning management of electric power development, production operate manage , electric market administration and electric information management level , high-quality service level ,etc. general to raise enterprise.The purpose of a substation is to transform the characteristics of the electrical energy supplied to some form suitable for use, as for example, a conversion from alternation current to direct current for the use of city railway service, or a change from one voltage to another, or one frequency to another. Their functions include: Tap.─TO be economical, transmission of larger amounts of power over long distances must be done at voltages above 110,000 volts. Substations for supplying small amounts of power from such high-voltage lines are not satisfactory from the standpoint of operation and are also uneconomical. It is, therefore, common practice to install a few substations at advantageous points along the high-tension lines and step down the high-transmission voltage to a lower secondary-transmission voltage from which numerous small loads may be supplied.Distribution.─Any substation that is used to transform electrical energy to a potential that is low enough for general distribution and utilization is a distributing substation. Such a substation will generally receive its energy over a few comparatively high-tension lines and distribute it over a large number of low-voltage lines.Industrial.─When fairly large blocks of power are required by industrial plants, it often becomes necessary and advisable to install an individual substation to supply such a load directly from the main high-voltage line or secondary line of lower voltage. Its simplest form would comprise only switching equipment, there being no voltage transformation. In most cases a voltage transformation is probably needed; hence transformer equipment is included.Sectionalizing.─In very long high-voltage large capacity lines, particularly when several circuits are run in parallel, it is often necessary to split the lines into sections, in order that proper protection to the line and service can be obtained. Such a substation is , therefore, helpful in sectionalizing damaged sections of a line, providing continuity of service. Such a substation will generally comprise only switching equipment. In long lines it may also serve to supply power-factor-correcting equipment.Transmission-line Supply.─It is becoming more and more common to install the high-tension equipment of apower plant outdoors, the installation becoming nothing more than a step-up substation receiving its power at generator voltage, then stepping up its voltage and finally sending it out over high-voltage transmission lines. Such a substation is nothing more than an outdoor distributing substation turned around, the voltage being stepped up instead of stepped down.Power-factor Correction.─The voltage at the end of long lines tends to increase as the load supplied is decreased, while on the other hand it tends to decrease as the load is increased. Owing to the inductance and capacity effects, this variation in voltage is accompanied by a wide variation in power factor of a line, it is necessary to use synchronous condensers at the end of the line. To supply such a machine the transmission-line voltage must be stepped down, hence a power-factor-correcting substation will include switching equipment, transformers, and all equipment necessary for the operation of synchronous condensers.Railway.─Substations supplying railways may be generally classified under two heads, namely, as alternating current and as direct current. In the cases of alternating-current substations the problem is generally one of voltage transformation and of supplying single-phase power to the trains. It is, however, possible to supply single-phase to three-phase inside the locomotive by the use of a phase converter. In the case of direct-current railways, the substations are generally supplied whit three-phase power and converted to direct current by means of rotary converters, motor-generator sets, or rectifiers.Direct current for Light and Power.─There are still a few sections in some of out large cities, which are supplied with direct-current three-wire systems. Such a supply is invariably obtained from synchronous converters. There are also certain types of motor loads in industrial plants, which require direct current.Because many cities have experience rapid growth, their substations have often reached the limits of their capacity. As a result, downtown distribution systems are often overworked and many need a major, overhaul, overhaul, or expansion. However, space is scarce. Downtown business owners do not want “ugly” new substation marring the area’s appearance, but nor do businesses and residents grid the prospect of grid disturbances.One example of a system capable of integrating equipment monitoring with substation automation is the GE Harris integrated Substation Control System (ISCS). The system can integrate data from both substation system and equipment online monitoring devices into a common data base. The data can then be processed by an expert system into information on the status and health of monitored equipment using self-diagnostic programs. This information is then sent to a CMMS for automatic generation and tracking of maintenance work orders leads directly to the significant efficiencies found with condition-based maintenance programs.ABB Power and its industry partners have combined to develop the ABB Power System software. The system contains a diagnostic and maintenance system that reports necessary maintenance before failure. It allows utilities and industrial customers to easily expand from a single computer to a full system, without re-engineering.the directional protection basisEarly attempts to improve power-service reliability to loads remote from generation led to the dual-line concept. Of course, it is possible to build two lines to a load, and switch the load to whichever line remains energized after adisturbance. But better service continuity will be available if both lines normally feed the load and only the faulted line is tripped when disturbances occur. Fig.14-1 shows a single-generator, two-line, single-load system with breakers properly arranged to supply the load