导数复合函数求导法则(非常实用)(精选)
简单复合函数求导法则

简单复合函数求导法则根据链式法则,如果y是一个由u=g(x)和v=f(u)组成的复合函数,则复合函数y=f(g(x))的导数可以表示为:dy/dx = dy/du * du/dx其中,dy/du 是函数f对u的导数,du/dx 是函数g对x的导数。
下面我们将介绍一些常见的简单复合函数求导法则。
一、常数倍数法则如果 f(x) 是一个可导函数,而 c 是一个常数,则 cf(x) 的导数是c * f'(x)。
根据这个法则,我们可以推导出以下常见的函数求导法则。
二、和差法则如果f(x)和g(x)都是可导函数,则它们的和f(x)+g(x)的导数是f'(x)+g'(x)差f(x)-g(x)的导数是f'(x)-g'(x)。
三、乘积法则如果f(x)和g(x)都是可导函数,则它们的乘积f(x)g(x)的导数是f'(x)g(x)+f(x)g'(x)。
四、商法则如果f(x)和g(x)都是可导函数,且g(x)≠0,则它们的商f(x)/g(x)的导数是[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。
如果f(u)是一个可导函数,而u=g(x)是一个可导的函数,则复合函数y=f(g(x))的导数是dy/dx = dy/du * du/dx = f'(u) * g'(x)。
这个法则是链式法则的核心,也是复合函数求导的关键。
对于指数函数 f(x) = a^x,其中 a 是一个正实数,则它的导数是f'(x) = (ln a) * a^x。
对于对数函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,则它的导数是 f'(x) = 1 / (x * ln a)。
这是一些常见的简单复合函数求导法则。
在实际应用中,我们经常会遇到更复杂的函数,需要根据特定函数的性质和结构来应用合适的求导法则。
掌握这些法则可以帮助我们更准确地计算各种复合函数的导数,并应用于相关问题的求解中。
复合函数导数公式及运算法则

复合函数导数公式及运算法则复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。
下面是由小编为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。
复合函数导数公式.常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
复合函数的求导法则.

复合函数的求导法则是指对于一个复合函数而言,求导时
需要将自变量和函数进行分离,分别对自变量和函数求导,
再求和。
具体来说,复合函数的求导法则可以分为两种情况:
1. 直接求导法则
如果复合函数的内层函数是简单函数(即只包含一个自变
量的函数),那么可以直接按照求导法则对内层函数进行求导,然后利用链式法则对外层函数进行求导。
例如,对于函数
f(x)=x^2+2x,求f(x)的导数,可以按照以下步骤进行:
f'(x) = (x^2 + 2x)' = (x^2)' + 2(x^2)'x = x^2 + 4x
其中,x^2的导数为2x,2x的导数为2,x的导数为1。
2. 间接求导法则
如果复合函数的内层函数是复合函数,那么需要先将内层
函数转化为简单函数,然后再按照求导法则对简单函数进行
求导。
例如,对于函数f(x)=sin(wx+b),求f(x)的导数,可
以按照以下步骤进行:
f'(x) = (sin(wx+b))' = (sin(wx+b))'w·cos(wx+b) + (sin(wx+b))'b·sin(wx+b) = w·cos(wx+b) + b·sin(wx+b)
其中,w为常数,表示角速度,cos(wx+b)为在wx+b方向
上的余弦函数,sin(wx+b)为在wx+b方向上的正弦函数。
简单复合函数的求导法则

