参数方程(含解析)

参数方程(含解析)
参数方程(含解析)

参数方程

一、选择题

1、已知点的直角坐标分别为(1,-),则它的极坐标()A.B.C.D.

2、下列各点与(2,)表示极坐标系中同一点的是()

A.()B.(2,π)

C.()

D.(2,2π)

3、曲线C经过伸缩变换后,对应曲线的方程为:x2+y2=1,则曲线C的方程为()

A.B.C.

D.4x2+9y2=1

4、若M点的极坐标为,则M点的直角坐标是()

A.(-,1)B.(-,-1)C.(,-1)D.(,1)

5、极坐标方程ρ=所表示的图形是()

A.抛物线B.椭圆C.双曲线D.圆

6、已知点M的球坐标为(1,,),则它的直角坐标为()

A.(1,,)B.(,,)C.(,,)

D.(,,

7、

在同一坐标系中,将曲线变为曲线的伸缩变换是()A.B.C.D.

8、点M的直角坐标是,在ρ≥0,0≤θ<2π的条件下,它的极坐标是()

A.B.C.D.

9、设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()

A.(,)B.(,)C.(3,)D.(-3,)10、正弦曲线y=sinx通过坐标变换公式,变换得到的新曲线为()

A.B.Y=2sin3X

C.D.

11、在同一坐标系中,将圆x2+y2=4在伸缩变换下的方程是()

A.B.

C.4X2+9Y2=1D.2X2+3Y2=1 12、在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()

A.(2,0)

B.C.(2,π)

D.

二、填空题

13、将点的直角坐标(,)化为极坐标(ρ>0,θ∈[0,2π))为

__________ .

14、在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cosθ+sinθ)=1与ρ(sinθ-cosθ)=1的交点的极坐标为__________.

15、已知曲线C的极坐标方程为ρ(3cosθ-4sinθ)=1,则C与极轴的交点到极点的距离是__________.

16、

点A的直角坐标为(1,1,),则它的球坐标为_______,柱坐标为______

17、在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线x′2+y′2=1则曲线C的方程为 __________ .

18、把点M的球坐标(8,,化为直角坐标为 __________ .

三、解答题

19、极坐标系(ρ,θ)(0≤θ<2π)中,点(1,0)关于直线2ρsinθ=1对称的点的极坐标是__________.

20、如图,在极坐标下,写出点P的极坐标__________.

参数方程的答案和解析

一、选择题

1、答案:

D

试题分析:利用公式,再根据点所在象限,即可化为极坐标.

试题解析:=2,tanθ=-,θ∈,解得.

∴(1,-)的极坐标为.

故选:D.

2、答案:

C

试题分析:因为(ρ,θ),(ρ,θ+2kπ)(k∈Z)表示极坐标系中同一点,据此

可选出答案.

试题解析:∵ρ=2,θ==,∴点(2,)与(2,)表示极坐标系中同一点.故选C.

3、答案:

A

【解析】直角坐标系中的伸缩变换只要是利用变换前的关系式,变换关系,变换后的

关系式,只要知道其中的两个变量就可以求出点三个变量.本题知道第二、第三个变

量求第一个变量.

试题解析:曲线C经过伸缩变换①后,对应曲线的方程为:x′2+y′2=1②,

把①代入②得到:

故选:A

4、答案:

A

【解析】利用即可得出.

试题解析:∵=-,y=2=1,

∴M点的直角坐标是.

故选:A.

5、答案:

A

试题分析:利用即可化为直角坐标方程.

试题解析:极坐标方程ρ=化为ρ-ρsinθ=1,∴-y=1,化为,其图形是抛物线.

故选:A.

6、答案:

B

【解析】利用球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:

x=rsinθcosφ,y=rsinθsinφ,z=rcosθ,即可得出结论.

试题解析:设点M的直角坐标为(x,y,z),

∵点M的球坐标为(1,,),

∴x=sin cos=,y=sin sin=,z=cos=

∴M的直角坐标为(,,).

