生产生活中的含氮化合物 知识点总结
氮及其化合物知识点总结

氮及其化合物知识点总结氮及其化合物是生物学和化学领域中非常重要的元素和分子。
以下是氮及其化合物的一些知识点总结。
1. 氮的化学性质氮是人体必需的元素之一,也是地球上最常见的元素之一。
氮的化学式为N2,是一种无色、无味的气体。
氮的化学性质比较活泼,可以与许多其他元素形成化合物。
2. 氮的化合物氮的化合物种类繁多,包括氨(NH3)、硝酸(HNO3)、呼气(H2SO4)和硝酸铵(NH4NO3)等。
其中氨和呼气是常见的有机合成原料,而硝酸铵则是常见的肥料。
3. 氨的化学性质氨(NH3)是一种无色、有刺激性气味的气体,化学式为NH3。
氨是一种强碱性化合物,可以用于制备氨气和氨水等。
氨气是一种重要的无色气体,广泛用于工业和生活中。
4. 呼气的化学性质呼气(H2SO4)是一种无色、有刺激性气味的气体,化学式为H2SO4。
呼气主要用于医疗领域,用于呼气式核酸检测等。
5. 硝酸铵的化学性质硝酸铵(NH4NO3)是一种白色的晶体,化学式为NH4NO3。
硝酸铵是一种强肥料,可以用于种植植物和土壤改良。
硝酸铵也可以用于工业上,用于制造肥料和染料等。
6. 氮的现代应用氮的现代应用非常广泛,包括用于制造氨气和氨水、用于制备肥料和药物、用于制造蛋白质和核酸等。
此外,氮还被用于制造氮素肥料,用于改善土壤质量和促进植物生长。
拓展:氮素肥料是农业生产中非常重要的肥料之一,可以提高土壤肥力,促进植物生长。
氮素肥料一般包括尿素、硝酸铵等。
此外,氮素肥料还可以用于制造氮素蛋白,用于饲料和工业用途。
氮及其化合物知识点总结教学总结

氮及其化合物知识点总结教学总结一、氮的性质和用途1.氮的性质:氮是一种无色、无臭的气体,密度小于空气。
在常温下,氮是一种稳定的元素,不易与其他元素反应。
2.氮的用途:(1)氮气广泛用于冷冻、保鲜和灭菌等工业应用。
(2)液态氮广泛用于冷冻、保存生物标本和实验室制备低温实验所需。
(3)氨气用作燃料和制冷剂,也是生产化肥和容器等的重要原材料。
(4)硝酸和亚硝酸广泛用于生产肥料和爆炸物等。
二、氮气的制备和应用1.氮气的制备方法:(1)通过空气的分馏法制取液态氧和氮。
(2)通过分子筛吸附法制取氮气。
2.氮气的应用:(1)气体保护焊接:使用氮气保护焊接区域,防止焊缝氧化和氮化。
(2)生产和保存药品:氮气可以防止药物氧化和分解。
(3)组织培养:在细胞培养中,氮气被用作组织培养的气体环境。
三、氨的性质、制备和应用1.氨的性质:氨是一种气味强烈的有毒气体,能与水形成氨水。
氨气密度较空气大,有腐蚀性。
2.氨的制备方法:(1)哈伦-斯奈德法:将甲醇和氨在高温下反应制取氨气。
(2)卡夫斯曼法:将氨煮沸,使其与空气中的水气反应制取一氧化氮,一氧化氮再与氢气反应制取氨气。
3.氨的应用:(1)制造化学品:氨用作制造尿素、硝酸、硫胺等重要的化工原料。
(2)制冷:氨蒸汽被广泛用于制冷机和空调系统中。
(3)氨合成:氨是生产氨肥的重要原料。
四、硝酸和亚硝酸1.硝酸的性质:硝酸是一种无色液体,具有强氧化性和强腐蚀性。
2.硝酸的制备方法:(1)奥斯特瓦尔德氧化法:将氨和氧反应制取硝酸。
(2)热圈硝化法:将铵盐加热至高温,使其分解生成硝酸。
3.硝酸的应用:(1)制造肥料:硝酸是制造硝酸铵等氮肥的原料。
(2)炸药:硝酸是制造炸药的重要原料之一4.亚硝酸的性质、制备和应用:亚硝酸是一种无色液体,有强烈的刺激性臭味。
亚硝酸可以通过硝酸还原亚硝酸盐而得到。
亚硝酸是制备硝酸铵和硝酸钠等化肥的重要中间体。