when one line is faulted. For the arrangement to be effective it is necessary to have the proper relay application. Otherwise, the expensive power equipment will not be able to perform as planned. Consider the application of instantaneous and/or time delay relays on the four breakers. Obviously the type of the relay cannot coordinate for all line faults. For example, a fault on the line terminals of breaker D. D tripping should be faster than B, however, the condition reverses and B should be faster than D. It is evident that the relay protection engineer must find some characteristic other than time delay if relay coordination is to be achieved.The magnitude of the fault current through breakers B and D is the same, regardless of the location of the fault on the line terminal of breaker B or D. Therefore relay coordination must be based on characteristics other than a time delay that starts from the time of the fault. Observe that the direction of current flowing through either breaker B or D is a function of which line the fault is on. Thus for a fault on the line between A and B, the current flows out of the load bus through breaker B toward the fault. At breaker D the current flows toward the load bus through breaker D. In this case breaker B should trip, but breaker D should not trip. This can be accomplished by installing directional relays on breakers B and D that are connected in such a way that they will trip only when current flows through them in a direction away from the load bus.Relay coordination for the system shown in Fig.14-1 can now be achieved by their - salvations of directional over current time delay relays on breakers B and D. Breakers A and C can have no directional over current time delay relays. They may also now have instantaneous relays applied. The relays would be set as follows: The directional relays could be set with no intentional time delay. They will have inherent time delay. The time delay over current relays on breakers A and C would have current settings that would permit them to supply backup protection for faults on the load bus and for load equipment faults. The instantaneous elements on breakers A and C would have current settings that would not permit them to detect faults on the load bus. Thus the lines between the generator and the load would have high-speed protection over a considerable portion of their length. It should be observed that faults on the line terminals of breakers A and C can collapse the generator voltage. The instantaneous relays on breakers A and C cannot clear the circuit instantaneously, because it takes time for power equipment to operate. During this period there will be little or no current flow through breakers B and D. Therefore, B or D cannot operate for this fault condition until the appropriate breaker at the generating station has operated. This is known as sequential tripping. Usually, it is acceptable under such conditions.Direction of current flow on an a. c. system is determined by comparing the current vector with some other reference vector, such as a voltage vector. In the system of Fig. 14-1 the reference voltage vector would be derived from the voltages on the load bus. Direction of current or power flow cannot be determined instantaneously on a. c. systems whose lines and equipment contain reactance. This is apparent from the fact that when voltage exists, the lagging current can be plus or minus or zero, depending on the instant sampled in the voltage cycle. Accordingly, the vector quantities must be sampled over a time period. The time period for reasonably accurate sampling may be fromone-half to one cycle. Work is proceeding on shorter sampling periods where predicting circuits are added to the relay to attempt to establish what the vectors will be at some future time. The process is complex, because it must make predictions during the time when electrical transients exist on the system. Usually, the shorter the time allowed for determining direction, the less reliable will be the determination.differential protectionMuch of the apparatus used on a power system has small physical dimensions when compared to the length of general transmission-line circuits. Therefore, the communications between the apparatus terminals may be made very economically and very reliably by the use of direct wire circuit connections. This permits the application of a simple and usually very effective type of differential protection. In concept, the current entering the apparatus is simply compared against the current leaving the apparatus. If there is difference between the two currents, the apparatus is tripped. If there is no difference in the currents, the apparatus is normal and no tripping occurs. Such schemes can usually be made rather sensitive to internal faults and very insensitive to external faults. Therefore, relay coordination is inherent in the differential relay scheme.The simplest application of differential relaying is shown in Fig. 14-4. Here one simple power conductor is protected by a differential relay. The relay itself usually consists of three coils, one of which is the coil that detects the difference current and initiates circuit tripping. It is called the operating coil and is designated by an O in the figure. The other two coils are restraint coils and are designated by R in the figure. The restraint coils serve a practical purpose. They prevent operation for small differences in the two current transformers that can never be exactly identical, as a result of manufacturing and other differences. Otherwise, the restraint coils serve no theoretical purpose. Fig. 14-4 shows the condition of current flow for an external fault during which the relay should not trip. The current I1 enter and leaves the power circuit without change. The current transformers are assumed to have a 1 : 1 ratio for simplicity, and their secondary windings are connected to circulate the I1 currents through the restraint coils of the differential relay only. If current left or entered the power circuit between the two current transformers (an internal fault), then the currents in the transformers would be different, and the difference current would flow through the operating coil of the relay.本文译自《电力英语阅读》A1.2 变电站与电力系统继电保护随着电力电网事业的发展,全国联网的格局已基本形成。

