广东省广州市2012届高三毕业班综合测试(二)数学理试题
2012年广州市高三一模理科数学试题以及解答

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).·5·2012年广州市普通高中毕业班综合测试(一)一、选择题:二、填空题:9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,213.35,1014. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭ tantan 341tan tan34ππ+=ππ-2==-4分 (2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭()tan α=+πtan 2α==.…………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=,②由①、②解得21cos 5α=.……9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos 5α=-,sin 5α=-10分 所以cos 4απ⎛⎫- ⎪⎝⎭cos cos sin sin 44ααππ=+ 22⎛=+⨯= ⎝⎭12分 17.(本小题满分12分) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,解得3a =.………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.………3分方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦.…5分 (3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……6分这两名同学成绩之差的绝对值X 的所有情况如下表:·6·所以的所有可能取值为0,1,2,3,4,6,8,9.………………………………………8分由表可得1(0)16P X==,2(1)16P X==,1(2)16P X==,4(3)16P X==,2(4)16P X==,3(6)16P X==,1(8)16P X==,2(9)16P X==.所以随机变量X的分布列为:随机变量X的数学期望为121423012346161616161616EX=⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯6817164==.…12分18.(本小题满分14分)(1)证明略(2)过点A作平面PBC的垂线,垂足为H,连PH,则APH∠为直线AP与平面PBC所成的角.…………………………………8分由(1)知,△ABC的面积12ABCS AC BE∆=⨯⨯=9分因为PD=,所以13P ABC ABCV S PD-∆=⨯⨯133=⨯=.………………10分由(1)知PBC∆为直角三角形,BC=PB=所以△PBC的面积11322PBCS BC PB∆=⨯⨯==.…………11分因为三棱锥A PBC-与三棱锥P ABC-的体积相等,即A PBC P ABCV V--=,即133AH⨯⨯=AH=.……………………12分在Rt△PAD中,因为PD,1AD=,所以2AP==.…………………………13分………………10分·7·因为3sin 2AH APH AP ∠===AP 与平面PBC14分 19.(本小题满分14分)(1)解: {}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).……………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.……………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭111(21)2(23)2n n n n -=-++.………………………10分 所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.……………………………14分 20.(本小题满分14分)(1)解双曲线C 的方程为2214y x -=.………………………3分 (2)设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩……………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k-=+.6分 同理可得,21244k x k +=-.……………7分 所以121x x ⋅=.………………8分(3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),·8·则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.……………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.……………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.………………11分由(2)知,121x x ⋅=,即211x x =.设21t x =,则14t <≤,221245S S t t -=--.设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.………………12分当2t =,即1x =()()2212max21S S f -==.……………………13分所以2212S S -的取值范围为[]0,1.……………………………………14分 21.(本小题满分14分)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1x x e ϕ'=-.……………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥.即1()()0f x g x -≥,所以()f x 1()g x ≥.……………………………3分·9·(2)解:当0x >时,()f x >()n g x .……………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,……………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.……………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +. 由①、②知,当0x >时,都有()f x >()n g x .…………………………8分 (3)先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.………………………9分 再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………10分以下用数学归纳法证明不等式(*):·10·①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.…………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭, 12分 所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.。
