2014-2015学年度第一学期期中考试高三数学理科试题
2014-2015学年度第一学期期中考试高三数学理科试题

2014-2015学年度第一学期期中考试高三数学试卷(理科)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合13{|()}xM y y ==,2{|log (1)}N x y x ==-,则M R N =( ) A .(0,1) B .(]0,1 C .(1,)+∞ D .(0,+∞)2.若120a b <<<,则( )A .22ab a >B .22ab b >C .2log ()1ab >-D .2log ()2ab <-3.等差数列{}n a 的通项公式是12n a n =-,其前项和为n S ,则数列{}nS n的前11项和为( )A .-44 (B)-66 C .-55 D .554.已知函数2()21(0)f x ax ax a =-+<,若12x x <,120x x +=,则1()f x 与2()f x 的大小关系是( )A .1()f x =2()f xB .1()f x >2()f xC .1()f x <2()f xD .与a 的值有关5.抛物线22y x =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .98B .78C .98-D .78-6.已知向量a 与b 的夹角为o 60,3a =,13a b +=,则b 等于( ) A .1 B .3 C .4 D .57.已知m 、n 是两条直线,,,αβγ是三个平面,给出下列四个命题: ①若,,//,m n m n αβ⊥⊥则//αβ; ②若,,//αγβγαβ⊥⊥则;③若βαβα//,//,,则n m n m ⊂⊂; ④若,m α⊥,n β⊥m n ⊥,则αβ⊥.其中真命题是( )A .①和②B .①和③C .③和④D .①和④8.设函数()y f x =的反函数为()1y f x -=,且()21y f x =+的图像过点()1,2,则()131y f x -=-的图像必过点( )A .()1,3B .()3,1C .()2,3D .()2,19.已知(,1)AB k =,(2,4)AC =,若k 为满足||4AB ≤的一随机整数..,则ABC ∆是直角三角形的概率是( )A . 14B .12C .37 D .3410.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )11.若AB 是过椭圆22221x y a b+=(0)a b >>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,1k ,2k 分别为直线AM ,BM 的斜率(其中222c a b =-),则12k k ⋅=( )A .22c a -B .22c b -C .22b a -D .22a b -12.已知函数3ax y e x =+()a R ∈有大于零的极值点,则( )A .3a >-B .3a <-C .13a >-D .13a <-二、填空题(4×4′=16分):13.在(51)x 展开式中,1x 的系数是: ;14.抛物线C :2y x x =-+与直线l :10x y --=所围成的平面图形的面积是: ;15.过P (-1,2)的直线⎩⎨⎧-=+-=t y tx 4231(t 为参数)与双曲线22(2)1y x --=相交于A 、B 两点,若C 为AB 的中点,则=PC ;E F DIA H GBC EF D AB C侧视 图1图2 BEABEB BECBED16.曲线2cos ρθ=关于直线4πθ=-对称的曲线方程为 .三、解答题(满分74分):17.(12分)在ABC ∆中,内角A ,B ,C ,的对边分别为,,a b c ,已知角3,A a π==B=x ,ABC ∆的周长为y . (1)求函数()y f x =的解析式和定义域; (2)求函数()y f x =的值域.18.(12分)一个口袋中装有编号分别为1,2,3,4,5,6的6个大小相同的球,从中任取3个,用ξ表示取出的3个球中的最大编号.(1)求ξ的分布列;(2)求ξ的数学期望和方差.19.(12分)直三棱柱111ABC-A B C 中,1AC CC 2,AB BC ===,D 是1BA 上一点,且AD ⊥平面1A BC .(1)求证:BC ⊥平面11ABB A ;(2)求异面直线1A C 与AB 所成角的大小; (3)求二面角1A C B A --余弦值的大小.20.(12分)已知中心在原点的双曲线C 的左焦点为)0,2(-,而C 的右准线方程为23=x .(1)求双曲线C 的方程;(2)若过点)2,0(,斜率为k 的直线与双曲线C 恒有两个不同的交点A 和B ,且满足5OA OB ⋅< (其中O 为原点),求实数k 的取值范围.21.(12分)已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,0,,<∈m R n m(1)求m 与n 的关系表达式; (2)求函数)(x f 的单调区间;(3)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围.22.(14分)已知函数()20y x x =≥的图象上有一列点()111,P x y ,()222,P x y ,…,(),n n n P x y ,…,以点n P 为圆心的圆n P 与以点n+1P 为圆心的圆n+1P 外切,且均与x 轴相切.若11x =,且1n n x x +<.(1)求数列{}n x 的通项;(2)圆n P 的面积为n S ,n n T S =+,求证:4n T <.高三数学(理科)参考答案一、选择题BDBCD ADACA CB二、填空题13.-80; 14.43; 15.157; 16.2sin ρθ=-三、解答题17.(1)()263)0,y x x ππ=++∈;(2)(y ∈.18.(1)(2) 214E ξ=; 6380D ξ=.19.(1)略; (2)3π ;.20.(1)2213x y -=;(2)(k ∈.21.(1)36n m =+;(2)单调递减区间()()2,1,1,m -∞++∞;单调递增区间()21,1m +; (3)()43,0m ∈-.22.(1)121n x n =-;(2)1n =时,1n T T =<1n >2n ==<=()111111114223141(1)11n n n n T -⎤<+-+-++-=+-⎤⎦⎦。
2014-2015年江苏省南通一中高三(上)期中数学试卷及参考答案(理科)

2014-2015学年江苏省南通一中高三(上)期中数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.(5分)i是虚数单位,=.2.(5分)设集合M={x|1<x<3},N={x|x2﹣2x<0},则M∩N=.3.(5分)已知平面向量=(2,﹣1),向量=(1,1),向量=(﹣5,1).若(+k)∥,则实数k的值为.4.(5分)已知S n是数列{a n}的前n项和,且有S n=n2+1,则数列{a n}的通项a n=.5.(5分)函数y=log3(x2﹣2x)的单调减区间是.6.(5分)设等差数列{a n}的公差d不为零,a1=9d.若a k是a1与a2k的等比中项,则k=.7.(5分)已知=.8.(5分)要得到y=sin x的图象,只须将函数y=sin()的图象向左最少平移个单位.9.(5分)设命题p:ax2+2ax+1>0的解集是实数集R;命题q:0<a<1,则p 是q的.(填“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”)10.(5分)已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f (x+1),则f(2+log23)=.11.(5分)在四边形ABCD中,==(1,1),,则四边形ABCD的面积是.12.(5分)给出下列四个命题,其中正确的命题有.(填所有正确的序号)(1)命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;(2)若f(x)=ax2+2x+1只有一个零点,则a=1;(3)命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;(4)对于任意实数x,有f(﹣x)=f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时,f′(x)>g′(x);(5)在△ABC中,“A>45°”是“sinA>”的充要条件.13.(5分)在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且=m,=n,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则||的最小值为14.(5分)设S n为数列{a n}的前n项之和,若不等式n2a n2+4S n2≥λn2a12对任何等差数列{a n}及任何正整数n恒成立,则λ的最大值为.二、解答题:本大题共10小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知向量=(,1),向量=(sin2x,cos2x),函数f(x)=•.(1)求函数f(x)的表达式,并作出函数y=f(x)在一个周期内的简图(用五点法列表描点);(2)求函数y=f(x)的周期,并写单调区间.16.(14分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.17.(14分)某旅游景点预计2014年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似满足p(x)=x(x+1)•(39﹣2x),(x∈N+,x ≤12)已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=(1)写出2014年第x月的旅游人数f(x)(单位:万人)与x的函数关系式;(2)试问2014年哪个月的旅游消费总额最大,最大旅游消费额为多少万元?18.(16分)已知奇函数f(x)的定义域为[﹣1,1],当x∈[﹣1,0)时,f(x)=﹣.(1)求函数f(x)在[0,1]上的值域;(2)若x∈(0,1],f2(x)﹣f(x)+1的最小值为﹣2,求实数λ的值.19.(16分)已知函数f(x)=ax2+bx的图象过点(﹣n,0),且在(0,f(0))处的切线的斜率为n,(n为正整数)(Ⅰ)求函数f(x)的解析式;(Ⅱ)若数列{a n}满足:,,令,求数列{b n}的通项公式;(III)对于(Ⅱ)中的数列{a n},令,求数列{c n}的前n项的和S n.20.(16分)设函数f(x)=xsinx(x∈R).(Ⅰ)证明f(x+2kπ)﹣f(x)=2kπsinx,其中为k为整数;(Ⅱ)设x0为f(x)的一个极值点,证明[f(x0)]2=;(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2,…,a n,…,证明<a n+1﹣a n<π(n=1,2,…).21.(10分)已知函数f(x)=ln(2x﹣e),点P(e,f(e))为函数的图象上一点.(1)求导函数f′(x)的解析式;(2))求f(x)=ln(2x﹣e)在点P(e,f(e))处的切线的方程.22.(10分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,若直线l:kx+y+3=0与圆C相切.求(1)圆C的直角坐标方程;(2)实数k的值.23.(10分)(理)已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A﹣BD﹣C的大小.24.(10分)设数列{a n}的前n项和为S n,且方程x2﹣a n x﹣a n=0有一根为S n﹣1,n=1,2,3,….