五、氮化物1.氮化物的性质:氮化物是一类化合物,它们是由氮和其他元素组成的大分子化合物。
氮元素全部知识点总结

氮元素全部知识点总结1. 氮元素的基本性质氮元素是地球上自然存在的元素之一,它的原子序数为7,原子量为14.007 u,是在化学元素周期表中位于第15族元素。
在常温下,氮气是一种无色、无味、无毒的气体,它在空气中占据了78%的比例。
氮气的沸点为-195.8°C,熔点为-210°C。
与大部分其他气体一样,氮气是不可燃的,不支持燃烧。
2. 氮元素的化合物氮元素主要形成的化合物包括氨、硝酸、硝酸盐等。
其中,氨是氮元素最常见的化合物之一,它是由一个氮原子和三个氢原子组成的化合物。
氨在农业中用作化肥,同时也是工业上的重要化学原料。
硝酸是另一种重要的氮化合物,它主要用于生产肥料和炸药。
硝酸盐则是硝酸和金属离子结合形成的化合物,常见的硝酸盐包括硝酸钠、硝酸铵等,它们也被广泛应用于农业和工业。
3. 氮元素的应用氮元素在农业、工业、医药等领域有着广泛的应用。
在农业中,氮元素主要以化肥的形式施用于土壤,促进植物的生长和发育。
在工业上,氮元素被用于合成化肥、硝酸、氨、硝酸盐等化学品。
此外,氮气也被用于气体保护焊接和气铁器。
在医药领域,氮元素被用于制备一些重要的药物,如硝化甘油等。
4. 氮元素与环境影响氮元素在地球生态系统中起着非常重要的作用,但同时过量的氮元素也会对环境产生负面影响。
通过人类活动排放的氮氧化物和氨等化合物,会导致土壤酸化和土壤养分失衡,对植物和水域生态系统造成破坏。
此外,过量的氮元素被排放到大气中也会导致大气污染问题,加剧酸雨等环境问题。
总的来说,氮元素是地球上非常重要的元素,它在生命系统中起着至关重要的作用。
通过对氮元素的深入了解和科学利用,可以更好地保护环境,维护地球生态平衡的稳定。
希望通过本文的总结,能够为读者提供了解氮元素的全面知识,进而更好地认识和关注这一重要元素。
氮及其化合物知识点总结教学总结

6•硝酸 物理性质:无色、易挥发的反应时,由于硝酸具有强氧化性,因此不产生氢气)
。
(2) 不稳定性:
光或加执
4 HNO3 ===或执=2H2O + 4NO2f + O2 f
(浓硝酸的保存棕色瓶中,避光 )
实验室里的浓硝酸呈 黄 色,就是由于硝酸分解产生的
NO?溶于硝酸的缘故。
(3) 强氧化性:不论浓硝酸还是稀硝酸都具有强氧化性。
与金属反应:HNO3 几乎能与所有的金属发生氧化还原反应。
Cu + 4HNO3(浓)==== Cu (NO3)2 + 2H2O + 2NO2 f
3Cu + 8HNO3(稀)==== 3Cu (NO3) 2 + 4H2O + 2NOT
离子反应方程式 NH4+ + 0H — ==△ == NH3f + H2O
注意事项:①要反应生成 NH3 必须有加热条件,否则主要生成
NH3?H2O ,
②铵态氮肥避免与碱性肥料混合使用
NH4 +的检验:取样,加入 NaOH 溶液,加热,若有使湿润的红色石蕊试纸变蓝色的气体
即含 NH 4+
(3) 实验室制取氨气:
Fe + 6HNO3(浓)==△== Fe (NO3) 3 + 3H2O + 3NO2 f
Fe + 4HNO3(稀)==== Fe (NO3) 3 + 2H2O + NOT
Al + 6HNO3(浓) ==△ == Al (NO3) 3 + 3H2O + 3NO2 f
Al + 4HNO3(稀)==== Al (NO3) 3 + 2H2O + NOT
氮及其化合物知识归纳总结

氮及其化合物知识点归纳总结一、氮气、氮的氧化物1、氮气:无色无味的气体,难溶于水。