广州二模理科数学(word版含答案)

试卷类型:B2012年广州二模 数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共8小题。
每小题5分.满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,复数1z a i =+,22z i =-,且12|z ||z |=,则实数a 的值为 A .2 B .-2 C .2或-2 D .±2或02.设集合A={(x ,y)|2x+y=6},B={(x ,y)|3x+2y=4},满足C ⊆(A B)的集合C的个数为A .1B .2C .3D .43.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m 的值是 A . 4 B .14 C .14- D .-4 4.已知等差数列{n a }的公差为2,项数是偶数,所有奇数项之和为l5,所有偶数项之和为25,则这个数列的项数为A .10B .20C .30D .405.已知两条不同直线m 、l ,两个不同平面α、β,在下列条件中,可得出αβ⊥的是A .m l ⊥,l ∥α,l ∥βB .m l ⊥,αβ=l ,m α⊂C .m ∥l ,m α⊥,l β⊥D .m ∥l ,l β⊥,m α⊂ 6.下列说法正确的是A .函数1f (x )x=在其定义域上是减函数B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“210x R,x x ∃∈++>”的否定是“210x R,x x ∀∈++<”D .给定命题p 、q ,若p ∧q 是真命题,则⌝p 是假命题 7.阅读图l 的程序框图,该程序运行后输出的k 的值为 A .5 B .6 C .7 D .88.已知实数a ,b 满足22430a b a +-+=,函数1f (x )a s i n xbc o s x =++的最大值记为(a,b )ϕ,则(a,b )ϕ的最小值为A .1B .2C .31+D .3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.某社区有600个家庭,其中高收入家庭150户,中等收入家庭360户,低收人家庭90户,为了调查购买力的某项指标,用分层抽样的方法从中抽取一个容量为l00的样本,则中等收入家庭应抽取的户数是. 10.(12x x-)6展开式中的常数项是(用数字作答). 11.已知不等式2|x |->1的解集与不等式20x ax b ++>的解集相等,则a b +的值为。
2012年广东省广州市二模试题(文数,精校版)

图1895x 061162y 116987乙甲 试卷类型:A2012年广州市普通高中毕业班综合测试(二)数 学(文科)2012.4.24本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A 满足{}1,2A ⊆,则集合A 的个数为A .4B .3C .2D .1 2.已知i 为虚数单位,复数1z a =+i ,22z =-i ,且12z z =,则实数a 的值为 A .2 B .2- C .2或2- D .±2或03.已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是 A .4 B .14 C .14- D .4- 4.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图1,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为 A .7 B .8 C .9 D .105.已知向量()()3,4,6,3,O A O B =-=-,(),1OC m m =+,若//AB OC ,则实数m 的值为 A .32-B .14-C .12D .326.已知函数()f x =e x -e 1x -+ (e 是自然对数的底数),若()2f a =,则()f a -的值为 A .1--e B .-e C .e D . 1+e7. 已知两条不同直线m 、l ,两个不同平面α、β,在下列条件中,可得出αβ⊥的是 A .m l ⊥,//l α,//l β B .m l ⊥,l αβ=,m α⊂C .//m l ,l β⊥,m α⊂D .//m l ,m α⊥,l β⊥ 8.下列说法正确的是A .函数()1f x x=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“x ∃∈R ,210x x ++>”的否定是“x ∀∈R ,210x x ++<”D .给定命题p 、q ,若p q ∧是真命题,则p ⌝是假命题9.阅读图2的程序框图, 该程序运行后输出的k 的值为 A. 9 B. 10 C. 11 D. 12 10.已知实数,a b 满足22430a b a +-+=,函数()sin cos 1f x a x b x =++的最大值记为(),a b ϕ,则(),a b ϕ的最小值为A .1B .2C 1D .3 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.不等式2230x x +-<的解集是 .12.如图3,,A B 两点之间有4条网线连接,每条网线能通过的最大信息量分别为1,2,3,4.从中任取两条网线,则这两条网线通过的最大信息量之和为5的概率是 .13.已知点P 是直角坐标平面xOy 上的一个动点,OP =(点O 为坐标原点),点()1,0M -,则cos OPM ∠的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,若等边三角形(ABC 顶点A ,,B C 按顺时针方向排列)的顶点,A B 的极坐标分别为72,,2,66ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则顶点C 的极坐标为 .15.(几何证明选讲选做题)如图4,AB 是圆O 的直径,延长AB 至C ,使2BC OB =,CD 是圆O 的切线,切点为D ,连接AD ,BD ,则ADBD的值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、明过程和演算步骤. 16. (本小题满分12分)已知函数()()()cos sin cos sin f x x x x x =+-. (1)求函数()f x 的最小正周期; (2)若0,022ππαβ<<<<,且12,2323f f αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,求()sin αβ-的值. 17.(本小题满分12分)某工厂欲将这三种食物混合成100kg 的混合食物,设所用食物甲、乙、丙的重量分别为x kg 、y kg 、z kg. (1) 试以x 、y 表示混合食物的成本P ;(2)若混合食物至少需含35000单位维生素C 及40000单位维生素D ,问x 、y 、z 取什么值时,混合食物的成本最少? 18. (本小题满分14分)某建筑物的上半部分是多面体MN ABCD -, 下半部分是长方体1111ABCD A B C D -(如图5). 