(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出严格的证明.2014-2015学年江苏省南通一中高三(上)期中数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.(5分)i是虚数单位,=﹣1.【解答】解:=.故答案为:﹣1.2.(5分)设集合M={x|1<x<3},N={x|x2﹣2x<0},则M∩N={x|1<x<2} .【解答】解:∵集合M{x|1<x<3},N={x|x2﹣2x<0}={x|0<x<2},∴M∩N={1<x<2}.故答案为:{x|1<x<2}.3.(5分)已知平面向量=(2,﹣1),向量=(1,1),向量=(﹣5,1).若(+k)∥,则实数k的值为.【解答】解:∵,∴,又,且(+k)∥,∴1×(2+k)+5(﹣1+k)=0,解得:k=.故答案为:.4.(5分)已知S n是数列{a n}的前n项和,且有S n=n2+1,则数列{a n}的通项a n=.【解答】解:a1=S1=1+1=2,a n=S n﹣S n﹣1=(n2+1)﹣[(n﹣1)2+1]=2n﹣1,当n=1时,2n﹣1=1≠a1,∴.答案:.5.(5分)函数y=log3(x2﹣2x)的单调减区间是(﹣∞,0).【解答】解:由题意可得函数f(x)的定义域是x>2或x<0,令u(x)=x2﹣2x的减区间为(﹣∞,1)∴函数f(x)的单调减区间为(﹣∞,0)故答案:(﹣∞,0)6.(5分)设等差数列{a n}的公差d不为零,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.7.(5分)已知=﹣.【解答】解:∵cos(π﹣α)=﹣cosα=﹣∴cosα=∴sinα=±=±∵α∈(﹣,0)∴sinαα=﹣∴tanα=﹣tan2α==﹣故答案为﹣.8.(5分)要得到y=sin x的图象,只须将函数y=sin()的图象向左最少平移个单位.【解答】解:将函数y=sin()的图象向左最少平移单位,可得y=sin[(x+)﹣]=sin x的图象,故答案为:.9.(5分)设命题p:ax2+2ax+1>0的解集是实数集R;命题q:0<a<1,则p 是q的必要不充分条件.(填“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”)【解答】解:命题p:ax2+2ax+1>0的解集是实数集R⇔a=0或⇔a=0或⇔a=0或0<a<4⇔0≤a<4命题q:0<a<1.故p是q的必要不充分条件.答案为:必要不充分条件10.(5分)已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=.【解答】解:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)==故应填11.(5分)在四边形ABCD中,==(1,1),,则四边形ABCD的面积是.【解答】解:由题,可知平行四边形ABCD的角平分线BD平分∠ABC,四边形ABCD是菱形,其边长为,且对角线BD等于边长的倍,所以cos∠BAD==﹣,故sin∠BAD=,S ABCD=()2×=.故答案为:.12.(5分)给出下列四个命题,其中正确的命题有(1).(填所有正确的序号)(1)命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;(2)若f(x)=ax2+2x+1只有一个零点,则a=1;(3)命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;(4)对于任意实数x,有f(﹣x)=f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时,f′(x)>g′(x);(5)在△ABC中,“A>45°”是“sinA>”的充要条件.【解答】解:对于(1),命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;对于(2),当a=0时函数f(x)=ax2+2x+1也只有一个零点,命题(2)错误;对于(3),命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2或y<3,则x+y <5”,命题(3)错误;对于(4),对于任意实数x,有f(﹣x)=f(x),g(﹣x)=g(x),说明f(x),g(x)均为偶函数,又当x>0时,f′(x)>0,g′(x)>0,则当x<0时,f′(x)<0,g′(x)<0,命题(4)错误;对于(5),在△ABC中,A>45°不一定得到sinA>,如A=150°,sinA=,∴“A >45°”不是“sinA>”的充要条件,命题(5)错误.故答案为:(1).13.(5分)在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且=m,=n,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则||的最小值为【解答】解:连接AM、AN,∵等腰三角形ABC中,AB=AC=1,A=120°,∴=||•||cos120°=﹣∵AM是△AEF的中线,∴=()=(+)同理,可得=(+),由此可得=﹣=(1﹣m)+(1﹣n)∴=[(1﹣m)+(1﹣n)]2=(1﹣m)2+(1﹣m)(1﹣n)•+(1﹣n)2=(1﹣m)2﹣(1﹣m)(1﹣n)+(1﹣n)2,∵m+4n=1,可得1﹣m=4n∴代入上式得=×(4n)2﹣×4n(1﹣n)+(1﹣n)2=n2﹣n+∵m,n∈(0,1),∴当n=时,的最小值为,此时的最小值为.故答案为:14.(5分)设S n为数列{a n}的前n项之和,若不等式n2a n2+4S n2≥λn2a12对任何等差数列{a n}及任何正整数n恒成立,则λ的最大值为.【解答】解:∵不等式n2a n2+4S n2≥λn2a12对任何等差数列{a n}及任何正整数n恒成立,,∴+,当a1≠0时,化为+1=,当=﹣时,上式等号成立.∴.故答案为:.二、解答题:本大题共10小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知向量=(,1),向量=(sin2x,cos2x),函数f(x)=•.(1)求函数f(x)的表达式,并作出函数y=f(x)在一个周期内的简图(用五点法列表描点);(2)求函数y=f(x)的周期,并写单调区间.【解答】解:(1)由于向量=(,1),向量=(sin2x,cos2x),函数f(x)=•.则有f(x)=sin2x+cos2x=2sin(2x+),函数的周期为T==π,先用“五点法”作出一个周期的图象,列表:描点得整个图象,如右.(2)函数y=f(x)的周期为π,由2k≤2x+≤2k,解得k≤x≤k;由2k≤2x+≤2k,解得k≤x≤k,则单调增区间[k,k](k为整数);单调减区间[k,k](k为整数).16.(14分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).17.(14分)某旅游景点预计2014年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似满足p(x)=x(x+1)•(39﹣2x),(x∈N+,x ≤12)已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=(1)写出2014年第x月的旅游人数f(x)(单位:万人)与x的函数关系式;(2)试问2014年哪个月的旅游消费总额最大,最大旅游消费额为多少万元?【解答】解:(1)当x=1时,f(1)=p(1)=37,当2≤x≤12,且x∈N*时,f(x)=P(x)﹣P(x﹣1)=﹣3x2+40x.验证:x=1时,37符合f(x))=﹣3x2+40x∴f(x))=﹣3x2+40x(x∈N*,且1≤x≤12))(2)第x月旅游消费总额为g(x)=f(x)•q(x)==当1≤x≤6,且x∈N+时,g′(x)=18x2﹣370x+1400,令g′(x)=0,解得x=5,x=140(舍去)∴当1≤x<5时,g′(x)>0,当5<x≤6时,g′(x)<0,∴当x=5时,g(x)max=g(5)=3125(万元)当7≤x≤12,且x∈N*时,g(x)=﹣48x+640是减函数,∴当x=7时,g(x)max=g(7)=304(万元),综上,2013年第5月份的旅游消费总额最大,最大月旅游消费总额为3125万元.18.(16分)已知奇函数f(x)的定义域为[﹣1,1],当x∈[﹣1,0)时,f(x)=﹣.(1)求函数f(x)在[0,1]上的值域;(2)若x∈(0,1],f2(x)﹣f(x)+1的最小值为﹣2,求实数λ的值.【解答】解:(1)设x∈(0,1],则﹣x∈[﹣1,0)时,所以f(﹣x)=﹣=﹣2x.又因为f(x)为奇函数,所以有f(﹣x)=﹣f(x),所以当x∈(0,1]时,f(x)=﹣f(﹣x)=2x,所以f(x)∈(1,2],又f(0)=0.所以,当x∈[0,1]时函数f(x)的值域为(1,2]∪{0}.(2)由(1)知当x∈(0,1]时,f(x)∈(1,2],所以f(x)∈(,1].令t=f(x),则<t≤1,g(t)=f2(x)﹣f(x)+1=t2﹣λt+1=+1﹣,①当≤,即λ≤1时,g(t)>g(),无最小值,②当<≤1,即1<λ≤2时,g(t)min=g()=1﹣=﹣2,解得λ=±2(舍去).③当>1,即λ>2时,g(t)min=g(1)=﹣2,解得λ=4,综上所述,λ=4.19.(16分)已知函数f(x)=ax2+bx的图象过点(﹣n,0),且在(0,f(0))处的切线的斜率为n,(n为正整数)(Ⅰ)求函数f(x)的解析式;(Ⅱ)若数列{a n}满足:,,令,求数列{b n}的通项公式;(III)对于(Ⅱ)中的数列{a n},令,求数列{c n}的前n项的和S n.【解答】解:(I)由已知f(﹣n)=a(﹣n)2+b(﹣n)=0,f′(0)=b=n解得a=1,b=n,所以f(x)=x2+nx(3分);(Ⅱ)由可得,(4分),即b n=2b n+1所以数列{b n}是首项为,公比q=2的等比数列,(6分)∴b n=4•2n﹣1=2n+1(8分);(Ⅲ)由(Ⅱ)知C n=n•2n+1﹣n(9分)∵S n=1•22+2•23+…+n•2n+1﹣(1+2+3+…+n)2S n=1•23+2•24+…+(n﹣1)•2n+1+n•2n+2﹣2(1+2+3+…+n)(10分)∴﹣S n=(22+23+…+2n+1)﹣n•2n+2+(1+2+3+…+n)=﹣n•2n+2+,∴S n=(n﹣1)•2n+2+4﹣(12分)20.(16分)设函数f(x)=xsinx(x∈R).(Ⅰ)证明f(x+2kπ)﹣f(x)=2kπsinx,其中为k为整数;(Ⅱ)设x0为f(x)的一个极值点,证明[f(x0)]2=;(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2,…,a n,…,证明<a n+1﹣a n<π(n=1,2,…).【解答】解:(Ⅰ)证明:由函数f(x)的定义,对任意整数k,有f(x+2kπ)﹣f(x)=(x+2kπ)sin(x+2kπ)﹣xsinx=(x+2kπ)sinx﹣xsinx=2kπsinx.(Ⅱ)证明:函数f(x)在定义域R上可导,f'(x)=sinx+xcosx①令f'(x)=0,得sinx+xcosx=0.显然,对于满足上述方程的x有cosx≠0,上述方程化简为x=﹣tanx.此方程一定有解.f(x)的极值点x0一定满足tanx0=﹣x0.由sin2x==,得sin2x0=.因此,[f(x0)]2=x02sin2x0=.(Ⅲ)证明:设x0>0是f'(x)=0的任意正实数根,即x0=﹣tanx0,则存在一个非负整数k,使x0∈(+kπ,π+kπ),即x0在第二或第四象限内.由①式,f'(x)=cosx(tanx+x)在第二或第四象限中的符号可列表如下:所以满足f'(x)=0的正根x0都为f(x)的极值点.