220KV变电站外文翻译

220KV变电站外文翻译

山东理工大学毕业设计(外文翻译材料)学院:电气与电子工程学院专业:电气工程及其自动化学生姓名:***指导教师:***State enumeration technique combined with a labeling busset approach for reliability evaluation ofsubstationconfiguration in power systems1. IntroductionSubstation reliability can be assessed using either Monte Carlo simulation or analytical methods [1–7]. There are two popular enumeration techniques for reliability evaluation of substation configuration in power systems: cut set enumeration [6–9] and network state enumeration [1,2]. There exist two essential differences between the two techniques. The first one is that in the cut set method, the minimum cut sets that lead to a network failure have to be identified before all of them are enumerated,whereas in the network state technique, network states are enumerated first and then an appropriate approach is used to identify whether each of the states is a failure one or not. The second one is that a cut set contains only failed components whereas a network state is defined by both failed and non-failed components.The network state technique has following features compared to the minimum cut set method:• Dependent failures between components can be easier to incorporate, such as one component failure causing outages of multiple components, cascading failures, etc. [1,2].• Multiple failure modes of network components can be easier to consider, such as active and passive failures of a component in a substation configuration [1,2].• Operation actions can be taken into consideration. This requires a model for multiple states of components, such as success, repair and switching states for a component in a substation configuration [1,2].• Network states could be mutually exclusive if the enumeration is properly performed. The first three features are due to the fact that the network state technique focuses on a state of whole network that can easily cover any status ofsubstation components including operational switching and cascading failure sequences. The fourth merit can result in significant simplification in calculations compared to the minimum cut set method. The total failure probability is simply a sum of probabilities of mutually exclusive network failure states in the network state technique. Identifying2. ExampleThe example is a simple substation network as shown in Fig. 4. The network includes three breakers and two transformers.Losing load at the bus load is used as the criterion of substation network failure.2.1. Considering only open circuit failuresIn order to compare the network state technique with the minimum cut set method, it has been first assumed that only open circuit failures of transformers and breakers are considered and all short circuit faults are ignored. To obtain a relatively simple analytical expression of the result, it is assumed that the open circuit failure probability of all the breakers and transformers is identical and it is U. In the computer program, different failure probability values for different components can be easily specified in the data file. Using the cut set method, four minimum cut sets are identified.They are: S1 = (T1, T2}; S2 = (B1, B2), S3 = (B1, B3, T2);S4 = {B2, B3, T1). The probability of substation network failure is calculated b y Fig. 4. A simple substation network.P f = P(S1 ∪S2 ∪S3 ∪S4) = 2U2 + 2U3 − 5U4 + 2U5 (4)As usual, the four minimum cut sets are not mutually exclusive. The calculations from the left side of the second equality sign to its right side are associated with intersections among the minimum cut sets. For this simple case, it can be expressed asfollows:P f = P(S1 ∪S2 ∪S3 ∪S4)= P(S1) + P(S2) + P(S3) + P(S4) −P(S1 ∩ S2)−P(S1 ∩ S3) −P(S1 ∩ S4) −P(S2 ∩ S3) −P(S2 ∩ S4)−P(S3 ∩ S4) + P(S1 ∩ S2 ∩ S3) + P(S1 ∩ S2 ∩ S4)+P(S1 ∩ S3 ∩ S4) + P(S2 ∩ S3 ∩ S4)−P(S1 ∩ S2 ∩ S3 ∩ S4) (5)For a relatively large network, identifying all minimum cut sets and performing calculations of the union of non-mutually exclusive cut sets require considerable computational efforts. Using the presented network state enumeration with the labeling bus set approach, 16 network states are identified as failure states that