该建筑物的正(主)视图和侧(左)视图如图6, 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.(1)求线段AM 的长;(2)证明:平面ABNM ⊥平面CDMN ;(3)求该建筑物的体积.19.(本小题满分14分)已知对称中心为坐标原点的椭圆1C 与抛物线22:4C x y =有一个相同的焦点1F ,直线:2l y x m =+与抛物线2C 只有一个公共点. (1)求直线l 的方程;(2)若椭圆1C 经过直线l 上的点P ,当椭圆1C 的长轴长取得最小值时,求椭圆1C 的方程及点P 的坐标.20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,对任意n ∈N *,都有0n a >且()()122n n n a a S -+=,令1ln ln n n na b a +=. (1)求数列{}n a 的通项公式;(2)使乘积12k b b b ⋅⋅⋅⋅⋅⋅为整数的(k k ∈N *)叫“龙数”,求区间[]1,2012内的所有“龙数”之和;(3)判断n b 与1n b +的大小关系,并说明理由.21.(本小题满分14分) 已知函数()21ln 2f x x ax x =-+,a ∈R . (1)求函数()f x 的单调区间;(2)是否存在实数a ,使得函数()f x 的极值大于0?若存在,求a 的取值范围;若不存在,说明理由.2012年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.()3,1- 12. 13 13.⎤⎥⎣⎦14.23π⎛⎫ ⎪⎝⎭ 15.说明:第14题答案可以是22(3k k ππ⎛⎫+∈ ⎪⎝⎭Z ) 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、二倍角的余弦、同角三角函数关系、两角差的正弦等知识, 考查化归与转化的数学思想方法和运算求解能力) (1)解:∵()()()cos sin cos sin f x x x x x =+-22cos sin x x =-cos2x =, …………… 4分∴函数()f x 的最小正周期为22T ππ==. …………… 6分 (2)解:由(1)得()cos2f x x =. ∵12,2323f f αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, ∴12cos ,cos 33αβ==. ∵0,022ππαβ<<<<,∴sin 3α==,sin β==. ……………10分∴()sin sin cos cos sin αβαβαβ-=- ……………11分21333=-=……………12分 17.(本小题满分12分)(本小题主要考查线性规划等知识, 考查数据处理能力、运算求解能力和应用意识) (1)解:依题意得100,543.x y z P x y z ++=⎧⎨=++⎩…………… 2分由100x y z ++=,得100z x y =--,代入543P x y z =++,Q 1P 1Q PONMD CBAB 1C 1D 1A1得3002P x y =++. …………… 3分(2) 解:依题意知x 、y 、z 要满足的条件为0,0,0,30050030035000,70010030040000.x y z x y z x y z ≥≥≥⎧⎪++≥⎨⎪++≥⎩……… 6分把100z x y =--代入方程组得0,0,1000,250,25.x y x y x y y ≥≥⎧⎪--≥⎪⎨-≥⎪⎪≥⎩…… 9分如图可行域(阴影部分)的一个顶点为A ()37.5,25.… 10分 让目标函数2300x y P ++=在可行域上移动,由此可知3002P x y =++在A ()37.5,25处取得最小值. ………∴当37.5x =(kg),25y =(kg),37.5z =(kg)时, 混合食物的成本最少. ……… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、几何体的三视图、几何体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)解:作MO ⊥平面ABCD ,垂足为O ,连接AO ,由于AB ⊂平面ABCD ,故MO AB ⊥.作MP AB ⊥,垂足为P ,连接PO ,又MOMP M =,且MO ⊂平面MPO ,MP ⊂平面MPO ,∴AB ⊥平面MPO . 由题意知1,MO PO AP ===14AA =,2AD =,…… 2分 在R t △POM中,PM == …………… 3分 在R t △APM中,AM ==, …………… 4分∴线段AM…………… 5分(2)解:延长PO 交CD 于点Q ,连接MQ ,由(1)知AB ⊥平面MPO . ∵MQ ⊂平面MPO ,∴AB ⊥MQ .∵//MN AB ,∴MN MQ ⊥. ……… 6分 在△PMQ中,2MQ MP PQ ===,∵2224MP MQ PQ +==,∴MP MQ ⊥. …………… 7分Q 1OQPN M D C BAB 1C 1D 1A 1∵,MP MN M MP =⊂平面ABNM ,MN ⊂平面ABNM ,∴MQ ⊥平面ABNM . ∵MQ ⊂平面CDMN ,∴平面ABNM ⊥平面CDMN .… 9分 (3)解法1:作1//NP MP 交AB 于点1P ,作1//NQ MQ 交CD 于点1Q , 由题意知多面体MN ABCD -可分割为两个等体积的四棱锥M APQD -和11N P BCQ -和一个直三棱柱11MPQ NPQ -.四棱锥M APQD -的体积为113V AP AD MO =1212133=⨯⨯⨯=, ………… 10分 直三棱柱11MPQ NPQ -的体积为2112222V MP MQ MN ==⨯=,…11分 ∴多面体MN ABCD -的体积为122V V V =+2102233=⨯+=. …………… 12分长方体1111ABCD A B C D -的体积为3142432V AB BC AA ==⨯⨯=. ……… 13分∴建筑物的体积为31063V V +=. ……… 14分 解法2:如图将多面体MN ABCD -补成一个直三棱柱1ADQ BCQ -,依题意知1111AQ DQ BQ CQ MQ NQ ======,2AD =. 多面体MN ABCD -的体积等于直三棱柱1ADQ BCQ -的体积 减去两个等体积的三棱锥M ADQ -和1N BCQ -的体积. ∵2224AQ DQ AD +==,∴90AQD ︒∠=.直三棱柱1ADQ BCQ -的体积为1114422V AQ DQ AB ==⨯=, (10)分三棱锥M ADQ -的体积为2V =11111132323AQ DQ MQ =⨯=. … 11分∴多面体MN ABCD -的体积为V =122102433V V -=-=. …… 12分长方体1111ABCD A B C D -的体积为3142432V AB BC AA ==⨯⨯=. ……… 13分 ∴建筑物的体积为31063V V +=. ……………… 14分 19.(本小题满分14分)(本小题主要考查直线、椭圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解法1:由22,4y x m x y=+⎧⎨=⎩消去y ,得2840x x m --=. …………… 1分∵直线l 与抛物线2C 只有一个公共点,∴28440m ∆=+⨯=,解得4m =-.