故选:B.

7、答案:

B

试题分析:设代入得

点评:点是平面坐标系中的一点,在变换的作用下,点

对应的点,称为平面直角坐标系中的坐标伸缩变换

8、答案:

A

试题分析:利用,,即可求出点M的极坐标.

试题解析:∵点M的直角坐标是,

∴在ρ≥0,0≤θ<2π的条件下,=2,,

又点M是第四象限的角,∴.

故选A.

9、答案:

A

试题分析:先求出点P的直角坐标,P到原点的距离r,根据点P的位置和极角的定义求出极角,从而得到点P的极坐标.

试题解析:∵点P对应的复数为-3+3i,则点P的直角坐标为(-3,3),点P到原点的距离r=3,

且点P第二象限的平分线上,故极角等于,故点P的极坐标为(,),

故选 A.

10、答案:

A

试题分析:P(x′,y′)是正弦曲线y=sinx上任意一点,点P在变换下变为点P′

(x,y),则有,即代入曲线y=sinx可得变换后的曲线方程.

试题解析:设P(x′,y′)是曲线y=sinx上任意一点,点P在矩阵MN对应的变换下变为点P′(x,y),

则有,于是,代入y=sinx得,

故选A.

11、答案:

A

试题分析:由伸缩变换得,将此式代入原曲线方程即可得到经过伸缩变换后的曲线方程.

试题解析:由伸缩变换得,

将此式代入曲线x2+y2=4,

得()2+()2=4,即.

故选A.

12、答案:

D

试题分析:先将原极坐标方程化成直角坐标方程,再利用直角坐标方程进行判断.

试题解析:将原方程ρ2+4ρsinθ+3=0化为:

其直角坐标方程为x2+y2+4y+3=0,

它的圆心的直角坐标为(0,-2),

∴圆心的极坐标是:.

故选D.

二、填空题

13、答案:

【解析】利用,,及点所在的象限即可得出.

试题解析:=π.

=,

∵点的直角坐标为(,)在第四象限,

∴.

∴此点的极坐标为.

故答案为:.

14、答案:

试题分析:将原方程左式展开后利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,化成直角坐标方程,最后在直角坐标系中算出交点的坐标,再

利用直角坐标与极坐标间的关系求出其极坐标即可.

试题解析:∵p(cosθ+sinθ)=1,

∴x+y=1,①

∵p(sinθ-cosθ)=1,

∴y-x=1,②

解①②组成的方程组得交点的直角坐标

(0,1)

∴交点的极坐标为.

故填:.

15、答案:

试题分析:由题意,θ=0,可得C与极轴的交点到极点的距离.试题解析:由题意,θ=0,可得ρ(3cos0-4sin0)=1,

∴C与极轴的交点到极点的距离是ρ=.

故答案为:.

16、答案:

解:因为点A的直角坐标为(1,1,)∵

1=rcost

1="rsint"

=z

这样可以得到r=,t=,z=

同理代入球坐标公式中得到为

17、答案:

【解析】把代入曲线x′2+y′2=1,即可得出.

试题解析:把代入曲线x′2+y′2=1,可得(5x)2+(3y)2=1,化为25x2+9y2=1,

即为曲线C的方程.

故答案为:25x2+9y2=1.

18、答案:

试题分析:利用球面坐标(r,θ,φ)与直角坐标(x,y,z)之间的关系

即可得出.

试题解析:由点M的球坐标(8,,化为直角坐标为

∴点M的直角坐标为(6,,4).

故答案为(6,,4).

三、解答题

19、答案:

试题分析:求出点(1,0)关于直线2ρsinθ=1对称的点的直角坐标,再把它化为极

坐标.

试题解析:直线2ρsinθ=1即y=,点(1,0)关于直线2ρsinθ=1对称的点的直

角坐标为(1,1),

故对称点的极坐标为(,),

故答案为:(,).