2u
6 x 4 ; ux
u y y yu x
' ' x
3 ;
' x
, u 分析三个函数解析式以及导数 yu x, y
之间的关系:
19:27:48
复合函数的求导法则
定理 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导. 且
( x) y f ( u ) y y u , 或 x x u x
即:因变量对自变量求导,等于因变量对中间变 量求导,乘以中间变量对自变量求导. ( 链式法 则 ) 注意:
1、法则可以推广到两个以上的中间变量; 2、求复合函数的导数,关键在于分清函数的复合关系,合理选定 中间变量,明确求导过程中每次是哪个变量相对于哪个变量求导.
【解析】
复习检测
复习检测
复习检测
复习检测
例4、一个港口的某一观测点的水位在退潮的过程中, 水面高度y(单位:cm)。关于时间t(单位:s)的 函数为 y h(t ) 100 ,求函数在t=3时的导数,
2t 1
100 100 解:函数 y h(t ) f ( x) 是由函数 2t 1 x
并解释它的实际意义。
与
x (t ) 2t 1 复合而成的
yt h(t ) f ( x) (t )
100 200 2 x2 (2t 1) 2
将t=3代入 得:
200 它表示当t=3时,水面高度下降的速度为 cm/s。 49
200 h (3) 49
3 例2 求曲线y 3 (3x 2 1)在点( 1, 4)处的切线方程。 练习
复合函数的导数

所以
yx yu ux 2u cos x 2sin x cos x.
例 3 设 y = etan x,求 y . 解 y = etan x 可以看成是由 y = eu,u = tan x 复合而成,所以
yx yu ux (eu )u (tan x)x
= elnx ·(ln x) e ln x 1
x
x 1 x 1 .
x
例 12 设 u x2 y2 z2 , 求证:
u x
2
u y
2
u z
2
1
.
证明
u x 2
x2
1 y2
z2
(x2
y2
z 2 )x
x
x
,
x2 y2 z2 u
同理,得
u y ,u z ,代等式左边得解 先用复合函数求导公式,再用加法求导公式,
然后又会遇到复合函数 1 x2 的求导.
[ln(x 1 x2 )]
1
( x 1 x2 )
x 1 x2
1
[1 ( 1 x2 )]
x 1 x2
x
1 1
x2
1
1. 1 x2
x 1
x2
例 11 设 y = sh x, 求 y .
解
y
(shx)
一、复合函数的求导法则
定理 2 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导.
且 或
或
证 设变量 x 有增量 x,相应地变量 u 有 增量 u,从而 y 有增量 y. 由于 u 可导,
所以lim u 0. x0
复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则复合函数是指由两个或多个函数组成的函数。
在求复合函数的导数时,需要使用链式法则,即将函数的导数作为求导的一部分。
设有两个函数f(x)和g(x),假设y=f(g(x))是一个复合函数。
我们的目标是求解复合函数y=f(g(x))的导数dy/dx。
根据链式法则,dy/dx可以表示为:dy/dx = df(g(x))/dx根据上述公式,我们可以按照以下步骤求导:Step 1: 首先对f(g(x))进行求导,即求df(g)/dg。
Step 2: 然后对g(x)进行求导,即求dg(x)/dx。
Step 3: 最后将求导得到的结果相乘,即df(g)/dg * dg(x)/dx =dy/dx。
下面我们讨论一些常见的复合函数和它们的导数运算法则。
1. 复合函数的链式法则(Chain Rule)设有函数f(u)和g(x),假设y=f(g(x))是一个复合函数。
根据链式法则,复合函数y=f(g(x))的导数可以表示为:dy/dx = f'(g(x)) * g'(x)其中,f'(u)和g'(x)分别表示f(u)和g(x)的导数。
例如,如果y=(2x+1)^3,则可以将它表示为y=u^3,其中u=2x+1、根据链式法则:dy/dx = 3u^2 * du/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^22.复合函数中的乘法法则如果复合函数中有乘法运算,则可以使用乘法法则来求导。
例如,如果y=x^2*e^x,则可以使用乘法法则来求导:dy/dx = (d/dx)(x^2) * e^x + x^2 * (d/dx)(e^x)对于每一项使用基本求导法则:dy/dx = 2x * e^x + x^2 * e^x3.复合函数中的除法法则如果复合函数中有除法运算,则可以使用除法法则来求导。
例如,如果y=(x^2+1)/(x-1),则可以使用除法法则来求导:dy/dx = [(d/dx)(x^2 + 1)(x - 1) - (d/dx)(x - 1)(x^2 + 1)]/(x - 1)^2再对每一项使用基本求导法则:dy/dx = [(2x)(x - 1) - (x^2 + 1)]/(x - 1)^24.复合函数中的三角函数法则如果复合函数中包含三角函数,则可以使用三角函数法则来求导。
导数的复合求导法则