… 3分 ∴直线l 的方程为24y x =-. …………… 4分 解法2:设直线l 与抛物线2C 的公共点坐标为()00,x y , 由214y x =,得'12y x =, ∴直线l 的斜率0'012x x k yx ===.依题意得0122x =,解得04x =. ………… 2分 把04x =代入抛物线2C 的方程,得04y =. ∵点( ∴424m =⨯+,解得4m =-. ∴直线l 的方程为y (2)解法1:∵抛物线2C 的焦点为()10,1F ,依题意知椭圆1C 的两个焦点的坐标为()(120,1,0,1F F - 设点()10,1F 关于直线l 的对称点为()'100,Fx y , 则0000121,12 4.22y x y x -⎧⨯=-⎪⎪⎨+⎪=⨯-⎪⎩…………… 7分解得004,1.x y =⎧⎨=-⎩ ∴点()'14,1F -. ∴直线l 与直线'12:1F F y =-的交点为03,12P ⎛⎫-⎪⎝⎭由椭圆的定义及平面几何知识得:椭圆1C 的长轴长'12122a PF PF PF PF =+=+'1F ≥ 其中当点P 与点0P 重合时,上面不等式取等号.∴当2a =时,椭圆1C 的长轴长取得最小值,其值为4此时椭圆1C 的方程为22143y x +=,点P 的坐标为3,2⎛- ⎪⎝⎭. …………… 14分 解法2:∵抛物线2C 的焦点为()10,1F ,依题意知椭圆1C 的两个焦点的坐标为()()120,1,0,1F F -. …………… 5分设椭圆1C 的方程为()2222111y x a a a +=>-, 由222224,11y x y x aa =-⎧⎪⎨+=⎪-⎩消去y , 得()()()()22222541611160a x a x a a ---+--=.(*) …………… 7分由()()()()222221614541160a a a a ⎡⎤∆=-----≥⎣⎦, …………… 8分得425200a a -≥. 解得24a ≥. ∴2a ≥. …………… 11分 ∴当2a =时,椭圆1C 的长轴长取得最小值,其值为4. …………… 12分此时椭圆1C 的方程为22143y x +=. 把2a =代入(*)方程,得3,12x y ==-, ∴点P 的坐标为3,12⎛⎫-⎪⎝⎭. …………… 14分 20.(本小题满分14分)(本小题主要考查数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:由于()()122nn na a S -+=222n n a a +-=,当1n =时,2111122a a a S +-==, 整理得21120a a --=,解得12a =或11a =-. ∵0n a >, ∴12a =. …………… 2分 当2n ≥时,1n n n a S S -=-22112222n n n n a a a a --+-+-=-, …………… 3分化简得22110n n n n a a a a -----=, ∴()()1110n n n n a a a a --+--=.∵0n a >, ∴11n n a a --=. …………… 4分∴数列{}n a 是首项为2,公差为1的等差数列.∴()211n a n n =+-=+. 5分 (2)解:∵1ln ln n n n a b a +==()()ln 2ln 1n n ++, ∴12k b b b ∙∙⋅⋅⋅∙()()ln 2ln 3ln 4ln 2ln 3ln 1k k +=+ ()ln 2ln 2k +==()2log 2k +.… 6分令()2log 2k +m =,则22(mk m =-为整数), …………… 7分由1222012m ≤-≤,得322014m≤≤, ∴2,3,4,,10m =.∴在区间[]1,2012内的k 值为231022,22,,22---, …………… 8分其和为()()()2310222222-+-++- ()231022229=+++-⨯()292121812⨯-=-- 2026=. …………… 10分(3)解法1:∵()()()()ln 2ln 11ln 1ln 1n n n b n n ++=>=++ ∴()()()()1ln 3ln 2ln 2ln 1n n n n bn b n +++=++()()()2ln 3ln 1ln 2n n n ++=+ ()()()22ln 3ln 12ln 2n n n +++⎡⎤⎢⎥⎣⎦<+ ()()()22ln 314ln 2n n n ++⎡⎤⎣⎦=+ ()22231ln 24ln 2n n n ⎡⎤+++⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦<+ 1=. ∴1n nb b +<. … 14分解法2:∵()()()()ln 2ln 11ln 1ln 1n n n b n n ++=>=++, ∴()()()()1ln 3ln 2ln 2ln 1n n n n b b n n +++-=-++()()()()()2ln 3ln 1ln 2ln 2ln 1n n n n n ++-+=++()()()()()22ln 3ln 1ln 22ln 2ln 1n n n n n +++⎡⎤-+⎢⎥⎣⎦<++ ()()()()()22ln 31ln 22ln 2ln 1n n n n n ++⎡⎤-+⎢⎥⎣⎦=++ ()()()222131ln ln 222ln 2ln 1n n n n n ⎡⎤+++⎛⎫-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦<++0=.∴1n n b b +<. …………… 14分解法3:设()()()ln 12ln x f x x x +=≥, 则()()'211ln ln 11ln x x x x f x x-++=.……… 11分 ∵2x ≥,∴()()1111ln ln 1ln ln 101x x x x x x x x-+<-+<+. ∴()'0fx <. ∴函数()f x 在[)2,+∞上单调递减.∵n ∈N *,∴212n n ≤+<+. ∴()()21f n f n +<+.∴()()()()ln 3ln 2ln 2ln 1n n n n ++<++. ∴1n n b b +<. …………… 14分 21.(本小题满分14分)(本小题主要考查函数和方程、导数、函数的极值等知识, 考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:函数()f x 的定义域为()0,+∞. ()2111ax x f x ax x x--'=-+=-.… 2分 ① 当0a =时,()1x f x x+'=,∵0,x > ∴()'0f x > ∴ 函数()f x 单调递增区间为()0,+∞. …………… 3分② 当0a ≠时,令()0f x '=得210ax x x---=, ∵0,x >∴210ax x --=. ∴14a ∆=+.