20、答案:

试题分析:如图所示,连接OP.由于OQ是此圆的直径,可得∠OPQ=90°.进而得到.可得OP=OQ?cos30°即可得出.

试题解析:如图所示,连接OP.

∵OQ是此圆的直径,∴∠OPQ=90°.

又∵∠OQP=60°,

∴∠POQ=30°.即.∴OP=OQ?cos30°=.故点P的极坐标为.

故答案为:.

(完整)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

参数方程类型题详解

参数方程题型大全 参27.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2 π (ρ∈R) 对称 D .重合 28.极坐标方程 4ρsin 2 2θ =5 表示的曲线是( )。 A .圆 B .椭圆 C .双曲线的一支 D .抛物线 29.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点 的位置关系是( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于θ=2 π所在直线对称 D .重合 30.椭圆?? ?Φ +-=Φ +=sin 51cos 33y x 的两个焦点坐标是( )。 A .(-3, 5),(-3, -3) B .(3, 3),(3, -5) C .(1, 1),(-7, 1) D .(7, -1),(-1, -1) 六、1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 2 3 B .23- C . 32 D .3 2 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1( ,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A . 2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2 cos 0ρθρ-=为直角坐标方程为( )

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 222t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C、 ???-=-=121t y t x (t为参数) D 、? ??+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( ) ?A .0 ?B.1 ?C .-2 D.8 3.已知??? ? ?-3,5πM ,下列所给出的不能表示点的坐标的是( ) A、??? ?? -3,5π B 、??? ?? 34,5π ??C、??? ??-32,5π ? D 、?? ? ?? --35,5π 4.极坐标系中,下列各点与点P(ρ,θ)(θ≠kπ,k ∈Z)关于极轴所在直线 对称的是( ) A.(-ρ,θ)B .(-ρ,-θ)C.(ρ,2π-θ) D.(ρ,2π+θ) 5.点()3,1-P ,则它的极坐标是 ( ) A 、??? ??3,2π ? B、??? ??34,2π ??C 、??? ??-3,2π ?D、?? ? ?? -34,2π 6.直角坐标系xo y中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θθ =+??=? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). A .1 B .2 C.3 D.4 7.参数方程为1()2 x t t t y ?=+???=?为参数表示的曲线是( ) A.一条直线 B.两条直线 C.一条射线 D.两条射线 8.()124123x t t x ky k y t =-?+==?=+?若直线为参数与直线垂直,则常数( )

《坐标系与参数方程》练习题(含详解)

数学选修4-4 坐标系与参数方程 [基础训练A 组] 一、选择题 1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 23 B .2 3- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ=??=+? 为参数上的点是( ) A .1(,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .2 01y y +==2 x 或 B .1x = C .2 01y +==2 x 或x D .1y = 5.点M 的直角坐标是(1-,则点M 的极坐标为( ) A .(2, )3π B .(2,)3π- C .2(2,)3π D .(2,2),()3 k k Z π π+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 二、填空题 1.直线34()45x t t y t =+?? =-?为参数的斜率为______________________。 2.参数方程()2() t t t t x e e t y e e --?=+??=-??为参数的普通方程为__________________。 3.已知直线113:()24x t l t y t =+?? =-?为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,

坐标变换与参数方程教案全

§16.1坐标轴的平移(一) 【教学目标】 知识目标: (1)理解坐标轴平移的坐标变换公式; (2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算; 能力目标: 通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高. 【教学重点】 坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算. 【教学难点】 坐标轴平移的坐标变换公式的运用. 【教学设计】 学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方. 【课时安排】 1课时. 【教学过程】 揭示课题 2.1坐标轴的平移与旋转 创设情境 兴趣导入 在数控编程和机械加工中,经常出现工件只作旋转运动(主运动),而刀具发生与工件相对的进给运动.为了保证切削加工的顺利进行,经常需要变换坐标系. 例如,圆心在O 1(2,1),半径为1的圆的方程为 1)1()2(22=-+-y x .