由题设条件,a1,a2,a n,为方程x=﹣tanx的全部正实数根且满足a1<a2<<a n <,﹣a n=﹣(tana n+1﹣tana n)=﹣(1+tana n+1•tana n)tan(a n+1那么对于n=1,2,a n+1﹣a n).②<π+nπ,由于+(n﹣1)π<a n<π+(n﹣1)π,+nπ<a n+1则<a n﹣a n<,+1由于tana n+1•tana n>0,由②式知tan(a n+1﹣a n)<0.由此可知a n+1﹣a n必在第二象限,即a n+1﹣a n<π.综上,<a n+1﹣a n<π.21.(10分)已知函数f(x)=ln(2x﹣e),点P(e,f(e))为函数的图象上一点.(1)求导函数f′(x)的解析式;(2))求f(x)=ln(2x﹣e)在点P(e,f(e))处的切线的方程.【解答】解:(1)∵f(x)=ln(2x﹣e),∴f′(x)==…(4分)(2)∵f(e)=1,f′(e)=,∴切线的方程为y﹣1=(x﹣e),即2x﹣ey﹣e=0 …(10分)22.(10分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,若直线l:kx+y+3=0与圆C相切.求(1)圆C的直角坐标方程;(2)实数k的值.【解答】解:(1)由题意得,圆C的极坐标方程为ρ=2,则ρ2=4,所以圆C的直角坐标方程是:x2+y2=4…(5分)(2)因为直线l:kx+y+3=0与圆C相切,所以,解得k=…(10分)23.(10分)(理)已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A﹣BD﹣C的大小.【解答】(理)(1)证明:按如图所示建立空间直角坐标系.由题意知C(0,0,0)、A(2,0,0)、B(0,2,0)、D(2,0,2)、A1(2,0,4)、C1(0,0,4).∴=(﹣2,0,2),,.∵=0,.∴DC1⊥DC,DC1⊥DB.又∵DC∩DB=D,∴DC1⊥平面BDC.(2)解:设是平面ABD的法向量.则,又,,∴,取y=1,得=(1,1,0).由(1)知,=(﹣2,0,2)是平面DBC的一个法向量,记与的夹角为θ,则cosθ==﹣,结合三棱柱可知,二面角A﹣BD﹣C是锐角,∴所求二面角A﹣BD﹣C的大小是.24.(10分)设数列{a n}的前n项和为S n,且方程x2﹣a n x﹣a n=0有一根为S n﹣1,n=1,2,3,….(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出严格的证明.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=.(2)由题设(S n﹣1)2﹣a n(S n﹣1)﹣a n=0,S n2﹣2S n+1﹣a n S n=0.当n≥2时,a n=S n﹣S n﹣1,S n﹣2S n+1=0.①代入上式得S n﹣1由(1)得S1=a1=,S2=a1+a2=+=.由①可得S3=.由此猜想S n=,n=1,2,3,.下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即S k=,当n=k+1时,由①得S k+1=,即S k+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知S n=对所有正整数n都成立.。
2014-2015学年第一学期期中测试卷(高三理科)

2014-2015学年第一学期期中测试卷高三数学(理科)试题1.A b a ,0,0>>是b a ,的等差中项,G 是b a ,的正的等比中项,G A ,大小关系是( ) A.G A ≥ B.G A ≤ C.G A = D.G A ,大小不能确定2为了得到函数x x y 2cos 2sin -=的图象,只需把函数x x y 2cos 2sin +=的图象( )A .向左平移4π个长度单位B .向右平移4π个长度单位 C .向左平移2π个长度单位 D .向右平移2π个长度单位3已知函数,)(xax x f +=则“9=a ”是“函数)(x f 在)3(∞+,上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4、设等比数列{}n a 的前n 项和为n S ,若843S S =,则128SS 等于 ( ) A .2 B.73 C.83D .35、已知→→b a ,是单位向量,且(2)a b a →→→-⊥,则→→b a 与的夹角是( )。
A 、3π B 、2π C 、4π D 、32π 6、若三角形的三个内角成等差数列,对应三边成等比数列,则三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形 7、若方程042=-+x x 的解为0x ,则满足n x <0的最小的整数n 的值为( ) A. 1 B. 2 C. 3 D. 4 8.已知数列}{n a 满足2321232n na a a a n =++++ ,则2599是数列}{n a 中的第( )项. A.20 B.25 C.50 D.100 9.已知函数()sin()f x x ωφ=+(其中0,2πωφ><),若将函数()f x 的图像向左平移12π个单位后所得图像关于y 轴对称,若将函数()f x 的图像向右平移6π个单位后所得图像关于原点对称,则ω的取值不可能...是( ) A .2 B .4 C .6 D. 10 10. 函数b x A x f ++=)sin()(ϕω 的图象如图,则)(x f 的解析式和)2013()2()1()0(f f f f S +++=的值分别为( )A .201312sin 21)(=+=S x x f ,π B. 21201312sin 21)(=+=S x x f ,πC .201412sin 21)(=+=S x x f ,πD.21201412sin 21)(=+=S x x f ,π 11、已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=A .0B .-100C .100D .10 20012、已知两线段2a =,22b =,若以,a b 为边作三角形,则边a 所对的角A 的取值范围是( ) A .(0,)2πB .(0,]4πC .(,)63ππD .(0,]6π13、定义在R 上的函数)(x f y =,满足)()4(x f x f =-,0)()2(>'-x f x ,若21x x <,且421>+x x ,则有( )A .)()(21x f x f <B .)()(21x f x f >C .)()(21x f x f =D .不确定 14在数列}{n a 中,若k k a a a a nn n n (112=--+++为常数)则称 }{n a 为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无穷多项为0.其中判断正确的个数为( ) A. 1个 B .2个 C .3个 D .4个15.设f (x )是定义在R 上恒不为零的函数,对任意x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是________. 16.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB -AC |,则|AM |=________.17.如图,CD 是一座铁塔,线段AB 和塔底D 在同一水平地面上,在B A , 两点测得塔顶C 的仰角分别为030和045,又测得030,12=∠=ADB m AB 则此铁塔的高度为 m .ACDB18.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.19.已知数列}{n a 的通项公式为n n n a 2)12(⨯-=,我们用错位相减法求其前n 项和n S 过程如下:由此得到启发:若数列}{n b 的通项公式为n n n b 22⨯=,则其前n 项和n T = .20. (本小题12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,且满足0cos cos )2(=-⋅-A b B a c . (1)若84=+=c a b ,,求ABC ∆的面积;(2)求)6sin(sin 3π-+C A 的取值范围.21、某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).由n n n S 2)12(25232132⨯-++⨯+⨯+⨯= 得n S 2= 1322)12(2)32(2321+-+⨯-++⨯+⨯n n n n两式相减得1322)12(2222222+⨯--⨯++⨯+⨯+=-n n n n S 求得 62)32(1+⨯-=+n n n S(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?22(本小题满分14分) 已知R a ∈,函数x ax x f ln 21)(2-=. (1)当1=a 时,求曲线)(x f y =在点))1(1(f ,处的切线的斜率; (2)讨论)(x f 的单调性;(3)是否存在a 的值,使得方程2)(=x f 有两个不等的实数根?若存在,求出a 的取值范围;若不存在,说明理由.23、(本题满分14分)已知函数 21()ln (1)2f x x m x m x =-+-,m ∈R . (1)若函数()f x 在2x =处取得极值,求m 的值;(2)当 0m ≤ 时,讨论函数 ()f x 的单调性;(3)求证:当 2m =-时,对任意的 ()12,0,x x ∈+∞,且12x x ≠,有2121()()1f x f x x x ->--.。
2014-2015年山东省青岛三中高三(上)期中数学试卷及参考答案(理科)

2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)向量,,且∥,则cos2α=()A.B.C.D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2] 6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.87.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣49.(5分)已知,则=()A.B.C.﹣1 D.±110.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为.13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.19.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]【解答】解:A={x|y=}={x|1﹣x>0}={x|x<1},则∁U A={x|x≥1},故选:A.2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.3.(5分)向量,,且∥,则cos2α=()A.B.C.D.【解答】解:∵,,且∥,∴,即,化简得sinα=,∴cos2α=1﹣2sin2α=1﹣=故选:D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.【解答】解:∵函数y=a x与y=log a x互为反函数,∴它们的图象关于直线y=x对称.再由函数y=a x的图象过(0,1),y=log a x,的图象过(1,0),A选项中的y=a x,a>1,y=log a x,a>1,但y=x+a中的a<1,不符合题意;B选项中的y=a x,a>1,y=log a x,0<a<1,但y=x+a中的a<1,不符合题意;C选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a<1,符合题意;D选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a>1,不符合题意;观察图象知,只有C正确.