(ⅰ)当0∆≤,即14a ≤-时,得210ax x --≤,故()0f x '≥, ∴ 函数()f x 的单调递增区间为()0,+∞. …………… 4分(ⅱ)当0∆>,即14a >-时,方程210ax x --=的两个实根分别为112x a =,212x a+=. …………… 5分 若104a -<<,则120,0x x <<,此时,当()0,x ∈+∞时,()0f x '>. ∴函数()f x 的单调递增区间为()0,+∞, 若0a >,则120,0x x <>,此时,当()20,x x ∈时,()0f x '>,当()2,x x ∈+∞时,()0,f x '<∴函数()f x 的单调递增区间为10,2a ⎛⎫+ ⎪ ⎪⎝⎭,单调递减区间为12a ⎛⎫+∞ ⎪ ⎪⎝⎭. 综上所述,当0a >时,函数()f x 的单调递增区间为⎛ ⎝⎭,单调递减区间为⎫+∞⎪⎪⎝⎭; 当0a ≤时,函数()f x 的单调递增区间为()0,+∞,无单调递减区间. ………… 8分(2)解:由(1)得当0a ≤时,函数()f x 在()0,+∞上单调递增,故函数()f x 无极值;当0a >时,函数()f x 的单调递增区间为⎛ ⎝⎭,单调递减区间为⎫+∞⎪⎪⎝⎭;则()f x 有极大值,其值为222221()ln 2f x x ax x =-+,其中2x =. … 10分 而22210ax x --=,即2221ax x =+,∴2221()ln 2x f x x -=+. … 11分 设函数1()ln (0)2x h x x x -=+>,则'11()02h x x =+>, …………… 12分 则1()ln 2x h x x -=+在()0,+∞上为增函数.又(1)0h =,则()0h x >等价于1x >. ∴2()f x =221ln 2x x -+0>等价于21x >. …………… 13分 即在0a >时,方程210ax x --=的大根大于1,设2()1x ax x ϕ=--,由于()x ϕ的图象是开口向上的抛物线,且经过点(0,1)-,对称 轴102x a=>,则只需(1)0ϕ<,即110a --<解得2a <,而0a >, 故实数a 的取值范围为()0,2. ……………… 14分。
广东省广州市高三毕业班综合测试(二,文数,全word含答案)

图1895x 061162y 116987乙甲 试卷类型:A2012年广州市普通高中毕业班综合测试(二)数 学(文科)2012.4本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A 满足{}1,2A ⊆,则集合A 的个数为A .4B .3C .2D .1 2.已知i 为虚数单位,复数1z a =+i ,22z =-i ,且12z z =,则实数a 的值为 A .2 B .2- C .2或2- D .±2或03.已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是 A .4 B .14 C .14- D .4- 4.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图1,其中甲班学生的 平均分是85,乙班学生成绩的中位数是83,则x +y 的值为A .7B .8C .9D .10图3BA5.已知向量()()3,4,6,3,OA OB =-=-u u u r u u u r ,(),1OC m m =+u u u r,若//AB OC u u u r u u u r ,则实数m 的值为 A .32-B .14-C .12D .326.已知函数()f x =e x -e 1x -+ (e 是自然对数的底数),若()2f a =,则()f a -的 值为A .1--eB .-eC .eD . 1+e7. 已知两条不同直线m 、l ,两个不同平面α、β,在下列条件中,可得出αβ⊥的是 A .m l ⊥,//l α,//l β B .m l ⊥,l αβ=I ,m α⊂ C .//m l ,l β⊥,m α⊂ D .//m l ,m α⊥,l β⊥ 8.下列说法正确的是 A .函数()1f x x=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“x ∃∈R ,210x x ++>”的否定是“x ∀∈R ,210x x ++<D .给定命题p 、q ,若p q ∧是真命题,则p ⌝是假命题9.阅读图2的程序框图, 该程序运行后输出的k 的值为 A. 9 B. 10 C. 11 D. 12 10. 已知实数,a b 满足22430a b a +-+=,函数()sin cos 1f x a x b x =++的最大值记为(),a b ϕ, 则(),a b ϕ的最小值为A .1B .2C 1D .3二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.不等式2230x x +-<的解集是 . 12.如图3,,A B 两点之间有4条网线连接,每条网线能通过的最大信息量分别为1,2,3,4.从中任取两条网线,则这两条 网线通过的最大信息量之和为5的概率是 .图4A13.已知点P 是直角坐标平面xOy上的一个动点,OP =O 为坐标原点), 点()1,0M -,则cos OPM ∠的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,若等边三角形(ABC 顶点A ,,B C 按顺时 针方向排列)的顶点,A B 的极坐标分别为72,,2,66ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则顶点C 的极坐标 为 .15.(几何证明选讲选做题)如图4,AB 是圆O 的直径,延长AB 至C , 使2BC OB =,CD 是圆O 的切线,切点为D ,连接AD ,则ADBD的值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知函数()()()cos sin cos sin f x x x x x =+-. (1)求函数()f x 的最小正周期; (2)若0,022ππαβ<<<<,且12,2323f f αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,求()sin αβ-的值.17.(本小题满分12分)某工厂欲将这三种食物混合成100kg 的混合食物,设所用食物甲、乙、丙的重量分别为x kg 、y kg 、z kg. (1) 试以x 、y 表示混合食物的成本P ;(2)若混合食物至少需含35000单位维生素C 及40000单位维生素D ,问x 、y 、z 取什么值时,混合食物的成本最少?图5NM DC BA B 1C 1D 1A1图6侧(左)视图正(主)视图18. (本小题满分14分)某建筑物的上半部分是多面体MN ABCD -, 下半部分是长方体1111ABCD A B C D -(如 图5). 该建筑物的正(主)视图和侧(左)视图如图6, 其中正(主)视图由正方形和等 腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成. (1)求线段AM 的长;(2)证明:平面ABNM ⊥平面CDMN ; (3)求该建筑物的体积.19.