lead to loss of load. Generally, although the number of network failure states is more than the number of minimum cut sets, it is much easier and faster to identify them using the labeling bus set approach in programming. Particularly, once the network failure states are identified, the total network failure probability is just the sum of probabilities of all network failure states without any calculation associated with the union and intersections. In this example, we can have the following analytical expression of substation network failure probability:P f = 2U2(1 −U)3 + 8U3(1 −U)2 + 5U4(1 −U) + U5 (6)It is interesting to note that Eqs. (4) and (6) look so different but they lead to the same result. This can be proven by assign Ua value. For instance, by letting U= 0.015, the substation network failure probability from both the equations is identical, which is0.000456498.2.2. Considering both open circuit failures and shortcircuit faultsIt is relatively difficult for the cut set method to incorporate dependent failure events, multiple failure modes and switching actions, which are associated with short circuit faults and need to be modeled in reliability evaluation of a substation configuration.It has been assumed in this example that the breakers can clear their own short circuit faults and only the short circuit faults on the two transformers are considered. When a short circuit fault happens on either transformer, thebreakers B1 and B2 will be opened by a protection action. This results in a switching state. In this state, B1 and B2 are still healthy components. Their outages are not due to a failure and cannot be treated as components in a cut set. Then, the switches (not shown in the figure) at both sides of the failed transformer are manually opened to isolate it, and B1 and B2 are re-closed so that the load may be supplied through another transformer if the second transformer is not simultaneously down. This second state corresponds to a repairing state of the faulted transformer.3. ConclusionsThe network state enumeration technique combined with the labeling bus set approach proposed in the paper is suitable for reliability evaluation of a substation configuration or a looped distribution network that needs to model dependent failures, multiple failure modes and multiple states of components.Another advantage of the presented network state enumeration technique is that enumerated network states are mutually exclusive resulting in great simplification in calculating the total network failure probability compared to the minimum cut set method. The key in the presented technique is identification of whether a state is a failure one or not. The labeling bus set approach has been proposed for this purpose.A substation configuration is used to explain the procedure including a switching action associated with dependent outages and multiple states of network components. The presented method is easy to program and can be applied to any substation or looped distribution networks.The example of a substation network demonstrates that in the case of considering only open circuit failures, the same result is obtained using the proposed method and the minimum cut set method. The example also shows that the presented technique can handle the case of considering both open failures and short circuit faults which are associated with switching actions and protection logic.结合国家统计技术在电力系统的配置标签母线变电站集方法的可靠性评价1介绍变电站的可靠性可以使用蒙特卡洛仿真法或者分析法进行评估1-7。

变电站英文范文

变电站英文范文

变电站英文范文A substation, also known as a switching station, is a crucial component of an electrical system that plays a vital role in the transmission and distribution of electricity. 变电站是电气系统中至关重要的组成部分,起着在电力传输和分配中至关重要的作用。

Substations are responsible for converting high-voltage electricity from power plants into lower-voltage electricity that can be used by homes and businesses. 变电站负责将发电厂产生的高压电力转换为可供家庭和企业使用的低压电力。

These facilities are essential for ensuring a reliable and stable supply of electricity to consumers, as they help regulate the flow of power and protect the grid from disruptions and overloads. 这些设施对确保向用户提供可靠稳定的电力供应至关重要,因为它们有助于调节电力流动并保护电网免受干扰和过载。