氮的分子结构:电子式_______ 结构式______________。
(1) 氧化性:N 2+3H 22NH 3,N 2+3Mg=Mg 3N 2其产物的双水解反应:(2)还原性:与O 2的化合(放电或高温条件下)NO O N 222放电+ 2、氮的固定将空气中游离的氮气转化为氮的化合物的方法,统称为氮的固定。
氮的固定的三种途径:(1) 生物固氮:豆科植物根瘤菌将氮气转化为化合态氮(2) 自然固氮:打雷闪电时,大气中的氮气转化为NO NO O N 222放电+ (3) 工业固氮:工业合成氨N 2+3H 22NH 33、氮氧化物种类 物理性质 稳定性 N 2O 笑气NO 无色气体,溶于水中等活泼NO 2红棕色色气体,易溶于水,有毒较活泼,易发生二聚反应N 2O 4 无色气体 较活泼,受热易分解 N 2O 无色气体较不活泼N 2O 3 (亚硝酸酸酐) 蓝色气体(—20°C )常温不易分解为NO 、NO 2N 2O 5(硝酸酸酐)无色固体 气态不稳定,常温易分解(1) NO 2与水反应:NOHNO O H NO +=+32223(2) NO 、NO 2的尾气吸收:OH NaNO NaOH NO NO O H NaNO NaNO NaOH NO 22222322222+=++++=+(3) NO 的检验:2222NO O NO =+ 现象无色气体和空气接触后变为红棕色。
(4) 两个计算所用的方程式: 4NO+3O 2+2H 2O=4HNO 34NO 2+O 2+ 2H 2O =4HNO 3氮的氧化物溶于水的计算(1)NO 2或NO 2与N 2(非O 2)的混合气体溶于水时可依据:3NO 2+H 2O ✂2HNO 3+NO 利用气体体积变化差值进行汁算。
(2)NO 2与O 2的混合气体溶于水时.由4 NO 2+O 2十2 H 2O ✂4HNO 3,可知,当体积比:=4:1,恰好完全反应V(NO 2):V(O 2) >4:1,NO 2过量,剩余气体为NO <4:1,O 2过量,剩余气体为O 2(3) NO 与O 2同时通如水中时.由4 NO +3O 2十2 H 2O ✂4HNO 3,可知,当体积比: =4:3,恰好完全反应 V(NO):V(O 2) >4:3,剩余气体为NO <4:3,剩余气体为O 2(4)NO 、NO 2、O 2三种混合气体通人水中,可先按(1)求出NO 2与H 2O 反应生成的NO 的体积,再加上原混合气体中的NO 的体积即为NO 的总体积,再按(3)方法进行计算。
化学氮知识点总结

化学氮知识点总结1. 氮的物理性质氮是一种无色、无味、无臭的气体,在常温常压下,它是一种双原子分子的气体,化学式为N2。
氮气是一种相对稳定的气体,其沸点为-196℃、熔点为-210℃。
2. 氮的化学性质在化学反应中,氮气是相对稳定的,很少参与反应。
但是,当氮气与氢气或氧气等元素形成氨、氮氧化物等化合物时,它就会表现出不同的性质。
氮化合物在生态系统、工业生产、农业生产等领域都扮演着重要的角色。
3. 氮的存在形式氮主要以氮气(N2)的形式存在于大气中,占空气的78%,也以硝酸盐、氨等形式存在于地壳和水中。
在土壤中,氮以有机氮和无机氮的形式存在,有机氮主要来自植物残体、微生物体等有机物质的分解,无机氮主要来自于大气中的氮气和土壤中的氮化物质的分解而来。
氮在大气和土壤中的循环是生态系统中至关重要的一个循环过程,它直接影响了生物体的生长发育和生态系统的稳定性。
4. 氮的化合物氮化合物包括氨、亚硝酸盐、硝酸盐、尿素等。
这些化合物在生态系统中发挥着重要作用,它们在生物体代谢和养分循环过程中发挥着至关重要的作用。