(本小题满分14分)已知对称中心为坐标原点的椭圆1C 与抛物线22:4C x y =有一个相同的焦点1F ,直线:2l y x m =+与抛物线2C 只有一个公共点. (1)求直线l 的方程;(2)若椭圆1C 经过直线l 上的点P ,当椭圆1C 的长轴长取得最小值时,求椭圆1C 的方程及点P 的坐标.20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,对任意n ∈N *,都有0n a >且()()122n n n a a S -+=,令1ln ln n n na b a +=. (1)求数列{}n a 的通项公式;(2)使乘积12k b b b ••⋅⋅⋅•为整数的(k k ∈N *)叫“龙数”,求区间[]1,2012内的所有“龙数”之和;(3)判断n b 与1n b +的大小关系,并说明理由.21.(本小题满分14分) 已知函数()21ln 2f x x ax x =-+,a ∈R . (1)求函数()f x 的单调区间;(2)是否存在实数a ,使得函数()f x 的极值大于0?若存在,求a 的取值范围;若不存在,说明理由.2012年广州市普通高中毕业班综合测试(二)数学(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几 种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答 未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题, 每小题5分,满分20分,其中14~15题是选做题,考生只能选做一题.11.(-3,1) 12.3113.]1,22[ 14.)32,32(π 15.2 说明:第14题答案可以是))(23232(Z k k ∈+ππ,三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、二倍角的余弦、同角三角函数关系、两角差的正 弦等知识,考查化归与转化的数学思想方法和运算求解能力) (1)解:)sin )(cos sin (cos )(x x x x x f -+=Θx x 22sin cos -= ……………2分x 2cos =. ……4分∴函数f(x)的最小正周期为ππ==22T . ……………6分 (2)解:由(1)得x x f 2cos )(=.32)2(,31)2(==βαf f Θ,32cos ,31cos ==∴βα. ………8分20,20πβπα<<<<Θ。
2012年广州市高三一模理科数学试题以及解答(Word精较版)

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).·5·2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫ ⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分2==-…4分(2)解:因为·6·3tan 3444f ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.………………………………………………………………………………9分因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos α=,sin α=10分所以cos 4απ⎛⎫- ⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分⎛== ⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分解得3a =................................................................................................................2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =. (3)分所以乙组四名同学数学成绩的方差为·7·()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分6817164==.…………………………………………………………………………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.因为AB BC ==4=AC ,所以BE ===……………………………………10分3分因为PD⊥AC,所以△PCD为直角三角形.因为PD=,3CD=,所以PC===4分连接BD,在Rt△BDE中,因为BE,1DE=,所以BD===.…………5分因为PD⊥平面ABC,BD⊂平面ABC,所以PD⊥BD.在Rt△PBD中,因为PD,BD=,所以PB=6分在PBC∆中,因为BC=,PB=PC=所以222BC PB PC+=.所以P∆为直角三角形.………………………………………………………………………………7分证明2:因为平面⊥PAC平面ABC,平面PAC I平面ABC AC=,PD⊂平面PAC,ACPD⊥,所以PD⊥平面ABC.…………………………………………………………………………………1分记AC边上的中点为E,在△ABC中,因为ABBC=,所以ACBE⊥.因为ABBC==4=AC,所以BE===………………3分连接BD,在Rt△BDE中,因为90BED∠=o,BE=,1DE=,所以B D=+4分在△BCD中,因为3CD=,BC=BD=,所以222BC BD CD+=,所以BC BD⊥.……………………………………………………………5分因为PD⊥平面ABC,BC⊂平面ABC,所以BC PD⊥.…………………………………………………………………………………………BPA CDE·8··9·因为BD PD D = ,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以P ∆为直角三角形.………………………………………………………………………………7分(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12ABC S AC BE ∆=⨯⨯=.…………………………………………9分因为PD =,所以13P ABC ABC V S PD -∆=⨯⨯13=⨯=…………………………10分由(1)知PBC ∆为直角三角形,BC =PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=所以3AH =.……………………………………………………………12分在Rt △PAD中,因为PD ,1AD =,所以2AP ==.………………………………………………………13分因为3sin 2AH APH AP ∠=== 所以直线AP 与平面PBC14分解法2:过点D 作DM AP ∥,设DM PC M = ,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………PM·10·由(1)知BC PD ⊥,BC PB ⊥,且PD PB P = , 所以BC ⊥平面PBD . 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN , 则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt △PAD中,因为PD ,1AD =,所以2AP ==.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分由(1)知BD=,PB=PD =,所以PD BD DN PB ⨯===.