In addition to their primary function of voltage transformation, substations also serve as points where power can be switched and distributed to different areas, allowing for greater flexibility inmanaging the electrical grid. 除了主要的电压转换功能外,变电站还可用作电力切换和分配到不同区域的点,从而增加了管理电网的灵活性。

变电站设计英文参考文献

变电站设计英文参考文献

变电站设计英文参考文献以下是关于变电站设计的英文参考文献列表及简介:1. "Modern Power Station Practice Vol 1: Electrical Systems and Equipment" by Central Electricity Generating Board (CEGB) - 这本书是关于电站设计的权威参考书之一,其中包含了变电站设计的细节和要求。

2. "HVDC Transmission: Power Conversion Applications in Power Systems" by K.R. Padiyar - 这本书主要涉及高压直流输电的理论和应用,而变电站通常是将交流电转换成直流电进行输电的一部分,因此这本书可以帮助设计师更好地理解变电站的工作原理。

3. "Electric Power Substations Engineering" by John D. McDonald- 这本书是变电站设计和工程的综合指南,包含了变电站的各个方面,从概述到详细设计,以及施工和运行。

4. "Transformer and Inductor Design Handbook" by Colonel Wm. T. McLyman - 压变和电感器是变电站中常见的元件,因此设计师需要了解它们的设计和制造,这本书提供了详细的指导和案例。

5. "Electric Power Distribution Handbook" by Thomas Allen Short- 这本书提供了关于配电系统的基础知识和设计方法,这对于变电站设计师来说也非常重要,因为变电站通常是配电网络的一个关键组成部分。

6. "Switchgear and Protection" by J.B Gupta - 变电站中使用的开关设备和保护系统非常关键,这本书提供了涵盖相关主题的详细信息,包括故障和过电压保护,以及开关设备的选择和维护。