对应图形如图2-1所示.如果不改变坐标轴的方向和单位长度,将坐标原点移至点1O 处,那么,对于新坐标系111x O y ,该圆的方程就是 12121=+y x . 图2-1 动脑思考 探索新知 只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的坐标系的变换,叫做坐标轴的平移. 下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之间的关系,反映这种关系的式子叫做坐标变换公式. 图2-2 如图2-2所示,把原坐标系xOy 平移至新坐标系111x O y ,1O 在原坐标系中的坐标为 ),(00y x .设原坐标系xOy 两个坐标轴的单位向量分别为i 和j ,则新坐标系111x O y 的单位向 量也分别为i 和j ,设点P 在原坐标系中的坐标为),(y x ,在新坐标系中的坐标为),(11y x ,于是有 OP = x i +y j ,1O P = x 1i +y 1 j , 1OO = x 0i +y o j , 因为 11OP OO O P =+ , 所以 0011 x y x y x y +=+++i j i j i j , 即 0101 )()x y x x y y +=+++i j i j (.(转下节)

选修4-4坐标系与参数方程_知识点总结知识讲解

选修4-4坐标系与参数方程_知识点总结

坐标系与参数方程 知识点 (一)坐标系 1.平面直角坐标系中的坐标伸缩变换 设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用下,点 (,)P x y 对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是 (,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式 如表: 点M 直角坐标(,)x y 极坐标(,)ρθ 互化公式 cos sin x y ρθ ρθ=?? =? 222 tan (0) x y y x x ρθ?=+? ?=≠?? 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为r 的圆 (02)r ρθπ=≤< 圆心为(,0)r ,半径为r 的圆 2cos ()2 2 r π π ρθθ=- ≤< 圆心为(,)2r π ,半径为r 的 圆 2sin (0)r ρθθπ=≤< 圆心为(,)2r π ,半径为r 的 圆 2sin (0)r ρθθπ=≤<

参数方程教案

参数方程教案 第一节 曲线的参数方程 【教学目标】 1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路. 2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力. 3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点. 【教学重点与难点】 重点:曲线参数方程的探求及其有关概念; 难点:是弹道曲线参数方程的建立. 【教学过程】 一. 复习: 1.满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线? 曲线方程的概念:(1)曲线C 上任一点的坐标(x,y )都是方程f(x,y)=0的解;(2)同时以这个方程F(x,y)=0的每一组解(x,y)作为坐标的点都在曲线C 上.那么,这个方程f(x,y)=0就称作曲线C 的方程,而这条曲线C 就称作这个方程f(x,y)=0的曲线. 2.写出圆心在原点,半径为r 的圆O 的方程,并说明求解方法. ⊙O 的普通方程是:x 2 +y 2 =r 2 ; ⊙O 的参数方程是: ?? ?==θ θ sin cos r y r x (θ为参数) 这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x 、y 联系了起来,获得了圆的方程的另一种形式.