故选:C.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2]【解答】解:∵,∴=(x﹣1)(x+3)﹣2×(﹣x)=x2+4x﹣3=(x+2)2﹣7,∴f(x)的单调递减区间为(﹣∞,﹣2),∵函数在(﹣∞,m)上单调递减,∴(﹣∞,m)⊆(﹣∞,﹣2),即m≤﹣2,∴实数m的取值范围是m≤﹣2.故选:D.6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.8【解答】解:目标函数的几何意义为动点P(x,y)到点M(﹣1,﹣1)的斜率,即k.作出不等式对应的平面区域如图(阴影部分),由图象可知当点P位于点B(,0)时,目标函数有最小值,即,解得a=2,故选:A.7.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥【解答】解:由+=得若=﹣=,即,则向量、共线且方向相反,因此当向量、共线且方向相反时,能使+=成立,对照各个选项,可得B项中向量、的方向相同或相反,C项中向量向量、的方向相同,D项中向量、的方向互相垂直.只有A项能确定向量、共线且方向相反.故选:A.8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣4【解答】解:A.x<0时,y<0,因此最小值不是2;B.∵≥2,当且仅当x=1时取等号,其最小值为2;C.∵0<sin2x≤1,∴y>4,因此不正确;D.∵x<0,∴﹣x>0.∴y=2﹣3x﹣==2+4,当且仅当时取等号.其最小值为:2+4,因此不正确.综上可得:只有B正确.故选:B.9.(5分)已知,则=()A.B.C.﹣1 D.±1【解答】解:∵cos(x﹣)=﹣,∴cosx+cos(x﹣)=cosx+cosx+sinx=cosx+sinx=(cosx+sinx)=cos(x﹣)=﹣1.故选:C.10.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)【解答】解:根据导数函数图象可判断;f(x)在(0,1)单调递增,(1,+∞)单调递减,∵△ABC为锐角三角形,∴A+B,0﹣B<A,∴0<sin(﹣B)<sinA<1,0<cosB<sinA<1f(sinA)>f(sin(﹣B)),即f(sinA)>f(cosB)故选:D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=﹣2.【解答】解:∵函数,∴f()=2+=4.=f(4)==﹣2.故答案为:﹣2.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为﹣1.【解答】解:y=sinx(0)与y轴、直线y=1的交点分别为(0,0),(,1),故曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为S=(1﹣sinx)dx=(x+cosx)|=﹣1,故答案为:﹣1,13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.【解答】解:由于0<<β<π,cos,则sinβ==.由于,则cos(α+β)=﹣=﹣,则有sinα=sin(α+β﹣β)=sin(α+β)cosβ﹣cos(α+β)sinβ=×(﹣)﹣(﹣)×=.故答案为:.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=﹣1.【解答】解:∵f(x)的图象关于直线x=1对称,∴f(x)=f(2﹣x),又f(x)是(﹣∞,+∞)上的奇函数,∴f(x)=﹣f(x﹣2),∴f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x),即4为f(x)的周期,∴f(2013)=f(4×503+1)=f(1),f(2014)=f(4×503+2)=f(2),由x∈[﹣1,0]时,f(x)=﹣x,得f(1)=﹣f(﹣1)=﹣1,由f(x)=f(2﹣x),得f(2)=f(0)=0,∴f(2013)+f(2014)=﹣1+0=﹣1,故答案为:﹣1.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是①②④.【解答】解:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;②已知a>0,b>0,则>是a>b的充要条件,正确;③若方程x2+x﹣m=0有实根,则△=1+4m≥0,解得.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题;④令f(x)=|x+4|﹣|x﹣1|,则f(x)=,可得﹣5≤f(x)≤5,因此命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5,正确.其中正确命题的序号是①②④.故答案为:①②④.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).【解答】证明:①当n=1时,左边=1,右边=1,∴n=1时,等式成立.②假设n=k时,等式成立,即13+23+33++k3+(k+1)3=∴n=k+1时,等式成立.综合①、②原等式获证.17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.【解答】解:(1)当a=﹣2时,f(x)=x2﹣2lnx,其定义域为(0,+∞),∴f′(x)=2x﹣=,令f′(x)=0,解得x=1,当x>1时,f′(x)>0,此时函数f(x)单调递增;当0<x<1时,f′(x)<0,此时函数f(x)单调递减.∴函数的单调递增区间为(1,∞);递减区间为(0,1].(2)∵f(x)=x2+alnx,其定义域为(0,+∞),∴f′(x)=2x+=,①当a>0时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值,②当a<0时,令f′(x)=0,解得x=,当0<x<时,f′(x)<0,此时函数f(x)单调递减;当x>时,f′(x)>0,此时函数f(x)单调递增.∴当x=时,函数f(x)取得极小值,f()=﹣+ln(﹣)18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.【解答】解:(1)∵﹣x2﹣2x+8>0,∴解得A=(﹣4,2).∵,∴B=(﹣∞,﹣3]∪[1,+∞);所以A∩B=(﹣4,﹣3]∪[1,2);(2)∵C R A=(﹣∞,﹣4]∪[2,+∞),C⊆C R A,若a<0,则不等式的解集只能是(﹣∞,﹣4]∪[,+∞),故定有≥2得解得﹣≤a<0若a>0,则不等式的解集[﹣4,],但C⊆C R A,故a∈∅.∴a的范围为<0.19.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.【解答】解:(Ⅰ)由题意,可得f(x)==.∵函数的最小正周期为π,∴=π,解之得ω=1.由此可得函数的解析式为.令,解之得∴函数f(x)的单调增区间是.(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,可得函数y=f(x+)+1的图象,∵∴g(x)=+1=2sin2x+1,可得y=g(x)的解析式为g(x)=2sin2x+1.令g(x)=0,得sin2x=﹣,可得2x=或2x=解之得或.∴函数g(x)在每个周期上恰有两个零点,若y=g(x)在[0,b]上至少含有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.【解答】解:(Ⅰ)由值域为[0,+∞),当x2+2x+b=0时有△=4﹣4b=0,即b=1.则f(x)=x2+2x+1=(x+1)2,由已知f(x)=(x+1)2<c解得,,∵不等式f(x)<c的解集为(k,k+6),∴,解得c=9.(Ⅱ)当b=0时,f(x)=x2+2x,∴.∵0<m<1,1﹣m≤t≤m+1,∴0<1﹣m≤t≤m+1<2.令,则,当0<t<1时,g'(t)>0,g(t)单调增,当1<t<2时,g'(t)<0,g(t)单调减,∴当t=1时,g(t)取最大值,.∵=,∴g(1﹣m)<g(1+m).∴的范围为.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.【解答】解:(Ⅰ)∵f(x)=e x﹣x2﹣ax,∴f′(x)=e x﹣x﹣a,∴根据导数的几何意义可得,切线的斜率k=f'(0)=1﹣a,∵切线方程为y=2x+b,则k=2,∴1﹣a=2,解得a=﹣1,∴f(x)=e x﹣x2+x,∴f(0)=1,即切点(0,1),∴1=2×0+b,解得b=1;(Ⅱ)由题意f'(x)>0即e x﹣x﹣a≥0恒成立,∴a≤e x﹣x恒成立.设h(x)=e x﹣x,则h′(x)=e x﹣1.当x变化时,h′(x)、h(x)的变化情况如下表:∴h(x)min=h(0)=1,∴a≤1;(Ⅲ)∵g(x)=f(x)﹣(a﹣)x2,∴g(x)=e x﹣x2﹣ax﹣ax2+x2=e x﹣ax2﹣ax,∴g′(x)=e x﹣2ax﹣a,∵x1,x2是函数g(x)的两个不同极值点(不妨设x1<x2),∴e x﹣2ax﹣a=0(*)有两个不同的实数根x1,x2当时,方程(*)不成立则,令,则由p′(x)=0得:当x变化时,p(x),p′(x)变化情况如下表:∴当时,方程(*)至多有一解,不合题意;当时,方程(*)若有两个解,则所以,.。
北京市海淀区2014-2015学年度高三第一学期期中试卷(理)-含答案

数 学(理) 2014.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)设集合1{|}A x x >=∈R ,{|12}B x x =∈-R ≤≤,则A B =( )(A )[1,)-+∞(B )(1,)+∞(C )(1,2](D )[1,1)-(2)已知向量(2,1)=-a ,(3,)x =b . 若3⋅=a b ,则x =( ) (A )6(B )5(C )4(D )3(3)若等比数列{}n a 满足135a a +=,且公比2q =,则35a a +=( ) (A )10(B )13(C )20(D )25(4)要得到函数πsin(2)3y x =+的图象,只需将函数sin 2y x =的图象( ) (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位 (D )向右平移6π个单位 (5)设131()2a =,21log 3b =,2log 3c =,则( )(A )a b c >>(B )c a b >>(C )a c b >>(D )c b a >>(6) 设,a b ∈R ,则“0ab >且a b >”是“11a b<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)已知函数,0,()0.x x f x x -<⎧⎪=≥若关于x 的方程()(1)f x a x =+有三个不相等的实数根,则实数a 的取值范围是( ) (A )1[,)2+∞(B )(0,)+∞ (C )(0,1) (D )1(0,)2(8)设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )(A )当4n =时,n S 取得最大值 (B )当3n =时,n S 取得最大值 (C )当4n =时,n S 取得最小值(D )当3n =时,n S 取得最小值二、填空题共6小题,每小题5分,共30分。
2014-2015理朝阳高三期中理科试题