5. 氮的应用氮在工业生产中有着广泛的应用,它可用于制备氨、硝酸、硝酸铵等工业产品,也可用于半导体、电子产业中的制冷等。
在农业生产中,氮是一种重要的营养元素,它是植物体中蛋白质合成的重要原料,因此氮在农业生产中也有着重要的作用。
总的来说,氮是化学中的重要元素,在生态系统中和人类生产活动中都发挥着重要的作用。
深入了解氮的性质和应用,可以帮助我们更好地利用和保护这一重要的元素资源,促进生态系统的健康发展和人类社会的可持续发展。
氮及其化合物知识点总结

氮及其化合物知识点总结氮及其化合物是化学领域中非常重要的一类物质,其存在于自然界中并为人类的生活和发展做出了重要贡献。
在这篇文章中,我们将总结氮及其化合物的知识,包括氮的化学性质、氮的化合物类型、氮的利用和氮的环境保护等方面。
一、氮的化学性质氮是人体必需的营养元素之一,其化学性质非常重要。
氮的化学式为N2,是一种无色、无味、无臭的气体。
氮分子由两个氮原子通过共价键连接而成,其化学性质稳定,不易被化学反应氧化或破坏。
氮的化学性质包括:1. 化学键:氮分子由两个氮原子通过共价键连接而成,共价键的化学性质稳定,不易被化学反应氧化或破坏。
2. 物理性质:氮分子无色、无味、无臭,不易被光照或加热分解,因此氮在常温常压下是一个稳定的分子。
3. 化学反应:氮分子可以与许多物质发生化学反应,包括与碳、氢、氧、硫等元素反应生成相应的化合物。
二、氮的化合物类型氮的化合物类型很多,其中一些重要的化合物包括:1. 氨(NH3):氨是一种无色、有刺激性气味的气体,是氮的常见化合物之一。
氨的化学式为NH3,可以与水、碱金属反应。
2. 硝酸(HNO3):硝酸是一种无色、有刺激性气味的气体,是氮的常见化合物之一。
硝酸可以与酸反应,也可以与碱金属反应。
3. 硝酸铵(NH4NO3):硝酸铵是一种固态的肥料,由氨和水混合而成。
硝酸铵可以储存和使用,但需要注意安全。
4. 尿素(C2H5NH2):尿素是一种无色、有刺激性气味的气体,是氮的常见化合物之一。
尿素可以用于生产肥料、合成橡胶、塑料等。
三、氮的利用氮在自然界中广泛存在,是人类生产和生活的重要营养元素。
氮的利用包括农业、工业和能源等领域。
1. 农业:氮素肥料是农业生产中的重要肥料,主要用于支持植物的生长。
氮的利用包括氮素肥料的使用、追肥和营养循环等。
2. 工业:氮的利用包括氨化、硝酸化、硝化等过程,这些过程可以生产各种氮的化合物,如氨、硝酸、硝酸铵等。
3. 能源:氮的利用还涉及一些能源领域,如天然气化工、氨化等。
氨气的相关知识点总结

氨气的相关知识点总结化学性质氨气的化学式为NH3,是一种含氮化合物。
它是一种碱性气体,在水中能够与水分子发生反应,生成氢氧化铵。
氨气与一些酸性气体能够发生中和反应,产生相应的盐类物质。
此外,氨气还能够与一些金属离子发生络合反应,形成相应的络合物。
物理性质氨气在常温下为无色气体,具有较强的刺激性气味。
其密度相对空气较轻,因此氨气有较强的上升性。
氨气的沸点为-33.34℃,而冰点为-77.73℃。
在高温下,氨气能够燃烧并发生爆炸。
因此,氨气在处理和储存时需要采取相应的安全防范措施。
用途氨气在农业上具有重要的应用价值,它可以作为作物的氮肥进行使用,帮助作物生长,提高产量。
此外,氨气还可以用于生产化肥和农药。
在化工领域,氨气被广泛地应用于合成氨基酸、合成纤维等化工产品的生产。
在医药领域,氨气可用于制备一些药物,也可作为一种生产中间体。
危害氨气具有较强的刺激性气味,对人体呼吸道和眼睛均有一定的刺激作用。