二.新课: 1.参数方程的定义:一般地,在直角坐标系中,如果曲线上的任意一点的坐标x,y ,都是某个变数t 的函数 ?? ?==) () (t g y t f x )(*,并且对于t 的每个允许值,由方程组)(*所确定的点M(x,y)都在这条曲线上,那么方程组)(*就叫做这条曲线的参数方程,联系x,y 之间关系的变量t 叫做参变数,简称参数。 2.例:炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为v 0,求出弹道曲线的方程.(不计空气阻力)。 我们知道弹道曲线是抛物线的一段.现在的问题就是怎样求弹道曲线的方程(即点的轨迹方程),那么,怎样来求点的轨迹方程? (1)建系:建立适当的直角坐标系; 以炮口为原点,水平方向为x 轴,建立直角坐标系。 (2)设标,设炮弹发射后t 秒时的位置为M(x ,y). (3)列式:即找出x 与y 之间的关系。 怎样把x 、y 之间的关系联系起来呢。 这里,炮弹的运动实际上是物理学中的斜抛运动.炮弹在水平方向作匀速直线运动,在竖直方向上作竖直上抛运动.显然在x 、y 分别是炮弹飞行过程中的水平位移和竖直位移(竖直高度)。x 、y 都与时间t 有关. 在水平方向的初速度是v 0cos α,在竖直方向的初速度是v 0sin α. 水平方向的位移,因为水平方向是作匀速直线运动,所以x=v 0cos α; 在竖直方向上,炮弹作竖直上抛运动,即炮弹受重力的作用作初速度不为零的匀减速直线运动.所以y=v 0sin α·t-2 1gt 2 这里我们把水平位移和竖直位移都用时间t 表示出来了,即把x 、y 都表示成了t 的函数,t 应该有一个确定的范围? 令y=0,得t=0或t = g v α sin 20, ∴0≤t ≤ g v αsin 20。

含参数方程组的解题策略

含参数方程组的解题策略 也许同学们对二元一次方程的解法已经非常熟练了,但在解含有参数的方程组时却感到很棘手,要么束手无策下不了笔或胡乱作答,要么解题过程复杂找不到捷径等等,为改变这些现状,本文特举几例加以分析,望能抛砖引玉。 例1. 【2009年四川内江】若关于的方程组的解是,则 为( ) A .1 B .3 C .5 D .2 分析:根据已知条件把方程组的解代入方程中,即可以转化得到一个关于m ,n 的新方程组, 先算出m ,n 的值,再求||m n -的值 。 解:将代入原方程组,得412m m n -=??+=?,从而解得35 m n =??=?,于是3m n -=-, 根据绝对值的意义得||()3m n m n -=--=,应选B. 例2. 【2009年山东日照】若关于x ,y 的二元一次方程组? ??=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43 C.34 D.34- 分析:将方程组中的两个方程相加便可得到214x k =,这时有两种解法:常规的思路是求出x ,y 的具体的值,再将其代入代入二元一次方程,得到一个关于k 的一元一次方程,便可求出k 的值;另外就是将方程组中的第一个方程两边同时乘以6,得6630x y k +=,把“214x k =”整体代入便可直接计算出“3y ”的值。 解:法 一:将两个方程相加得,214x k =,所以7x k =,将7x k =代入第一个方程 得,75k y k +=,解得,2y k =-,即方程组的解为7,2x k y k =??=-? ,于是可得,273(2)6k k ?+?-=,即1466k k -=,解得34 k =,应选B. x y ,2x y m x my n -=??+=?21x y =??=?||m n -21x y =??=?

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,A与B角速度之间的关系是_______________; (2) 第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在 直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原 点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系 该如何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈? ??==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈? ??==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? )2,0[s i n c o s ωπωω∈???==t t r y t r x , )2,0[s i n c o s πθθθ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈???==y x 与]2,0[sin 3cos 3πθθ θ∈???==y x 是否表示同一曲线?为什么? (ⅱ)根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的参数方程: ①在y 轴左侧的半圆(不包括y 轴上的点);

参数方程讲义

坐标系与参数方程 一、知识点梳理 (一)平面直角坐标系中的伸缩变化 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点, 在变换? ??>?='>?=').0(,y y 0), (x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称 ?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 (二)极坐标系与极坐标 1定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点 M 的极坐标,这样建立的坐标系叫做极坐标 系。 2极坐标有四个要素:(1)极点;(2)极轴;(3)长度单位; 图1

(4)角度单位及它的方向。 3极坐标与直角坐标的不同点是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的。 4极坐标与直角坐标互化公式(以坐标原点为极点) (1)互化背景:把直角坐标系的原点作为极点,X 轴的正半轴作为极轴,并在两种坐标系中取相同长度的单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角 坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化 公式如图一: (图一)