北京市朝阳区2014-2015学年度高三年级第一学期期中统一考试数学试卷(理工类) 2014.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}{}2+20,0A x x x B x x =-<=>,则集合AB 等于A.{}2x x >-B.{}01x x << C. {}1x x < D.{}21x x -<< 2.已知命题p :0x ∀>,44x x+≥;命题q :0x ∃∈R ,021x =-.则下列判断正确的是 A .p 是假命题 B .q 是真命题 C .()p q ⌝∧是真命题 D .()p q ⌝∧是真命题 3. 执行如图所示的程序框图,则输出的k 的值是A.120B.105C.15D.54.曲线xy 1=与直线21,e x x ==及x 轴所围成的图形的面积是 A. 2e B. 2e 1- C. e D. 2开始 k=1,i =1 结束 i =i +2 i>5?输出k 是否 k=k×i 第3题图5.设,a b 是两个非零的平面向量,下列说法正确的是① 若0×a b =,则有+=-a b a b ; ② ⋅=a b a b ;③ 若存在实数λ,使得a =λb ,则+=+a b a b ; ④若+=-a b a b ,则存在实数λ,使得a =λb . A. ①③ B. ①④ C.②③ D. ②④6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为 A. 3000 B.3300 C.3500 D.40007.如图,某地一天中6时至14时的温度变化曲线近似满足函数()b x A y ++=ϕωsin (其中 0ω>,2ϕπ<<π),则估计中午12时的温度近似为( )A. 30 ℃B. 27 ℃C.25 ℃D.24 ℃ 8.设函数(),()f x g x 满足下列条件:(1)对任意实数12,x x 都有121212()()()()()f x f x g x g x g x x ⋅+⋅=-; (2)(1)1f -=-,(0)0f =,(1)1f =. 下列四个命题:①(0)1g =; ②(2)1g =; ③22()()1f x g x +=;④当2n >,n *∈N 时,[][]()()n nf xg x+的最大值为1. 其中所有正确命题的序号是( ) A. ①③ B. ②④ C. ②③④ D. ①③④30 20 10 Ot/hT /℃ 68 10 12 14第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量,a b 满足1=a ,(1,1)=b ,且a b ,则向量a 的坐标是_______.10.已知1tan()=47απ+, (,)2απ∈π,则tan α的值是_______;cos α的值是_______. 11.若23,0()0,0,0x x f x x ax b x +>⎧⎪==⎨⎪+<⎩,, 是奇函数,则+a b 的值是_______.12.已知等差数列{}n a 中,n S 为其前n 项和.若13574a a a a +++=-,816S =-, 则公差d =_______;数列{}n a 的前______项和最大.13.已知x ,y 满足条件3260,20,20.x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩若目标函数z ax y =+(其中0a >)仅在点(2,0)处取得最大值,则a 的取值范围是 .14.如图,在水平地面上有两座直立的相距60 m 的铁塔1AA 和1BB .已知从塔1AA 的底部看塔1BB 顶部的仰角是从塔1BB 的底部看塔1AA 顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角.则从塔1BB 的底部看塔1AA 顶部的仰角的正切值为 ;塔1BB 的高为 m.A 1ABB 1C第14题图三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()3sin cos f x x a x =-(x ∈R )的图象经过点(,1)3π. (Ⅰ)求函数()f x 的解析式;(Ⅱ)求函数()f x 的最小正周期和单调递减区间.16. (本小题满分13分)如图,在△ABC 中,ACB ∠为钝角,π2,2,6AB BC A ===.D 为AC 延长线上一点,且31CD =+. (Ⅰ)求BCD ∠的大小;(Ⅱ)求BD 的长及△ABC 的面积.17. (本小题满分13分)在递减的等比数列{}n a 中,设n S 为其前n 项和,已知214a =,378S =. (Ⅰ)求n a ,n S ;(Ⅱ)设2log n n b S =,试比较22n n b b ++与1n b +的大小关系,并说明理由. 18. (本小题满分14分)已知函数2(),x f x a x aR =-. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若()f x 在(1,2)上是单调函数,求a 的取值范围.DCBA19.(本小题满分14分)已知函数()y f x =,若在区间(2,2)-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(Ⅰ)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由;(Ⅱ)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.20. (本小题满分13分)对于项数为m 的有穷数列{}n a ,记123m a x {,,,,}(1,2,3,,)k k b a a a a k m ==,即k b 为123,,,,k a a a a 中的最大值,则称{}n b 是{}n a 的“控制数列”,{}n b 各项中不同数值的个数称为{}n a 的“控制阶数”.(Ⅰ)若各项均为正整数的数列{}n a 的控制数列{}n b 为1,3,3,5,写出所有的{}n a ; (Ⅱ)若100m =,2n a tn n =-,其中11(,)42t ∈,{}n b 是{}n a 的控制数列,试用t 表示112233100100()()()()b a b a b a b a -+-+-++-的值;(Ⅲ)在1,2,3,4,5的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.。
2014-2015学年山东省德州市高三(上)期中数学试卷和答案(理科)

2014-2015学年山东省德州市高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)已知全集U=R,集合A={x|y=},B={x|<2x<4},则(∁U A)∩B 等于()A.{x|﹣1<x<2}B.{x|﹣1<x<0}C.{x|x<1}D.{x|﹣2<x<0} 2.(5分)下列说法正确的是()A.命题“若x=1则x2=1”的否命题为“若x2≠1,则x≠1”B.命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1>0”C.“x=y”是“sinx=siny”的充分不必要条件D.“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分不必要条件3.(5分)在△ABC中,若sinA+cosA=,则tanA=()A.B.C.﹣ D.﹣4.(5分)已知=(1,2),=(0,1),=(﹣2,k),若(+2)⊥,则k=()A.B.﹣2 C.2 D.5.(5分)数列{a n}满足a1=1,a n>0,a n+12﹣a n2=1(n∈N+),那么使a n<3成立的n的最大值为()A.3 B.4 C.8 D.96.(5分)若关于实数x的不等式|x+1|+|x﹣2|>a2﹣2a恒成立,则实数a的取值范围是()A.(﹣1,3)B.[﹣1,3]C.(﹣∞,﹣1)∪(3,+∞)D.(﹣∞,﹣1]∪[3,+∞)7.(5分)已知函数f(x)是R上的偶函数,若对于x≥0都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f(2014)=()A.0 B.C.1 D.28.(5分)函数f(x)=cosx•ln|x|的部分图象为()A.B.C.D.9.(5分)已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),且f(0)•f(1)>0,a+b+c=0,设x1,x2是方程f(x)=0的两个根,则x12+x22的取值范围为()A.[]B.()C.[]D.()10.(5分)已知函数f(x)=,下列关于函数y=f[f(x)]﹣零点个数的四个判断:(1)当k>0时,有3个零点;(2)当k<0时,有2个零点;(3)当k>0时,有4个零点;(4)当k<0时,有1个零点则正确的判断是()A.(1)(4)B.(2)(3)C.(1)(2)D.(3)(4)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)如果实数x,y满足条件,那么z=2x﹣y的最大值为.12.(5分)已知函数f(x)=3x2+2x+1,若f(x)dx=2f(a)(a>0).则a=.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.14.(5分)在△ABC中,边a,b,c与角A,B,C分别成等差数列,且△ABC的面积为,那么b=.15.(5分)如图所示,函数y=f(x)的图象由两条射线和三条线段组成.若对∀x∈R,都有f(x)≥f(x﹣12asinφ),其中a>0,0<φ<,则φ的最小值为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,该图象与y轴交于点F(0,1),与x轴交于B,C两点,M为图象的最高点,且△MBC的面积为.(Ⅰ)求函数f(x)的解析式及单调增区间;(Ⅱ)若f(a﹣)=,求cos2(a﹣)的值.17.(12分)设数列{a n}的前n项和为S n,且2S n+1=4a n,数列{b n}满足()=a n2.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.18.(12分)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,边AC长为2.(Ⅰ)求角A;(Ⅱ)若=3,求边AB的长.19.(12分)已知函数f(x)=ax3+bx2+cx+d,f′(x)为其导函数,若f′(x)为偶函数且f(x)在x=2处取得极值d﹣16(I)求a,b,c的值;(Ⅱ)若f(x)有极大值20,求f(x)在区间[﹣3,3]上的最小值.20.(13分)某工厂引入一条生产线,投人资金250万元,每生产x千件,需另投入成本w(x),当年产量不足80干件时,w(x)=x2+10x(万元),当年产量不小于80千件时,w(x)=51x+﹣1450(万元),当每件商品售价为500元时,该厂产品全部售完.(Ⅰ)写出年利润L(x)(万元)与年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时该厂的利润最大.21.(14分)已知函数f(x)=(ex+1)(lnx﹣1)(e为自然对数的底数).(I)求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)若点P(e,f(e)),且点A(x1,f(x1)),B(x2,f(x2))满足条件:(1﹣lnx1)(1﹣lnx2)=1(x1≠x2).判断A,B,P三点是否可以构成直角∠APB?请说明理由.2014-2015学年山东省德州市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)已知全集U=R,集合A={x|y=},B={x|<2x<4},则(∁U A)∩B 等于()A.{x|﹣1<x<2}B.{x|﹣1<x<0}C.{x|x<1}D.{x|﹣2<x<0}【解答】解:由<2x<4得,2﹣1<2x<22,解得﹣1<x<2,则集合B={x|﹣1<x<2},又集合A={x|y=}={x|x≥0},则∁U A={x|x<0},所以(∁U A)∩B={x|﹣1<x<0},故选:B.2.(5分)下列说法正确的是()A.命题“若x=1则x2=1”的否命题为“若x2≠1,则x≠1”B.