变电站建设外文文献翻译

变电站建设外文文献翻译

变电站建设外文文献翻译(文档含中英文对照即英文原文和中文翻译)General Requirements to Construction of SubstationSubstations are a vital element in a power supply system of industrial enterprises.They serve to receive ,convert and distribute electric energy .Depending on power and purpose ,the substations are divided into central distribution substations for a voltage of 110-500kV;main step-down substations for110-220/6-10-35kV;deep entrance substations for 110-330/6-10Kv;distribution substations for 6-10Kv;shop transformer substations for 6-10/0.38-0.66kV.At the main step-down substations, the energy received from the power source is transformed from 110-220kV usually to 6-10kV(sometimes 35kV) which is distributed among substations of the enterpriseand is fed to high-voltage services.Central distribution substations receive energy from power systems and distribute it (without or with partial transformation) via aerial and cable lines of deep entrances at a voltage of 110-220kV over the enterprise territory .Central distribution substation differs from the main distribution substation in a higher power and in that bulk of its power is at a voltage of 110-220kV;it features simplified switching circuits at primary voltage; it is fed from the power to an individual object or region .Low-and medium-power shop substations transform energy from 6-10kV to a secondary voltage of 380/220 or 660/380.Step-up transformer substations are used at power plants for transformation of energy produced by the generators to a higher voltage which decreases losses at a long-distance transmission .Converter substations are intended to convert AC to DC (sometimes vice versa) and to convert energy of one frequency to another .Converter substations with semiconductor rectifiers are convert energy of one frequency to another .Converter substations with semiconductor rectifiers are most economic. Distribution substations for 6-10kV are fed primarily from main distribution substations (sometimes from central distribution substations).With a system of dividing substations for 110-220kV, the functions of a switch-gear are accomplished by switch-gears for 6-10kV at deep entrance substations.Depending on location of substations their switch-gear may be outdoor or indoor. The feed and output lines at 6-10kV substations are mainly of the cable type .at 35-220kV substations of the aerial type .When erecting and wiring thesubstations ,major attention is given to reliable and economic power supply of a given production.Substations are erected by industrial methods with the use of large blocks and assemblies prepared at the site shops of electric engineering organizations and factories of electrical engineering industry .Substations are usually designed for operation without continuous attendance of the duty personnel but with the use of elementary automatic and signaling devices.When constructing the structural part of a substation .it is advisable to use light-weight industrial structures and elements (panels ,floors ,etc.) made of bent sections .These elements are pre-made outside the erection zone and are only assembled at site .This considerably cuts the terms and cost of construction.Basic circuitry concepts of substations are chosen when designing a powersupply system of the enterprise .Substations feature primary voltage entrances .transformers and output cable lines or current conductors of secondary voltage .Substations are mounted from equipment and elements described below .The number of possible combinations of equipment and elements is very great .Whenelaborating a substation circuitry ,it is necessary to strive for maximum simplification and minimizing the number of switching devices .Such substations are more reliable and economic .Circuitry is simplified by using automatic reclosure or automatic change over to reserve facility which allows rapid and faultless redundancy of individual elements and using equipment.When designing transformer substations of industrial enterprises for all voltages ,the following basic considerations are taken into account:1. Preferable employment of a single-bus system with using two-bus systems only to ensure a reliable and economic power supply;2. Wide use of unitized constructions and busless substations;3.Substantiated employment of automatics and telemetry ;if the substation design does not envisage the use of automatics or telemetry ,the circuitry is so arranged as to allow for adding such equipment in future without excessive investments and re-work.e of simple and cheap devices-isolating switches ,short-circuiting switches ,load-breaking isolators ,fuses ,with due regard for their switching capacity may drastically cut the need for expensive and critical oil ,vacuum ,solenoid and air switches .Substation and switch-gear circuitries are so made that using the equipment of each production line is fed from individual transformers ,assemblies ,the lines to allow their disconnection simultaneously with mechanisms without disrupting operation of adjacent production flows.When elaborating circuitry of a substation, the most vital task is to properly choose and arrange switching devices(switches ,isolators ,current limiters ,arresters ,high-voltage fuses).The decision depends on the purpose ,power and significance of the substation.Many years ago, scientists had