导数的复合求导法则导数的复合求导法则是微积分中的重要内容,它可以帮助我们计算含有复合函数的导数。
在复合函数中,一个函数嵌套在另一个函数内部,我们需要利用复合求导法则来计算这个复合函数的导数。
复合求导法则有两个部分:链式法则和指数法则。
一、链式法则:链式法则是计算复合函数导数的一种方法,它适用于函数嵌套的情况。
设有函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数可以表示为:dy/dx = (dy/du) * (du/dx)其中,(dy/du)表示外函数f(u)对内函数u=g(x)的导数,(du/dx)表示内函数u=g(x)对自变量x的导数。
链式法则的推导过程如下:1.设复合函数为y=f(g(x)),其中u=g(x)。
2. 通过求导的定义,可以计算出dy/du,即外函数f(u)对内函数u=g(x)的导数。
3. 通过求导的定义,可以计算出du/dx,即内函数u=g(x)对自变量x的导数。
4. 接着,将dy/du和du/dx相乘即可得到复合函数y=f(g(x))的导数:dy/dx = dy/du * du/dx。
链式法则的一个重要应用是计算嵌套函数的高阶导数。
利用链式法则,我们可以推导出计算嵌套函数高阶导数的公式。
例如,对于二阶导数,我们可以将链式法则应用两次来计算。
二、指数法则:指数法则是计算含有指数函数的复合函数导数的一种方法。
指数函数是指以常数e为底的自然指数函数,例如f(x) = e^x。
对于指数函数e^x,其导数等于其本身。
即d(e^x)/dx = e^x。
当复合函数中出现指数函数时,我们可以利用指数法则来计算其导数。
指数法则有两种形式:1. 对于一般形式的复合函数:y = e^(g(x)),其中u = g(x)。
则该复合函数的导数为dy/dx = (e^(g(x))) * g'(x)。
2. 对于特殊情况:y = a^(g(x)),其中a为常数。
则该复合函数的导数为dy/dx = (a^(g(x))) * ln(a) * g'(x)。
微积分3.3 复合函数求导法则_OK

6
在熟练掌握链式法则后,不写出中间变量会更简便些。
例. 设 y xaa a xa aax (a 0), 求 y.
解 y aa xaa 1 a xa ln a a xa1 aax ln a a x ln a aa xaa 1 a xa 1 ln a xa1 aa x x (ln a)2
(3) y ln cos( e x ) 2x5 ;(4) y x 1 e 2x arcsin e x
key : (1) y 1 ; sin x cos x
(2) y 2 1 x2
(3) y tan(e x )) e x 2x5 ln 2 5 x4;
(4) y 1 e2x x e2x
例.证明:若f x为偶函数, 且f 0存在, 则f 0 0.
解 若f ( x)为偶函数,则f ( x) f ( x)
f (0) lim f ( x) f (0) lim f ( x) f (0)
x0
x0
x0 x 0
lim f ( x) f (0) lim f ( x) f (0) f (0)
当然若函数在分段点不连续,则一定不可 导,此时不必再用点导数定义式判断这点 的可导性了。
例
(
x)
x2
1
3x
x 0 ( x)在x 0点不连续,
x 0 故x 0点也是不可导13点。
例
求函数
y
ln
3
x2 1 x2
(x
2) 的导数.
解 y 1 ln( x2 1) 1 ln( x 2),
y
(ln
u)u
(arctanv
)v
x 2
x
1 u
1
1 v
2
1 2