命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1>0”C.“x=y”是“sinx=siny”的充分不必要条件D.“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分不必要条件【解答】解:对于A:命题“若x=1则x2=1”的否命题为“若x≠1,则x2≠1”,故A 错误;对于B:命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1≥0”,故B错误;对于C:x=y⇒sinx=siny,充分性成立,反之不可,因此“x=y”“sinx=siny”的充分不必要条件,故C正确;对于D:“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分必要条件,故D错误.故选:C.3.(5分)在△ABC中,若sinA+cosA=,则tanA=()A.B.C.﹣ D.﹣【解答】解:在△ABC中,若sinA+cosA=,①所以:整理得:,即:sinAcosA=﹣②,sinA>0,cosA<0,由①②得:tanA=﹣,故选:D.4.(5分)已知=(1,2),=(0,1),=(﹣2,k),若(+2)⊥,则k=()A.B.﹣2 C.2 D.【解答】解:=(1,2)+2(0,1)=(1,4),∵(+2)⊥,∴﹣2+4k=0,解得k=.故选:D.5.(5分)数列{a n}满足a1=1,a n>0,a n+12﹣a n2=1(n∈N+),那么使a n<3成立的n的最大值为()A.3 B.4 C.8 D.9【解答】解:由题意a n+12﹣an2=1,∴a n2为首项为1,公差为1的等差数列,∴a n2=1+(n﹣1)×1=n,又a n>0,则a n=,由a n<3得<3,∴n<9.那么使a n<3成立的n的最大值为8.故选:C.6.(5分)若关于实数x的不等式|x+1|+|x﹣2|>a2﹣2a恒成立,则实数a的取值范围是()A.(﹣1,3)B.[﹣1,3]C.(﹣∞,﹣1)∪(3,+∞)D.(﹣∞,﹣1]∪[3,+∞)【解答】解:已知不等式|x+1|+|x﹣2|>a2﹣2a恒成立,即需要a2﹣2a小于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:a2﹣2a<3解得﹣1<a<3.故选:A.7.(5分)已知函数f(x)是R上的偶函数,若对于x≥0都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f(2014)=()A.0 B.C.1 D.2【解答】解:∵数f(x)是R上的偶函数,∴f(﹣x)=f(x),∵对于x≥0都有f(x+2)=﹣f(x),∴f(x+4)=f(x),∴周期为4,∵当x∈[0,2)时,f(x)=log8(x+1),∴f(﹣2013)+f(2014)=f(1)﹣f(0)=,故选:B.8.(5分)函数f(x)=cosx•ln|x|的部分图象为()A.B.C.D.【解答】解:∵y=cosx是偶函数,y=ln|x|是偶函数,且x≠0,∴y=cosx•ln|x|是定义域为{x∈R|x≠0}的偶函数,∴图象应关于y轴对称,∴排除B,又∵当x取非常小的正数时,cosx>0,ln|x|<0,∴y<0,∴排除C∴只能在AD中选,f(1)=cos1×ln1=0,f()=cos ln=0,1与是函数的两个零点,当x∈(0,1)时,cosx>0,ln|x|<0,故f(x)<0;当x∈(1,)时,cosx>0,ln|x|>0,故f(x)>0;此时选项AD都符合,但当x取正值且很小时,cosx∈(0,1),而ln|x|=lnx趋向于﹣∞,故f(x)取负值且绝对值很大,应是A的图象故选:A.9.(5分)已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),且f(0)•f(1)>0,a+b+c=0,设x1,x2是方程f(x)=0的两个根,则x12+x22的取值范围为()A.[]B.()C.[]D.()【解答】解:∵g(x)=ax3+bx2+cx+d(a≠0),∴g′(x)=f(x)=3ax2+2bx+c,∵x1,x2是方程f(x)=0的两个根,故x1+x2=﹣,x1x2=,∵x12+x22=(x1+x2)2﹣2x1x2=﹣=,又a+b+c=0,∴c=﹣a﹣b代入上式,得x12+x22===[+3•+3]=(+)2+又∵f(0)•f(1)>0,∴c(3a+2b+c)>0即(a+b)(2a+b)<0,∵a≠0,两边同除以a2得,∴()(+2)<0,∴﹣2<<﹣1,∴<(+)2+<∴x12+x22的取值范围为(,)故选:B.10.(5分)已知函数f(x)=,下列关于函数y=f[f(x)]﹣零点个数的四个判断:(1)当k>0时,有3个零点;(2)当k<0时,有2个零点;(3)当k>0时,有4个零点;(4)当k<0时,有1个零点则正确的判断是()A.(1)(4)B.(2)(3)C.(1)(2)D.(3)(4)【解答】解:函数f(x)=的图象如右图所示:结合图象分析:当k>0时,若y=f[f(x)]﹣=0,则f[f(x)]=,则f(x)=a∈(﹣,0)或f(x)=b∈(1,+∞),对于f(x)=a,存在两个零点;对于f(x)=b,存在一个零点,综上所述,k>0时,函数y=f[f(x)]﹣零点个数为3个;当k<0时,若y=f[f(x)]﹣=0,则f[f(x)]=,则由右图可知,f(x)=c∈(1,+∞),对于f(x)=c,存在两个零点,当k<0时,有2个零点.故选:C.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)如果实数x,y满足条件,那么z=2x﹣y的最大值为5.【解答】解:由约束条件作出可行域如图,化z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过C(2,﹣1)时直线在y轴上的截距最小,z最大,为z=2×2﹣(﹣1)=5.故答案为:5.12.(5分)已知函数f(x)=3x2+2x+1,若f(x)dx=2f(a)(a>0).则a=.【解答】解:f(x)dx=(3x2+2x+1)dx=(x3+x2+x)|=4,∴2f(a)=2(3a2+2a+1)=4解得a=,a=﹣1(舍去),故答案为:13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.14.(5分)在△ABC中,边a,b,c与角A,B,C分别成等差数列,且△ABC的面积为,那么b=.【解答】解:∵在△ABC中,边a,b,c与角A,B,C分别成等差数列,∴2b=a+c,2B=A+C,又∵A+B+C=π,∴B=,∴△ABC的面积S=acsinB=ac=,解得ac=2,由余弦定理可得b2=a2+c2﹣2accosB,∴b2=(a+c)2﹣2ac﹣ac,∴b2=(2b)2﹣6解得b=,故答案为:.15.(5分)如图所示,函数y=f(x)的图象由两条射线和三条线段组成.若对∀x∈R,都有f(x)≥f(x﹣12asinφ),其中a>0,0<φ<,则φ的最小值为.【解答】解:∵0<φ<,∴sinφ∈(0,1),又a>0,则﹣12asinφ∈(﹣12a,0),∴x>x﹣12asinφ,∵对∀x∈R,都有f(x)≥f(x﹣12asinφ),∴x﹣(x﹣12asinφ)≥4a﹣(﹣2a)=6a,即sinφ,∴φ.故答案为:.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,该图象与y轴交于点F(0,1),与x轴交于B,C两点,M为图象的最高点,且△MBC的面积为.(Ⅰ)求函数f(x)的解析式及单调增区间;(Ⅱ)若f(a﹣)=,求cos2(a﹣)的值.【解答】解:(Ⅰ)∵S=×;△ABC∴周期T=π,又∵,∴ω=2由f(0)=2sinφ=1,得sinφ=,∵0<φ<,∴φ=.∴f(x)=2sin(2x+).由2kπ﹣≤2x+≤2kπ+可得k(k∈Z),所以函数f(x)的调增区间为[kπ﹣,kπ+](k∈Z);(Ⅱ)由f(α﹣)=2sin2α=,得sin2α=,cos2(α﹣)===.17.(12分)设数列{a n}的前n项和为S n,且2S n+1=4a n,数列{b n}满足()=a n2.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由题意得,2S n+1=4a n,当n=1时,2S1+1=4a1,解得a1=,当n≥2时,2S n+1=4a n,2S n﹣1+1=4a n﹣1,两式相减得,2a n=4a n﹣4a n﹣1,得a n=2a n﹣1,即,所以数列{a n}是以为首项、2为公比的等比数列,则a n==2n﹣2,因为()=a n2,所以,则b n=﹣2n+4;(Ⅱ)由(Ⅰ)得,c n==,所以T n=+①,T n=+②,①﹣②得,T n=4﹣2[]﹣=4﹣2×﹣===,所以T n=.18.(12分)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,边AC长为2.(Ⅰ)求角A;(Ⅱ)若=3,求边AB的长.【解答】解:(Ⅰ)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,所以:进一步求得:所以:∵0<A<π求得:A=(Ⅱ)已知:所以:4sinB=2cosB解得:tanB=进一步解得:sinB=,cosB=sinC=sin()=利用正弦定理:解得:19.(12分)已知函数f(x)=ax3+bx2+cx+d,f′(x)为其导函数,若f′(x)为偶函数且f(x)在x=2处取得极值d﹣16(I)求a,b,c的值;(Ⅱ)若f(x)有极大值20,求f(x)在区间[﹣3,3]上的最小值.【解答】解:(Ⅰ)∵函数f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,∵f′(x)为偶函数,∴b=0,∵f(x)在x=2处取得极值d﹣16,∴∴解得:,∴a=1,b=0,c=﹣12,(Ⅱ)f(x)=x3﹣12x+d,f′(x)=3x2﹣12,∵f′(x)=3x2﹣12=0,x=2或x=﹣2,∴当x∈(2,+∞)(﹣∞,﹣2)时,f′(x)>0,f(x)单调递增,当x∈(﹣2,2)时,f′(x)<0,f(x)单调递减,∴f(x)=x3﹣12x+d,在x=﹣2处取得极大值,在x=2处取得极小值,∴f(﹣2)=16+d=20,d=4,f(﹣3)=13,f(2)=﹣12,∴f(x)在区间[﹣3,3]上的最小值为﹣12.20.(13分)某工厂引入一条生产线,投人资金250万元,每生产x千件,需另投入成本w(x),当年产量不足80干件时,w(x)=x2+10x(万元),当年产量不小于80千件时,w(x)=51x+﹣1450(万元),当每件商品售价为500元时,该厂产品全部售完.(Ⅰ)写出年利润L(x)(万元)与年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时该厂的利润最大.【解答】解:(Ⅰ)当每件商品售价为0.05万元时,x千件销售额0.05×1000x=50x (万元)当0<x<80时,L(x)=50x﹣(x2+10x)﹣250=﹣x2+40x﹣250;当x≥80时,L(x)=50x﹣(51x+﹣1450)﹣250=1200﹣(x+);故L(x)=;(Ⅱ)当0<x<80时,L(x)=﹣x2+40x﹣250;当x=60时,L(x)有最大值为950;当x≥80时,L(x)=1200﹣(x+);当且仅当x=,即x=100时,L(x)有最大值为1000;∴年产量为100千件时该厂的利润最大.21.(14分)已知函数f(x)=(ex+1)(lnx﹣1)(e为自然对数的底数).(I)求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)若点P(e,f(e)),且点A(x1,f(x1)),B(x2,f(x2))满足条件:(1﹣lnx1)(1﹣lnx2)=1(x1≠x2).判断A,B,P三点是否可以构成直角∠APB?请说明理由.【解答】解:(I)f(x)=(ex+1)(lnx﹣1),f′(x)=e(lnx﹣1)+=elnx+= (1)分f′(1)=1,又f(1)=﹣(e+1),所以曲线y=f(x)在x=1处的切线方程为:y+(e+1)=x﹣1,即x﹣y﹣e﹣2=0 (3)分(Ⅱ)由(I)令g(x)=exlnx+1(x>0),则g′(x)=e(lnx+1),令g′(x)=0,得x=…5分当0<x<时,g′(x)<0,g(x)为减函数;当x>时,g′(x)>0,g(x)为增函数;故x>0时,g(x)≥0,即f′(x)≥0恒成立.所以函数f(x)的单调递增区间是(0,+∞);(Ⅲ)若x1=e,则(1﹣lnx1)(1﹣lnx2)=0,与条件(1﹣lnx1)(1﹣lnx2)=1不符,从而x1≠e,同理可得x2≠e.由上可得点A,B不与P重合…10分•=(x1﹣e,f(x1))•(x2﹣e,f(x2))=(x1﹣e)(x2﹣e)+(ex1+1)(ex2+1)(lnx1﹣1)(lnx2﹣1)=(e2+1)(x1x2+1)…13分因为x1,x2>0,所以•>0,故点A,B,P三点构成锐角∠APB,所以点A,B,P三点不能构成直角∠APB, (14)分。