高浓度的氨气还可能对人体造成中毒,出现头晕、恶心、咳嗽等症状。
因此,在生产和使用氨气时需要采取相应的防护措施,确保工作场所的安全。
储存和运输氨气在储存和运输时需要注意防范火灾和爆炸的危险,并且避免与酸性气体和氧化剂等物质发生反应。
常用的氨气储存方式包括液化氨、氨水溶液和气相氨。
在运输方面,氨气通常以压缩气体或冷冻液态的形式进行运输。
在使用氨气时需要注意的安全措施1. 避免氨气接触皮肤和眼睛,如有接触应立即用大量清水冲洗。
2. 使用氨气时要在通风良好的环境中进行,并且佩戴相应的防护用具。
3. 避免与氨气一起存放或使用一些易燃易爆的物质。
4. 在使用氨气时要遵循相应的操作规程,避免发生意外事故。
在紧急情况下的处理方法如果意外泄漏了氨气,应迅速撤离现场,保持空气流通,避免氨气的扩散。
如有必要应当立即通知相关的应急救援部门,并且进行相应的清洁和修复工作,确保安全。
氨气是一种重要的化工物质,在农业、化工和医药等领域都有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、氮气和氮氧化物
1. 氮气:无色无味、难溶于水的气体。
空气中体积分数78%是氮气。
常温下氮气很稳定,很难与其它物质发生反应,因此,生产上常用氮气作保护气。
但这种稳定是相对的,在一定条件下(如高温、放电等),也能跟某些物质(如氧气、氢气等)发生反应。
2. 固氮作用:游离态氮转变为化合态氮的方法。
自然固氮→闪电时,N2转化为NO
生物固氮→豆科作物根瘤菌将N2转化为化合态氮
工业固氮→工业上用N2和H2合成氨气
3、氮氧化物(NO和NO2):
相互转换
氮氧化物对环境的污染、危害及防治措施:
①酸型酸雨的产生及危害②造成光化学烟雾的主要因素③破坏臭
氧层
氮的氧化物是大气污染气体,常用碱液(NaOH溶液)吸收。
二、氮肥的生产和使用
1、氨的合成:
2、氨气的物理性质:
氨气是无色、有刺激性气味的气体,在标准状况下,密度是0.771g·L-1,比空气小。
氨易液化,液氨气化时要吸收大量的热,可作致冷剂。
氨易溶于水,常温常压下,1体积水中大约可溶解700体积的氨气。
氨的水溶液称氨水。
计算氨水的浓度时,溶质应为NH3。
3、氨的化学性质:
(1)氨溶于水时,大部分氨分子和水分子形成一水合氨分子(NH3·H2O)。
一水合氨分子(NH3·H2O)不稳定,受热时分解为氨气和水。
氨水显弱碱性。
比较液氨与氨水:
(2)氨具有弱碱性,可以与酸(硫酸、硝酸、盐酸等)反应,生成铵盐。
(3)与氧气反应(具有还原性)
氨气在催化剂(如铂等)、加热的条件下,生成一氧化氮和水,并放出热量。
此反应是放热反应,是工业制硝酸的基础。
4、铵盐:由铵离子和酸根离子构成的盐。
①铵盐受热易分解:
②铵盐能与碱反应放出氨气:
▲铵态氮肥,要避免与碱性肥料混合施用。
三、硝酸:
1、硝酸的工业制法:氨催化氧化法
原理:
2、硝酸的物理性质:
纯硝酸为无色有刺激性气味的液体,沸点较低(83℃),易挥发,在空气中遇水蒸气形成硝酸的小液滴而呈白雾状。
98%以上的浓硝酸称为“发烟硝酸”,69%的硝酸溶液称为浓HNO3。
浓HNO3由于HNO3分
解产生的NO2溶于硝酸中而一般呈黄色。
3、硝酸的化学性质:
(1)不稳定性
硝酸越浓越易分解,因此浓HNO3应存放在棕色试剂瓶中。
(2)强酸性:具有酸的通性。
(3)强氧化性:HNO3中的+5价N元素具有很强的氧化性。
钝化作用:常温下, 浓HNO3使Fe、Al钝化。
4、氮及其化合物的性质和转化关系:
5、自然界中氮的循环:。