very vague ideas about electricity. Many of them thought of it as a sort of fluid that flowed through wires as water flows through pipes, but they could not understand what made it flow. Many of them felt that electricity was made up of tiny particles of some kind ,but trying to separate electricity intoindividual particles baffled them.Then, the great American scientist Millikan, in 1909,astounded the scientific world by actually weighing a single particle of electricity and calculating its electric charge. This was probably one of the most delicate weighing jobs ever done by man,for a single electric particle weighs only about half of a millionth of a pound. To make up a pound it would take more of those particles than there are drops of water in the Atlantic Ocean.They are no strangers to us, these electric particles, for we know them as electrons. When large numbers of electrons break away from their atoms and move through a wire,we describe this action by saying that electricity is flowing through the wire.Yes,the electrical fluid that early scientists talked about is nothing more than electrical flowing along a wire.But how can individual electrons be made to break away from atoms? And how can these free electrons be made to along a wire? The answer to the first question lies in the structure of the atoms themselves. Some atoms are so constructed that they lose electrons easily. An atom of copper, for example ,is continually losing an electron, regaining it(or another electron),and losing it again. A copper atom normally has 29 electrons, arranged in four different orbits about its nucleus. The inside orbit has 2 electrons. The next larger orbit has 8.The third orbit is packed with 18 electrons . And the outside orbit has only one electron.It is this outside electron that the copper atom is continually losing, for it is not very closely tied to the atom. It wanders off, is replaced by another free-roving electron, and then this second electron also wandersaway.Consequently,in a copper wire free electrons are floating around in all directions among the copper atoms.Thus, even through the copper wire looks quite motionless to your ordinary eye, there is a great deal of activity going on inside it. If the wire were carrying electricity to an electric light or to some other electrical device, the electrons would not be moving around at random. Instead, many of them would be rushing in the same direction-from one end of the wire to the other.This brings us to the second question .How can free electrons be made to move along a wire? Well ,men have found several ways to do that .One way is chemical. V olta,s voltaic pile,or battery, is a chemical device that makes electricity(or electrons)flow in wires. Another way is magnetic. Faraday and Henry discovered how magnets could be used to make electricity flow in a wire.MagnetsAlmost everyone has seen horseshoe magnets-so called because they are shaped like horseshoes. Probably you have experimented with a magnet, and noticed how it will pick up tacks and nails, or other small iron objects. Men have known about magnets for thousands of years.Several thousand years ago, according to legend, a shepherd named Magnes lived on the island of Crete, in the Mediterranean Sea .He had a shepherds crook tipped with iron. One day he found an oddly shaped black stone that stuck to this iron ter, when many other such stones were found, they were called magnets(after Magnets).These were natural magnets.In recent times men have learned how to make magnets out of iron. More important still, they have discovered how to use magnets to push electrons through wires-that is, how to make electricity flow. Before we discuss this, there arecertain characteristics of magnets that we should know about.If a piece of glass is laid on top of a horse- shoes magnet, and if iron filings are then sprink ledon the glass, the filings will arrange themselves into lines. If this same thing is trid with a bar magnet(a horseshoe magnet straightened out),the lines can be seen more easily. These experiments demonstrate what scientists call magnetic lines of force. Magnets, they explain, work through lines of force that ext- end between the two ends of the magnet. But electrons seem to have magnetic lines of force around them, too.This can be proved by sticking a wire through a piece ofcard board, sprinkling iron filings on the cardboard, and connecting a battery to the wire. The filings will tend to form rings around the wire,as a result of the magnetism of the moving electrons(or electricity).So we can see that there is arelationship between moving electrons and magnetism, Magnetism results from the movement of electrons.Of course, electrons are not really flowing in the bar magnet, but they are in motion, circling the nuclei of the iron atoms. However, in the magnet, circling thelined up in such a way that their electrons are circling in the same direction. Perhaps a good comparison might be a great number of boys whirling balls onstrings in a clockwise direction around their heads.翻译:变电站建设的一般要求变电站(所)在电源系统的工业企业是一个至关重要的因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变电站概述中英文资料对照外文翻译文献综述英文翻译A comprehensive overview of substationsAlong with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life.Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。