2014-2015年河南省名校高三(上)期中数学试卷及参考答案(理科)

2014-2015学年河南省名校高三(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣65.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.37.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.39.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.10.(5分)如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A.B. C.D.11.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]12.(5分)已知定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,则实数a 的取值范围是()A.[﹣3,﹣1]B.[﹣2,0]C.[﹣5,﹣1]D.[﹣2,1]二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.14.(5分)图中阴影部分的面积等于.15.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若.求a的最小值.18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.19.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)求二面角A﹣BB1﹣C的余弦值.20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)求函数y=f(x)的图象在点(1,f(1))处的切线方程;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围;(3)证明:∀a∈R,存在ξ∈(1,e),使f′(ξ)=.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第22题计分.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.2014-2015学年河南省名校高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}【解答】解:集合M={x|y=lg},,解得:0<x<1,M={x|0<x<1},∴∁R M={x|x≤0或x≥1}N={y|y=x2+2x+3}={y|y≥2},(∁R M)∩N=[2,+∞)故选:C.3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.【解答】解:∵α∈(﹣,0),∴sinα+cosα>0,∴(sinα+cosα)2=1+sin2α=,∴sinα+cosα=,故选:A.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣6【解答】解:∵当x<0时,f (x)=x﹣e﹣x,∴f(﹣ln6)=﹣ln6﹣e ln6=﹣ln6﹣6,又∵f (x)是定义在R上的奇函数,∴f(ln6)=﹣f(﹣ln6)=ln6+6故选:A.5.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.【解答】解:由向量,,得=(﹣3,4),=(5,﹣12),所以||=5,||=13,=﹣63,即与夹角的余弦值cosθ==.故选:B.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.3【解答】解:当N=1时,A=3,故数列的第1项为3,N=2,满足继续循环的条件,A=3×2=6;当N=2时,A=6,故数列的第2项为6,N=3,满足继续循环的条件,A=6×5=30;当N=3时,A=30,故数列的第3项为30,故选:B.7.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.【解答】解:函数f(x)=sin(2x+φ)图象向左平移个单位得,由于函数图象关于原点对称,∴函数为奇函数,又|φ|<π,∴,得,∴,由于,∴0≤2x≤π,∴,当,即x=0时,.故选:A.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.3【解答】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选:D.9.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.【解答】解:数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,所以a1+a2015=a1003+a1013=π,b7•b8=b6•b9=2,所以tan=tan=.故选:D.10.(5分)如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A.B. C.D.【解答】解:当x由0→时,t从﹣∞→0,且单调递增,由→1时,t从0→+∞,且单调递增,∴排除A,B,C,故选:D.11.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【解答】解:作出函数的图象如图,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2014x=1,解得x=2014,即x=2014,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2014,因此可得2<a+b+c<2015,即a+b+c∈(2,2015).故选:C.12.(5分)已知定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,则实数a 的取值范围是()A.[﹣3,﹣1]B.[﹣2,0]C.[﹣5,﹣1]D.[﹣2,1]【解答】解:定义在R上的函数f(x)满足f(x+1)=f(1﹣x)且在[1,+∞)上是增函数,可得出函数图象关于x=1对称,且函数在(﹣∞,1)上减,由此得出自变量离1越近,函数值越小,综合考虑四个选项,四个选项中的集合中都有﹣1,0不存在于A,C两个选项的集合中,B中集合是D中集合的子集,故可通过验证a的值取0与1时两种情况得出正确选项.当a=0时,不等式f(ax+2)≤f(x﹣1)变为f(2)≤f(x﹣1),有函数f(x)图象特征可得出|2﹣1|≤|x﹣1﹣1|,解得x≥3或x≤1,满足,不等式f(ax+2)≤f(x﹣1)对任意x∈[,1]恒成立,由此排除A,C两个选项.当a=1时,不等式f(ax+2)≤f(x﹣1)变为f(x+2)≤f(x﹣1),有函数f(x)图象特征可得出|x+2﹣1|≤|x﹣1﹣1|,解得x≤,不满足不等式f(ax+2)≤f (x﹣1)对任意x∈[,1]恒成立,由此排除D选项.综上可知,B选项是正确的.故选:B.二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.【解答】解:∵已知tan(θ﹣π)=2=tanθ,则sin2θ+sinθcosθ﹣2cos2θ+3=+3=+3=+3=,故答案为.14.(5分)图中阴影部分的面积等于1.【解答】解:根据题意,该阴影部分的面积为=x3=(13﹣03)=1故答案为:115.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为1.【解答】解:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2.∴===1,当且仅当x=2y>0时取等号,此时z=2y2.∴+﹣==≤1,当且仅当y=1时取等号,即+﹣的最大值是1.故答案为1.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是(1)(2)(4).【解答】解:(1)∵对任意的x∈R恒有f(x+1)=f(x﹣1),∴f(x+2)=f[(x+1)﹣1]=f(x),即2是f(x)的周期,(1)正确;(2)∵x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,又f(x)是定义在R上的偶函数,∴f(x)在区间[﹣1,0]上单调递减,又其周期T=2,∴f(x)在(1,2)上递减,在(2,3)上递增,(2)正确;(3)由(2)x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,f(x)在区间[﹣1,0]上单调递减,且其周期为2可知,f (x )max =f (1)=21﹣1=20=1,f (x )min =f (0)=20﹣1=,故(3)错误; (4)当x ∈(3,4)时,x ﹣4∈(﹣1,0),4﹣x ∈(0,1), ∴f (4﹣x )=()1﹣(4﹣x )=,又f (x )是周期为2的偶函数,∴f (4﹣x )=f (x )=,(4)正确.综上所述,正确的命题的序号是(1)(2)(4), 故答案为:(1)(2)(4).三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f (x )的最大值,并写出使f (x )取最大值是x 的集合; (Ⅱ)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若.求a 的最小值.【解答】解:(Ⅰ)f (x )=cos (2x ﹣)+2cos 2x=(cos2xcos +sin2xsin)+(1+cos2x )=cos2x ﹣sin2x +1=cos (2x +)+1,(3分)∵﹣1≤cos (2x +)≤1,即cos (2x +)最大值为1,∴f (x )的最大值为2,(4分) 要使f (x )取最大值,cos (2x +)=1,即2x +=2kπ(k ∈Z ),解得:x=kπ﹣(k ∈Z ),则x 的集合为{x |x=kπ﹣(k ∈Z )};(6分)(Ⅱ)由题意,f (B +C )=cos [2(B +C )+]+1=,即cos (2π﹣2A +)=,化简得:cos (2A ﹣)=,(8分)∵A ∈(0,π),∴2A ﹣∈(﹣,),则有2A﹣=,即A=,(10分)在△ABC中,b+c=2,cosA=,由余弦定理,a2=b2+c2﹣2bccos=(b+c)2﹣3bc=4﹣3bc,(12分)由b+c=2知:bc≤=1,当且仅当b=c=1时取等号,∴a2≥4﹣3=1,则a取最小值1.