……………………………………………………………13分因为2sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC 14分解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG 中,PB BG BC == 所以90CPG ∠=o,即CP PG ⊥.在△PAC 中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,BP ACDEGKHLLYBQ 整理 供“高中试卷网( )”所以CP ⊥平面PAG .…………………………………………………………………………………9分过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分由(1)知,BC PB ⊥,所以PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==12分在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为sin 3AG APK PG ∠===. 所以直线AP 与平面PBC14分解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,AHLLYBQ 整理 供“高中试卷网( )”则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,30.y y +==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC所成角的正弦值为314分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,1分 则)B,()0,2,0C ,(0,P -.于是(BP =- ,()2,0BC =.因为(()0BP BC =-=,所以BP BC ⊥ .所以BP BC ⊥.所以P ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -.于是(AP = ,PB =,(0,3,PC =.A设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.y y +-==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以21122112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,=,即2b =.所以双曲线C的方程为2214y x -=.……………………………………………………………………3分(2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k-=+.…………………………………………………………6分 同理可得,21244k x k +=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分 整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++. (6)分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分(3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤ ,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--. (11)分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1x x f x g x e x ϕ=-=--,所以1()x x e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥, 所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:(资料来源:中国高考吧 )①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分(3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <. 所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立. (10)分以下分别用数学归纳法和基本不等式法证明不等式(*):方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222kk k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法):12n +,……………………………………………………………………………………11分12n +,……,12n +, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。
广东省六校2012届高三第二次联考试题(数学理)

广东省六校2012届高三第二次联考试题(数学理) 一、选择题(本大题8小题,每小题5分,共40分)1.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( )A. ),1[+∞-B. ]2,1[-C. ),2[+∞D. ∅2.已知命题“012,2<++∈∃ax x x R ”是真命题,则实数a 的取值范围是 ( )A .)1,(--∞B .),1(+∞C .),1()1,(+∞--∞D .(—1,1)3.如图,正方形ABCD 的顶点2(0,)2A ,2(,0)2B ,顶点CD 、位于第一象限,直线:(02)l x t t =≤≤将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为()f t ,则函数()s f t =的图象大致是( )4.已知120201,cos 15sin 15M x dx N -==-⎰,则 ( )A. M N <B. M N >C. M N =D. 以上都有可能 5.右图是函数sin()()y A x x R ωϕ=+∈在区间5[,]66ππ-上的图象。