Therefore, power transmission and distribution iscritical. Substation is to enable superior power plant power plants or power after adjustments to the lower load of books is an important part of power transmission. Operation of its functions, the capacity of a direct impact on the size of the lower load power, thereby affecting the industrial production and power consumption.Substation system if a link failure, the system will protect the part of action. May result in power outages and so on, to the production and living a great disadvantage. Therefore, the substation in the electric power system for the protection of electricity reliability, sensitivity and other indicators.Power plants and substations are connected user link in the middle, transformation and distribution of electric energy to play the role. According to the different tasks substation can be divided into step-up transformer step-down transformer substation and two broad categories. Step-up substation built on the general power plant, the general step-down transformer near the load center built on the low.V oltage can also be divided according to medium voltage substation (60 kV and below), high-voltage substations (110 ~ 220 kV), EHV Substation (330 ~ 765 kV) and Ultra High V oltage Substation (1000 kV and above). In electric power system according to their status as a hub substation can be divided into the middle substation substations and terminals. This requires a substation part of economic rationality, the second part of safe and reliable, the only way to the normal operation of substation work services for the national economy. There are step-up transformer step-down transformer substation and two broad categories.Substations have been equipped with various protection devices, these devices are based on lower short-circuit load to a maximum load conditions, such as configuration settings and, therefore, in the event of the failure was similar to the specific circumstances under to judge by the system should automatically trip protection, and now the protection of the whole trip has been a very short time, the lifting of the fault, the system will automatically reclosing devices and the gateway to restore power quickly. This is to protect the lower the load is very favorable. This will not only protect the safety of the load equipment is in favor of extending the service life and reduce equipment investment, and improved reliability of electricity supply, which is to improve the efficiency of industrial and agricultural production is very effective.Substations have been equipped with various protection devices, these devices are based on lower short-circuit load to a maximum load conditions, such as configuration settings and, therefore, in the event of the failure was similar to the specific circumstances under to judge by the system should automatically trip protection, and now the protection of the whole trip has been a veryshort time, the lifting of the fault, the system will automatically reclosing devices and the gateway to restore power quickly. This is to protect the lower the load is very favorable. This will not only protect the safety of the load equipment is in favor of extending the service life and reduce equipment investment, and improved reliability of electricity supply, which is to improve the efficiency of industrial and agricultural production is very effective.Increase in the efficiency of industrial products means lower product costs, increase market competitiveness, which will enable enterprises to increase for the national economy and make a greater contribution to development. Electricity supply reliability and other fields, can improve people's quality of life, improve their living conditions.Analyse change to give or get an electric shock a mission for carrying and customers carries etc. circumstance, choose the address, make good use of customer data proceed then carry calculation, ascertain the correct equipment of the customer. At the same time following the choice of every kind of transformer, then make sure the line method of the transformer substation, then calculate the short-circuit electric current, choosing to send together with the electric wire method and the style of the wire, then proceeding the calculation of short-circuit electric current. This first step of design included:(1) ascertain the total project (2) load analysis(3) the calculation of the short-circuit electric current (4) the design of an electric shock the system design to connect with system and the choice of line project (5) the choice and the settle of the protective facility (6) the contents to defend the thunder and protection of connect the earth. Along with the high and quick development of electric power technique, electric power system then can change from the generate of the electricity to the supply the power.Design the task this time is aim at intensity of mastering of every subject knowledge of this speciality reflecting, and of test this speciality’s study result. first, analyze the tend of load department according to all parameter of load about system and circuit on task book. It expounds the necessity to this situation from the rspect of increasing load. Then through to the generalization of planning to build the transformer substation and the analysis of the load materials, safe, economy and dependability are considered, has confirmed the mainly wiring form of 10kV. Calculated and supplied power in the range and confirmed TV station's number of the main voltage transformer through load finally, capacity and type, capacity and type of using the voltage transformer stand surely at the same time, finally, the result of calculation of calculating that and short out according to the electric current of largest lasting job,make the circuit to protect, the voltage transformer is protected, the bus bar is protected, prevent the thunder from protecting.This graduation project take the 10kV transformer substation as the main design object, this 10kV transformer substation is the local important transformer substation, is the electrical power system 10kV voltage rank important part. This transformer substation is equipped with 2 main transformers, in the station the host wiring divides into 10kV,and 0.4 kV two voltages ranks.This design first chapter is an introduction, mainly elaborated the transformer substation in electrical power system status. Designs the transformer substation the principle and the goal as well as the transformer substation basic situation. Second chapter is shoulders the computation and the transformer choice, carries on the load computation according to the known transformer substation load material to the transformer substation. Through the load which obtains had determined the host changes the capacity and a number, the host change the pattern, the winding wiring way, the accent press the way and the host changes the impedance. Third chapter is the transformer substation electricity host wiring design, separately through to 10kV side electricity host wiring drawing up, chooses the stablest reliable wiring way. Fourth chapter is the short class computation, first determined short-circuits the spot, calculates various parts reactance, then to respectively short-circuits separately to carry on the computation, obtains respectively short-circuits the short-circuit current. Fifth chapter is the electrical equipment choice, the electrical equipment including the generatrix, the circuit breaker, the isolator, the electric current and the voltage transformer, the fuse. Sixth chapter is the power distribution equipment, mainly carries on the design to the transformer substation power distribution equipment. Seventh chapter is anti-radar with the earth, this chapter has carried on the choice to the arrester, as well as has determined the earth way. Through to the 10kV transformer substation design, causes me has to the electrical engineering and its the automated specialized branch curriculum to be comprehensive, system grasping, strengthened apply theory to reality the ability, raised the project consciousness, exercised me independently to analyze and the solution electric power project design question ability.[key words] substation ,load ,transmission system , distribution high voltage network ,correction equipment.变电站的综合概述随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,工厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。

相关文档
最新文档