(14分)18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.【解答】解:(1)当n=1时,a1=S1=2a1﹣2,解得a1=2.当n≥2时,a n=S n﹣S n﹣1=2a n﹣2﹣(2a n﹣1﹣2)=2a n﹣2a n﹣1,化为a n=2a n﹣1,∴数列{a n}是以2为公比的等比数列,∴.(2)∵b n=log2a n==n,∴c n==.∴数列{c n}的前n项和T n=+…+==.∵对n∈N*,T n≤k(n+4)恒成立,∴,化为=.∵n++5=9,当且仅当n=2时取等号.∴,∴.∴实数k的取值范围是.19.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)求二面角A﹣BB1﹣C的余弦值.【解答】解:(Ⅰ)因为A1O⊥平面ABC,所以A1O⊥BC.又BC⊥AC,所以BC⊥平面A1ACC1,所以AC1⊥BC.…(2分)因为AA1=AC,所以四边形A1ACC1是菱形,所以AC1⊥A1C.所以AC1⊥平面A1BC,所以A1B⊥AC1.…(5分)(Ⅱ)以OC为单位长度,建立如图所示的空间直角坐标系O﹣xyz,则A(0,﹣1,0),B(2,1,0),C(0,1,0),C1(0,2,).=(2,2,0),=(0,1,),设=(x,y,z)是面ABB1的一个法向量,则•=0,•=0,即,取x=,得=(,﹣,1).同理面CBB1的一个法向量为=(0,﹣,1).…(10分)因为cos<>=.二面角A﹣BB 1﹣C是锐二面角,所以二面角A﹣BB1﹣C的余弦值.…(12分)20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)求函数y=f(x)的图象在点(1,f(1))处的切线方程;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围;(3)证明:∀a∈R,存在ξ∈(1,e),使f′(ξ)=.【解答】(1)解:函数f(x)=x2+a(x+lnx)的导数f′(x)=2x+a(1+),f(1)=1+a,f′(1)=2+2a,则函数y=f(x)的图象在点(1,f(1))处的切线为y﹣(1+a)=(2+2a)(x﹣1),即y=(1+a)(2x﹣1);(2)解:①a=0时,f(x)=x2,因为x>0,所以点(x,x2)在第一象限,依题意,f(x)=x2+a(x+lnx)>0;②a>0时,由对数函数性质知,x∈(0,1)时,lnx∈(﹣∞,0),alnx∈(﹣∞,0),从而“∀x>0,f(x)=x2+a(x+lnx)>0”不成立;③a<0时,由f(x)=x2+a(x+lnx)>0得,设,g′(x)=+,则g(x)≥g(1)=﹣1,从而,﹣1<a<0;综上所述,常数a的取值范围﹣1<a≤0.(3)证明:直接计算知,设函数g(x)=f′(x)﹣=2x﹣(e+1)+﹣,,,当a>e(e﹣1)2或时,<0,因为y=g(x)的图象是一条连续不断的曲线,所以存在ξ∈(1,e),使g(ξ)=0,即ξ∈(1,e),使f′(ξ)=;当时,g(1)、g(e)≥0,而且g(1)、g(e)之中至少一个为正,由均值不等式知,,等号当且仅当时成立,所以g(x)有最小值,且,此时存在ξ∈(1,e)(或),使g(ξ)=0.综上所述,∀a∈R,存在ξ∈(1,e),使f′(ξ)=.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第22题计分.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【解答】(Ⅰ)证明:∵,∴∠ABC=∠BCD.又∵EC为圆的切线,∴∠ACE=∠ABC,∴∠ACE=∠BCD.(Ⅱ)∵EC为圆的切线,∴∠CDB=∠BCE,由(Ⅰ)可得∠BCD=∠ABC.∴△BEC∽△CBD,∴,∴BC2=CD•EB=1×9=9,解得BC=3.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【解答】解:(Ⅰ)椭圆的参数方程化为普通方程,得,∴a=5,b=3,c=4,则点F的坐标为(4,0).∵直线l经过点(m,0),∴m=4.…(4分)(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα﹣81=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=.…(8分)当sinα=0时,|FA|•|FB|取最大值9;当sinα=±1时,|FA|•|FB|取最小值.…(10分)【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.【解答】解:(1)∵函数f(x)=|2x+1|+|2x﹣3|,∴不等式f(x)≤6 等价于①,或②,或③.解①求得﹣1≤x<﹣;解②求得﹣≤x≤;解③求得<x≤2.综合可得,原不等式的解集为[﹣1,2].(2)∵f(x)=|2x+1|+|2x﹣3|≥|2x+1﹣(2x﹣3)|=4,则f(x)的最小值为4.若关于x的不等式f(x)≤|a﹣2|的解集非空,则|a﹣2|≥4,a﹣2≥4,或a ﹣2≤﹣4,求得a≥6,或a≤﹣2,故a的范围为{a|a≥6,或a≤﹣2 }.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年度第一学期期中考试
高三数学试卷(理科)
一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设集合13{|()}
x
M y y ==,2{|log (1)}N x y x ==-,则M R N =( ) A .(0,1) B .(]0,1 C .(1,)+∞ D .(0,+∞)
2.若120a b <<<,则( )
A .22ab a >
B .22ab b >
C .2log ()1ab >-
D .2log ()2ab <-
3.等差数列{}n a 的通项公式是12n a n =-,其前项和为n S ,则数列
{}n
S n
的前
11项和为( )
A .-44 (B)-66 C .-55 D .55
4.已知函数2()21(0)f x ax ax a =-+<,若12x x <,120x x +=,则1()f x 与2()f x 的大小关系是( )
A .1()f x =2()f x
B .1()f x >2()f x
C .1()f x <2()f x
D .与a 的值有关
5.抛物线22y x =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( )
A .98
B .78
C .9
8-
D .78-
6.已知向量a 与b 的夹角为o 60,3a =,13a b +=,则b 等于( ) A .1 B .3 C .4 D .5
7.已知m 、n 是两条直线,,,αβγ是三个平面,给出下列四个命题: ①若,,//,m n m n αβ⊥⊥则//αβ; ②若,,//αγβγαβ⊥⊥则;
③若βαβα//,//,,则n m n m ⊂⊂; ④若,m α⊥,n β⊥m n ⊥,则αβ⊥.
其中真命题是( )
A .①和②
B .①和③
C .③和④
D .①和④
8.设函数()y f x =的反函数为()1y f x -=,且()21y f x =+的图像过点()1,2,则()131y f x -=-的图像必过点( )
A .()1,3
B .()3,1
C .()2,3
D .()2,1
9.已知(,1)AB k =,(2,4)AC =,若k 为满足||4AB ≤的一随机整数..,则ABC ∆是直角三角形的概率是( )
A . 14
B .12
C .3
7 D .34
10.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
11.若AB 是过椭圆22
221x y a b
+=(0)a b >>中心的一条弦,M 是椭圆上任意一
点,且AM ,BM 与坐标轴不平行,1k ,2k 分别为直线AM ,BM 的斜率(其中222c a b =-),则12k k ⋅=( )
A .22c a -
B .22c b -
C .22b a -
D .2
2a b -
12.已知函数3ax y e x =+()a R ∈有大于零的极值点,则( )
A .3a >-
B .3a <-
C .13a >-
D .1
3a <-
二、填空题(4×4′=16分):
13
.在(51
)x 展开式中,1x 的系数是: ;
14.抛物线C :2y x x =-+与直线l :10x y --=所围成的平面图形的面积是: ;
15.过P (-1,2)的直线⎩⎨⎧-=+-=t y t
x 4231(t 为参数)与双曲线22(2)1y x --=相
交于A 、B 两点,若C 为AB 的中点,则=PC ;
E F D
I
A H G
B
C E
F D A
B C
侧视 图1
图2 B
E
A
B
E
B B
E
C
B
E
D
16.曲线2cos ρθ=关于直线4
π
θ=-对称的曲线方程为 .
三、解答题(满分74分):
17.(12分)在ABC ∆中,内角A ,B ,C ,的对边分别为,,a b c ,已知角
3,A a π==B=x ,ABC ∆的周长为y . (1)求函数()y f x =的解析式和定义域; (2)求函数()y f x =的值域.
18.(12分)一个口袋中装有编号分别为1,2,3,4,5,6的6个大小相同的球,从中任取3个,用ξ表示取出的3个球中的最大编号.
(1)求ξ的分布列;
(2)求ξ的数学期望和方差.
19.(12分)直三棱柱111ABC-A B C 中,1AC CC 2,AB BC ===,D 是1BA 上一点,且AD ⊥平面1A BC .
(1)求证:BC ⊥平面11ABB A ;
(2)求异面直线1A C 与AB 所成角的大小; (3)求二面角1A C B A --余弦值的大小.
20.(12分)已知中心在原点的双曲线C 的左焦点为)0,2(-,而C 的右准线方程为2
3=x .
(1)求双曲线C 的方程;
(2)若过点)2,0(,斜率为k 的直线与双曲线C 恒有两个不同的交点A 和B ,
且满足5OA OB ⋅< (其中O 为原点),求实数k 的取值范围.
21.(12分)已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,0,,<∈m R n m
(1)求m 与n 的关系表达式; (2)求函数)(x f 的单调区间;
(3)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围.
22.(14分)已知函数()20y x x =≥的图象上有一列点()111,P x y ,()222,P x y ,
…,(),n n n P x y ,…,以点n P 为圆心的圆n P 与以点n+1P 为圆心的圆n+1P 外切,且均与x 轴相切.若11x =,且1n n x x +<.
(1)求数列{}n x 的通项;
(2)圆n P 的面积为n S ,n n T S =+,求证:4
n T <
.
高三数学(理科)参考答案
一、选择题
BDBCD ADACA CB
二、填空题
13.-80; 14.43; 15.157; 16.2sin ρθ=-
三、解答题
17.(1)()2
63)0,y x x ππ=++∈;
(2)(
y ∈.
18.(1)
(2) 214
E ξ=; 63
80D ξ=.
19.(1)略; (2)3
π ;
.
20.(1)2
213
x y -=;
(2)(k ∈.
21.(1)36n m =+;
(2)单调递减区间()()2,1,1,m -∞++∞;单调递增区间()2
1,1m +; (3)()43,0m ∈-.
22.(1)1
21
n x n =-;
(2)1n =
时,1n T T =<
1n >
2n ==<=
()1111
1111
42231
41(1)11n n n n T -⎤<+-+-+
+-=+-⎤⎦⎦。