为了得到这个函数的图象,只要将sin ()y x x R =∈的图象上所有的点 ( )( A )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变6.若函数1(),(2)2f x x x x =+>-在x n =处有最小值,则n =( ) ADB CxyOlABCD3题图5题图A .12+ B.13+ C.4 D.37.设函数()f x 是定义在R 上的奇函数,且当0x ≥时,()f x 单调递减,若数列{}n a 是等差数列,且30a <,则()()()()()12345f a f a f a f a f a ++++的值( ) A.恒为正数B.恒为负数C.恒为0D.可正可负8. 若函数()21,xf x a b c =-<<且()()()f a f c f b >>,则下列结论中,必成立的是( )A .0,0,0a b c <<<B .0,0,0a b c <≥>C .22ac -< D .222a c +<二、填空题(本大题6小题,每小题5分,共30分)9、若3cos 5α=-,且3,2παπ⎛⎫∈ ⎪⎝⎭,则tan α= ; 10.已知,0,0x y xy x y +=>>则x y +的最小值是 ; 11.定义运算法则如下:1112322,lg lg a b a ba b a b -⊕=+⊗=-;若1824125M =⊕ 1,225N =⊗,则M +N = ; 12.设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=13. 设曲线1()n y x n +=∈*N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201212012220122011log log log x x x +++ 的值为 ; 14、如图放置的边长为1的正方形PABC 沿x 轴滚动。
广东省2012年高考理综广州二模
试卷类型:B 广东省广州市2012届高三毕业班4月综合测试(二)理科综合本试卷卷共11页,36小题,满分300分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掸原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、单项选择题:本题包括16小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。
1、下列关于生物体内化合物的说法,正确的是A.N是组成细胞内各种有机物的必需元素B.糖类都是细胞内的能源物质C.所有细胞中都含有蛋白质和磷脂D.人的肝细胞和神经细胞中的mRNA反转录形成的cDNA没有差别2、下列关于生命活动的说法,合理的是A.离开细胞的病毒依然能增殖B.植物激素控制植物的所有生命活动C.骨骼肌细胞核S型肺炎双球菌都能合成多糖D.细胞长大过程中核糖体的数量增加,物质交换效率增强3、叶绿体和线粒体的相同点是①可利用光学显微镜观察②水作为生理功能的一种原料③通过囊状结构增大膜面积④可通过转录和翻译控制某些蛋白质的合成⑤产生的ATP可用于各种生命活动A.①②③ B.①②④ C.①②④⑤ D.②③④⑤4、某生物的基因型是AaBb,右图是其体内一个正在进行减数分裂的细胞示意图。
下列说法正确的是A.该细胞含有一个染色体组B.该细胞肯定发生过交叉互换和染色体变异C.A与a的分离发生在减数第一次分裂D.减数第二次分裂出现差错可能产生基因型为Aabb的细胞5、下列有关物质的提取和分离的说法,错误的是A.提取洋葱DNA时,需用洗涤剂瓦解细胞膜B.直接用差速离心法可分离动物细胞内的各种物质C.可用电泳法将蛋白质、DNA、RNA等食物大分子分离D.提取和分离叶绿体色素所用的试剂有无水乙醇、SiO2、CaCO3、层析液6、下列叙述不合理的的是A.萌发的种子可作为诱变育种的材料 B.植物分生区细胞可用于培育脱毒苗C.带芽的枝条可提高扦插的成活率 D.乳腺细胞可作为转基因动物的受体细胞7. 下列说法正确的是A. 乙烯和苯都能与溴水发生反应B. 溴乙烷和乙醇都能发生消去反应C. 淀粉和蛋白质均可作为生产葡萄糖的原料D. 乙酸乙酯和纤维索乙酸酯均可水解生成乙醇8. 设n A为阿伏加德罗常数的数值,下列说法正确的是(相对原子质量:H 1 C 12)A. 常温下,3Og C2H6中含有4n A个C-H键B. 1mol Cl2与足量NaOH溶液反应,转移2n A个电子C. 溶液中含有0.2n A个Na +D. 标准状况下,22.4LCO和CO2的混合气体中含有n A个碳原子9. 下列离子方程式正确的是A. 向烧碱溶液中加入铝片:B. 向小苏打溶液中加入醋酸:‘.C. 向HI溶液中加入Fe(OH)3固体:D. 向MgSO4溶液中加入Ba(OH)2溶液:.10. 下列实验能达到预期目的的是A. 用Ba(NO3)2溶液鉴别 Na2SO3和 Na2SO4B. 除去苯中少量苯酚,向混合物中加人足量的NaOH溶液后过滤C. 将碘水和CCl4倒入分液漏斗,振荡后静置,可将碘萃取到CCl4中D. 取0.1mol FeCl3溶于蒸馏水,用1OOmL容量瓶定容后得到溶液11 对于溶液.下列说法正确的jA. 溶液中存在电离平銜:B. 向溶液中滴加少量浓硫酸.均增大C. 如水稀释.溶液中所有离子的浓度均减小D. 溶液中:12. 短周期元素甲、乙、丙、丁的原子序敉依次增大。
2012年广州市普通高中毕业班综合测试(二) 数学(文科)试题参考答案及评分标准
N P 1 BCQ1 和一个直三棱柱 MPQ NPQ 1 1.
1 1 2 AP AD MO 1 2 1 , ………… 10 分 3 3 3 1 1 MP MQ MN 2 2 2 2 ,…11 分 直三棱柱 MPQ NPQ 1 1 的体积为 V2 2 2 2 10 ∴多面体 MN ABCD 的体积为 V 2V1 V2 2 2 . …………… 12 分 3 3
其中当点 P 与点 P0 重合时,上面不等式取等号. ∴当 a 2 时,椭圆 C1 的长轴长取得最小值,其值为 4 . 此时椭圆 C1 的方程为 …………… 12 分
y 2 x2 3 点 P 的坐标为 , 1 . 1, 4 3 2
…………… 14 分
解法 2:∵抛物线 C2 的焦点为 F1 0,1 , 依题意知椭圆 C1 的两个焦点的坐标为 F1 0,1 , F2 0, 1 . …………… 5 分
'
…………… 8 分
∴直线 l 与直线 F1 F2 : y 1 的交点为 P0 由椭圆的定义及平面几何知识得:
3 , 1 . 2
…………… 9 分
椭圆 C1 的长轴长 2a PF1 PF2 PF1 PF2 F1 F2 4 ,
'
'
…………… 11 分
2012年广东高考理科数学试题及答案(详解) 2
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。
锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i为虚数单位,则复数56ii-=A 6+5iB 6-5iC -6+5iD -6-5i2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM=A .UB {1,3,5}C {3,5,6}D {2,4,6}3 若向量BA=(2,3),CA=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln(x+2)(12)x D.y=x+1x5.已知变量x,y满足约束条件,则z=3x+y的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49B.13C.29D.198.对任意两个非零的平面向量α和β,定义。
若平面向量a,b满足|a|≥|b|>0,a 与b的夹角,且a b和b a都在集合中,则A.12B.1C.32D.5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x³的系数为______。
(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
(二)选做题(14 - 15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。