(图二) 5极坐标方程定义:用坐标系中的点与原点的距离以及该点与原点的连线与坐标轴的夹角来表示点的方法。 (三)常见曲线的极坐标方程

(四)参数方程 1参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ?? ?==) () (t f y t f x

高中数学选修4-4《坐标系与参数方程》全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

含参方程的解法

含参方程的解法 一题多解训练,就是启发和引导同学们从不同的角度、不同的思路,用不同的方法和不同的运算过程去分析、解答同一道数学题的练习活动,从而提高综合运用已学知识解答数学问题的技巧,锻炼思维的灵活性,促进同学们长知识、长智慧,开阔同学们的思路,引导同学们灵活地掌握知识之间的纵横联系,培养和发挥创造性. 例 若方程x 2 -32x =k 在区间(-1,1)内有实数解,试求实数k 的取值范围. 分析 本题考查方程在区间内有实数解,考查根的分布问题,由于函数与方程的关系密切,所以解决本题可以利用根的分布得出满足条件的不等式,进而求解;也可以通过构造函数,利用数形结合思想求解.所以有以下几种方法. 解 方法一 令f (x )=x 2 -32x -k . 若方程x 2 -32x =k 在区间(-1,1)内有两个实数解, 则有????? Δ≥0,f (1)>0, f (-1)>0. 解得-916≤k <-12. 若方程x 2-32x =k 在区间(-1,1)内有一个实数解,

则有f (-1)·f (1)<0,或??? f (-1)=0,f (1)>0, 或??? f (1)=0,f (-1)>0. 解得-12≤k <52. 综上所述,实数k 的取值范围为[-916,52). 评注 本方法是利用根的分布,分别讨论有一解、两解的情况,最后把解集取并集即可. 方法二 因为f (x )=x 2 -32x -k 的对称轴x =34∈(-1,1),更确切地说,x =34在(0,1)内, 所以方程x 2 -32x =k 在区间(-1,1)内有实数解满足的条件是??? Δ≥0,f (-1)>0. 解得-916≤k <52. 所以实数k 的取值范围为[-916,52). 评注 该解法的特点是发现了本题的特殊性,即对称轴在已知的区间内,从而迅速将难题破解. 方法三 若方程x 2 -32x =k 在(-1,1)内有实数解,令y =x 2-32x ,x ∈(-1,1)的值域为M , 则原方程在(-1,1)内有实数解,只需k ∈M 即可.

高中数学全参数方程知识点大全知识讲解

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

极坐标与参数方程经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ =-+?? =?的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ? =+ ???=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与???==θ θ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7.与参数方程为()21x t t y t ?=?? =-??为参数等价的普通方程为( ). A .22 14y x += B .221(01)4 y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .221(01,02)4 y x x y +=≤≤≤≤

高考文科数学复习题含解析参数方程

突破点一 参数方程 [基本知识] 1.参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函 数:????? x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组????? x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程? ???? x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参 数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0 +r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为 ? ???? x =a cos φ,y =b sin φ (φ为参数). [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)参数方程? ???? x =-1-t ,y =2+t (t 为参数)所表示的图形是直线.( )

(2)直线y =x 与曲线? ???? x =3cos α, y =3sin α(α为参数)的交点个数为1.( ) 答案:(1)√ (2)× 二、填空题 1.曲线C 的参数方程为? ??? ? x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为 ____________________. 解析:由???? ? x =sin θ,y =cos 2θ+1 (θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1). 答案:y =2-2x 2(-1≤x ≤1) 2.椭圆C 的参数方程为????? x =5cos φ, y =3sin φ (φ为参数),过左焦点F 1的直线l 与C 相交于A , B 两点,则|AB |min =________. 答案: 18 5 3.参数方程???? ? x =2t 2 1+t 2 ,y =4-2t 21+t 2 (t 为参数)化为普通方程为________________________. 解析:∵x =2t 2 1+t 2 , y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x . 又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2), ∴x ∈[0,2), ∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))

相关文档
最新文档